薄膜技术复习题

合集下载

薄膜材料技术复习题090526

薄膜材料技术复习题090526

1.薄膜定义:按照一定需要,利用特殊的制备技术,在基体表面形成厚度为亚微米至微米级的膜层。

这种二维伸展的薄膜具有特殊的成分、结构和尺寸效应而使其获得三维材料所没有的特性,同时又很节约材料,所以非常重要。

通常是把膜层无基片而能独立成形的厚度作为薄膜厚度的一个大致的标准,规定其厚度约在1µm左右。

2.一些表面定义:1)理想表面:沿着三维晶体相互平行的两个面切开,得到的表面,除了原子平移对称性破坏,与体内相同。

2)清洁表面:没有外界杂质。

3)弛豫表面:表面原子因受力不均向内收缩或向外膨胀。

4)重构表面:表面原子在与表面平行的方向上的周期也发生变化,不同于晶体内部原子排列的二维对称性(再构)。

5)实际表面:存在外来原子或分子。

3. 薄膜的形成的物理过程驰豫重构驰豫+重构⎧⎪⎨⎪⎩驰豫:表面向下收缩,表面层原子与内层原子结构缺陷间距比内层原子相互之间有所减小。

重构:在平行表面方向上原子重排。

①小岛阶段——成核和核长大,透射电镜观察到大小一致(2-3nm)的核突然出现.平行基片平面的两维大于垂直方向的第三维。

说明:核生长以吸附单体在基片表面的扩散,不是由于气相原子的直接接触。

②结合阶段——两个圆形核结合时间小于0.1s,并且结合后增大了高度,减少了在基片所占的总面积。

而新出现的基片面积上会发生二次成核,复结合后的复合岛若有足够时间,可形成晶体形状,多为六角形。

核结合时的传质机理是体扩散和表面扩散(以表面扩散为主)以便表面能降低。

③沟道阶段——圆形的岛在进一步结合处,才继续发生大的变形→岛被拉长,从而连接成网状结构的薄膜,在这种结构中遍布不规则的窄长沟道,其宽度约为5-20nm ,沟道内发生三次成核,其结合效应是消除表面曲率区,以使生成的总表面能为最小。

④连续薄膜——小岛结合,岛的取向会发生显著的变化,并有些再结晶的现象。

沟道内二次或三次成核并结合,以及网状结构生长→连续薄膜。

4. 薄膜的附着类型及影响薄膜附着力的工艺因素⎧⇒⇒⇒⎨⎩⎧⎧⎧⇒⇒⇒⇒⎨⎨⎨⎩⎩⎩⎧⇒⎨⎩(在新面积处)稳定核(在捕获区)单体的吸附形成小原子团临界核临界核(在非捕获区)大岛大岛连合沟道薄膜小岛 二次成核二、三次成核二、三次成核 连续薄膜(在沟道和孔洞处)三次成核薄膜的附着类型①简单附着:薄膜和基片间形成一个很清楚的分界面,薄膜与基片间的结合力为范德华力②扩散附着—由两个固体间相互扩散或溶解而导致在薄膜和基片间形成一个渐变界面。

薄膜复习题

薄膜复习题

绪论1.薄膜制备方法到底有哪些,它们是如何分类的,试列出它们的树形结构(第一级按干法与湿法分;第二级(干法的分类):PVD、CVD各包含哪些;第三级:蒸发、溅射、离子镀中各包含哪些)答:PVD:真空蒸发、溅射、离子镀CVD:常压CVD、低压CVD金属有机物CVD等离子体CVD光CVD、热丝CVD2.各种镀膜方法的英文简称答:PVD:物理气相沉积CVD:化学气相沉积、MBE:分子束外延、sol-gel:溶胶凝胶法、LPCVD:低压CVD、APCVD:常压CVD、PECVD:等离子体增强CVD、MOCVD:金属有机物CVD、、脉冲激光溅射沉积(PLD)、离子束辅助沉积(IBAD)MOD:金属有机物热分解3.试举例说明薄膜的应用(机械、微电子、光电子、元器件、光学、信息技术、装饰、能源等)答:一、集成电路:P-N结、绝缘层、导线,并由此构成二极管、三极管、电阻、电容等电子元件。

二、信息存储薄膜:磁盘、光盘三、集成光电子学:四、信息显示薄膜:薄膜晶体管液晶平板显示器、OLED五、薄膜太阳能电池六、硬质涂层七、其他:电子元件:表声波器件;传感器:特点高灵敏,低成本;光学:反射膜,增透膜;装饰、包装:镀金,锡箔纸,镀膜玻璃;第一章真空基础1.掌握真空、分子平均自由程、饱和蒸汽压、蒸发温度的概念答:真空:指低于一个大气压的气体状态。

分子平均自由程:定义:每个分子在连续两次碰撞之间所运动的平均路程。

饱和蒸气压的定义:在一定温度下,气、固或气、液两相平衡时,蒸气的压力称为该物质的饱和蒸气压。

仅仅是温度的函数。

应用例子:湿度蒸发温度:定义:饱和蒸气压为10-2托左右(唐教材0.1Pa)时的温度。

2.掌握真空的单位及其换算答:通常用“真空度”及“压强”两个参量来衡量真空的程度常用单位:帕斯卡(Pascal)=1牛/米2,国际单位制托(Torr)=1/760atm=133.322Pa,旧单位此外,mmHg、atm、bar、mbar等,换算关系,1bar=105Pa1mmHg=1.000000014Torr1atm=1.01×105Pa所以:1atm>1bar,1mmHg≈1Torr3.理解气体的两种流动状态答:分子流:气体分子之间几乎不发生碰撞黏滞流:气体分子之间碰撞频繁4.掌握真空镀膜系统的构成(原理图),抽真空的过程答:典型的真空系统包括:真空室,真空泵,真空计5.理解机械泵、扩散泵、分子泵、溅射离子泵等的工作原理及其使用范围答:真空泵:输运式真空泵、捕获式真空泵。

薄膜干涉习题

薄膜干涉习题

解一一:使反射绿光干涉相消
由反射光干涉相消条件
n0 = 1
MgF2
n2= 1.38
δ = 2 n2 e =(2k+1) λ/2
玻璃
n1 =1.50
e = (2 k+1)λ
1

取k = 0
e
=
λ4n2= 4n2
5500 4 ×1.38
2 n0 = 1
n2
n1
= 996(Å)
14-9-4
例 用折射率 n =1.58 的很薄的云母片覆盖在双缝实验中的一
[例2]波⻓长
λ
=
5500
!
A
的单色色光照射在相距
d = 2×10−4 m
的双缝上,屏到双缝的距离D=2m。求:
(1)中央明纹两侧的两条第10级明纹中心心的间距;
(2)用用一一厚度 e = 6.6×1,0−6 m 折射率n=1.58的云⺟母片片
覆盖上面面的一一条缝后,零级明纹将移到原来的第几几级明纹
P
δ = 7λ
d
=
7λ n −1
=
7 × 550 ×10−6 1.58 −1
=
6.6 ×10−3 mm
1
14-9-4 2
处?
p
解:(1)双缝干涉条纹等宽,则
r1
ΔX = 2×10Δx = 20 × D λ = 0.11m s1 d
r2
(2)未盖时: δ = r2 − r1 = kλ 1 s2
o
δ ′ = (r2 − r1) − (n −1)e
δ′=0
∴ r2 − r1 = (n −1)e
2
联立立求解,得 k = 7
例2: 在玻璃表面镀上一层MgF2薄膜,使波长为λ =5500 Å的绿光全部通过。求:膜的厚度。

光学薄膜技术-02光学特性(3)

光学薄膜技术-02光学特性(3)

E0 E11, E0 E11 E0 E0 E0 E11 E11 E11
H 0
H
0
H
0
H11
H11
H11
于是,可得:k0
E0
k0
( E11
E11 )
H 0 (H11 1 (k0 E11) 1(k0 E11) 1(k0 E11 k0 E11)
(2)在界面1,2的内侧,不同纵坐标、相同横坐标的两点,只要改变波的位相因子,
a)
b)
当膜的光学厚度取 0 4 的偶数倍时,反射率也是极 值,且视它们的折射率而定, 只是情况恰巧相反,如图所 4示。
图4 单层介质膜的反射率随其光学厚度的变化关系,其
中n0=1,n2=1.5,膜的折射率为n1,入射角 0 0。
20
单层介质膜的光学特性
注意:
(1)因为R是 的函数,所以,这里所说的“极值”、“虚
系和基底的参数N1 、 N2、d1等有关);
➢基于等效界面思想,建立 E0与E2 '、H0与H2的' 联系,又有等效介 质的等效光学导纳Y和介质2的光学导纳的定义式,最终建立Y与 膜系和基底的参数的关系。
9
等效介质的等效光学导纳
(1)用E和H的切 向分量在界面两侧连 续的 边界条件写出在界面1上:
'
2
E0 ,将其带入上式可得:H 0
Y (k0 E0 );
将H
2
和H
0带入(4)的矩阵k
0 H
E0
0
c os 1
i1 sin 1
i
1 c
sin 1 os1
k
0
H
E2
2
,即可得
Y

薄膜材料与技术复习题

薄膜材料与技术复习题

一、选择题:1、所谓真空, 是指:()A.一定的空间内没有任何物质存在;B.一定空间内气压小于1个大气压时, 气体所处的物理状态;C、一定空间内气压小于1 MPa时, 气体所处的物理状态;D.以上都不对2.以下关于CVD特点的描述, 不正确的是: ()A.与溅射沉积相比, CVD具有更高的沉积速率;B、与PVD相比, CVD沉积绕射性较差, 不适于在深孔等不规则表面镀膜;C.CVD的沉积温度一般高于PVD方法;D.CVD沉积获得的薄膜致密、结晶完整、表面平滑、内部残余应力低3.关于气体分子的平均自由程, 下列说法不正确的是: ()A.气压越高, 气体分子的平均自由程越小;B.真空度越高, 气体分子的平均自由程越长;C.温度越高, 气体分子的平均自由程越长;D.气体分子的平均自由程与温度、压力无关, 取决于气体种类4、下列PECVD装置中, 因具有放电电极而存在离子轰击、弧光放电所致的电极损坏潜在风险和电极材料溅射污染薄膜问题的是:()A.电容耦合型;B.电感耦合型;C.微波谐振型;D.以上都不对5、按真空区域的工程划分, P = 10-4 Pa时, 属于()区域, 此时气体分子的运动以()为主。

A.粗真空;B.低真空;C.高真空;D.超高真空;E、粘滞流;F、分子流;G、粘滞-分子流H、Poiseuille流6、下列真空计中, ()属于绝对真空计。

A.热偶真空计;B.电离真空计;C.Pirani真空计;D.薄膜真空计7、CVD沉积薄膜时, 更容易获得微晶组织薄膜的方法是:()A.低温CVD;B.中温CVD;C.高温CVD;D.以上都不对8、下列真空泵中, ()属于气体输运泵。

A.旋片式机械泵;B、油扩散泵;C、涡轮分子泵;D、低温泵9、低温CVD装置一般指沉积温度<()的CVD装置。

A.1000℃;B.500℃;C.900℃;D.650℃10、下列关于镍磷镀技术的说法中, 正确的是: ()A.所获得的镀层含有25wt%左右的P而非纯Ni, 所以也称NiP镀;B、低P含量的镍磷镀镀层致密, 硬度可达到与电镀硬Cr相当的水平;C.高P含量的镍磷镀镀层无磁性;D.可直接在不具有导电性的基体上镀膜11.关于LPCVD方法, 以下说法中正确的是: ()A、低压造成沉积界面层厚度增加, 因此薄膜沉积速率比常压CVD更低;B.低压造成反应气体的扩散系数增大;C.低压导致反应气体的迁移运动速度增大;D.薄膜的污染几率比常压CVD更低12.气相沉积固态薄膜时, 根据热力学分析以下说法中不正确的是: ()A.气相过饱和度越大, 固态新相形核能垒越低;B.气相过饱和度越大, 固态新相形核能垒越高;C、气相过饱和度越大, 固态新相临界晶核尺寸越大;D.固态新相的形核能垒和临界晶核尺寸只取决于沉积温度(过冷度)13、溅射获得的气相沉积原子是高能离子轰击靶材后, 二者通过级联碰撞交换能量的结果, 因此入射离子能量()时更容易发生溅射现象。

现代PVD表面工程技术期末复习内容及答案

现代PVD表面工程技术期末复习内容及答案

PVD1810.221.PVD:真空蒸镀、溅射镀膜、离子镀。

2.真空泵的分类:气体传输泵、气体捕集器。

3.弧源、磁过滤器、真空靶室和其他附属部分4.PVD的前处理:清洗、去毛刺、喷砂抛光等。

5.分析膜层组织形貌可以采用:金相显微镜、扫描电子显微镜、透射电子显微镜。

6.涂层的微观结构和形状最终决定了其性质。

7.衍射峰位角2θ是反映衍射方向的问题,主要与辐射波长,晶胞类型,晶胞大小及形状有关。

遵循布拉格方程。

8.涂层结合力的检测方法:划痕、压痕、球痕测试法。

9.常见的应力测试方法:X射线和电子衍射法,试样变形分析法和光干涉法。

10.靶材按成分分为:单质金属、合金、陶瓷靶材。

11.PVD涂层的研究方向:设备、涂层组元、涂层膜结构、涂层纳米化。

12.真空泵主要分为:气体传输泵、气体捕集泵。

13.靶材形状分为:矩形平面靶材,圆形平面靶材和圆柱靶材。

14.传统靶材制造方法包括:铸造,粉末冶金和非金属粉末。

15.零件的主要失效形式:腐蚀、磨损、疲劳、断裂。

16.涂层内应力主要分为热应力和涂层生长应力。

17.涂层厚度的检测方法:断面法、球痕法、无损检测法。

判断题1.与化学气相沉积相比,物理气相沉积温度高、无污染。

(错,温度低)2.真空度即是气体的稀薄程度。

(错,真空度是指处于真空状态下的气体稀薄程度。

)3.与溅射镀和离子镀相比,蒸镀结合性能最好。

(错,最差)4.对刀具喷砂处理可起到刃口细化作用。

(对)5.氮铝化钛涂层是紫黑色,附着力比氮化钛涂层大,耐热性能优越(对)6.清洗是PVD涂层前必不可少的一道工序。

(对)7.刀具涂层要求周边厚度一致,因此涂层过程中必须有三个转动惯量。

(对,自转,公转,大工件台转动)8.在工业领域内,通常用自来水进行漂洗。

(错,杂质多)9.在刀具刃尖涂层沉积最厚,涂层内应力更高。

(对)10.一般情况下,涂层与基体的界限越明显,则涂层结合力越好。

(错,越明显越差)11.相比于平面靶材,旋转管靶材利用率较大。

《薄膜材料与薄膜技术》复习题

《薄膜材料与薄膜技术》复习题

《薄膜材料与薄膜技术》复习题1.薄膜材料与体材料的联系与区别。

1. 薄膜所用原料少,容易大面积化,而且可以曲面加工。

例:金箔、饰品、太阳能电池,GaN,SiC,Diamond2. 厚度小、比表面积大,能产生许多新效应。

如:极化效应、表面和界面效应、耦合效应等。

3. 可以获得体态下不存在的非平衡和非化学计量比结构。

如:Diamond: 工业合成, 2000℃,5.5万大气压, CVD生长薄膜:常压,800度.Mgx Zn1-x O: 体相中Mg的平衡固溶度为0.04, PLD法生长的薄膜中,x可0~1.4. 容易实现多层膜,多功能薄膜。

如:太阳能电池、超晶格: GaAlAs/GaAs5. 薄膜和基片的粘附性,一般由范德瓦耳斯力、静电力、表面能(浸润)和表面互扩散决定。

范德瓦耳2. 真空度的各种单位及换算关系如何?●1pa=1N/m2(1atm)≈1.013×105Pa(帕)●1Torr≈1 / 760atm≈1mmHg●1Torr≈133Pa≈102 Pa● 1bar = 0.1MPa3. 机械泵、扩散泵、涡轮分子泵和低温泵的工作原理是什么?旋片式机械泵工作过程:1.气体从入口进入转子和定子之间2.偏轴转子压缩空气并输送到出口3.气体在出口累积到一定压强,喷出到大气工作范围及特点:Atmosphere to 10-3 torr耐用,便宜由于泵的定子、转子都浸入油中,每周期都有油进入容器,有污染。

要求机械泵油有低的饱和蒸汽压、一定润滑性、黏度和高稳定性。

油扩散泵1. 加热油从喷嘴高速喷出,气体分子与油分子碰撞实现动量转移,向出气口运动,或溶入油中,油冷凝后,重新加热时,排出溶入的气体,并由出气口抽出;2. 需要水冷,前级泵3. 10-3 to 10-7 Torr (to 10-9 Torr,液氮冷阱)优点:耐用、成本低,抽速快无震动和声音缺点:油污染涡轮分子泵特点:1. 气体分子被高速转动的涡轮片撞击,向出口运动2.多级速度:30,000-60,000 rpm.转子的切向速度与分子运动速率相当3. Atmosphere to 10-10 Torr4. 启动和关闭很快5. 无油,有电磁污染6. 噪声大、有振动、比较昂贵.低温泵(Cryopump)特点:1.利用20K以下的低温表面来凝聚气体分子实现抽气,是目前最高极限真空的抽气泵;2.可对各种气体捕集,凝结在冷凝板上,所以工作一段时间后必须对冷凝板加热“再生”;3. “再生”必须彻底;4. 加热“再生”温度 >200 °C 烘烤除去吸附的气体5. 无油污染;6. 制冷机式低温泵运作成本低,较常采用。

薄膜材料技术复习题090526

薄膜材料技术复习题090526

1.薄膜定义:按照一定需要,利用特殊的制备技术,在基体表面形成厚度为亚微米至微米级的膜层。

这种二维伸展的薄膜具有特殊的成分、结构和尺寸效应而使其获得三维材料所没有的特性,同时又很节约材料,所以非常重要。

通常是把膜层无基片而能独立成形的厚度作为薄膜厚度的一个大致的标准,规定其厚度约在1µm左右。

2.一些表面定义:1)理想表面:沿着三维晶体相互平行的两个面切开,得到的表面,除了原子平移对称性破坏,与体内相同。

2)清洁表面:没有外界杂质。

3)弛豫表面:表面原子因受力不均向内收缩或向外膨胀。

4)重构表面:表面原子在与表面平行的方向上的周期也发生变化,不同于晶体内部原子排列的二维对称性(再构)。

5)实际表面:存在外来原子或分子。

3. 薄膜的形成的物理过程驰豫重构驰豫+重构⎧⎪⎨⎪⎩驰豫:表面向下收缩,表面层原子与内层原子结构缺陷间距比内层原子相互之间有所减小。

重构:在平行表面方向上原子重排。

①小岛阶段——成核和核长大,透射电镜观察到大小一致(2-3nm)的核突然出现.平行基片平面的两维大于垂直方向的第三维。

说明:核生长以吸附单体在基片表面的扩散,不是由于气相原子的直接接触。

②结合阶段——两个圆形核结合时间小于0.1s,并且结合后增大了高度,减少了在基片所占的总面积。

而新出现的基片面积上会发生二次成核,复结合后的复合岛若有足够时间,可形成晶体形状,多为六角形。

核结合时的传质机理是体扩散和表面扩散(以表面扩散为主)以便表面能降低。

③沟道阶段——圆形的岛在进一步结合处,才继续发生大的变形→岛被拉长,从而连接成网状结构的薄膜,在这种结构中遍布不规则的窄长沟道,其宽度约为5-20nm ,沟道内发生三次成核,其结合效应是消除表面曲率区,以使生成的总表面能为最小。

④连续薄膜——小岛结合,岛的取向会发生显著的变化,并有些再结晶的现象。

沟道内二次或三次成核并结合,以及网状结构生长→连续薄膜。

4. 薄膜的附着类型及影响薄膜附着力的工艺因素⎧⇒⇒⇒⎨⎩⎧⎧⎧⇒⇒⇒⇒⎨⎨⎨⎩⎩⎩⎧⇒⎨⎩(在新面积处)稳定核(在捕获区)单体的吸附形成小原子团临界核临界核(在非捕获区)大岛大岛连合沟道薄膜小岛 二次成核二、三次成核二、三次成核 连续薄膜(在沟道和孔洞处)三次成核薄膜的附着类型①简单附着:薄膜和基片间形成一个很清楚的分界面,薄膜与基片间的结合力为范德华力②扩散附着—由两个固体间相互扩散或溶解而导致在薄膜和基片间形成一个渐变界面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.简述薄膜的形成过程。

薄膜:在被称为衬底或基片的固体支持物表面上,通过物理过程、化学过程或电化学过程使单个原子、分子或离子逐个凝聚而成的固体物质。

主要包括三个过程:(1)产生适当的原子、分子或离子的粒子;(2)通过煤质输运到衬底上;(3)粒子直接或通过化学或电化学反应而凝聚在衬底上面形成固体沉淀物,此过程又可以分为四个阶段:(1)核化和小岛阶段;(2)合并阶段;(3)沟道阶段;(4)连续薄膜2.图2为溅射镀膜的原理示意图,试结合图叙述溅射镀膜的基本过程,并介绍常用的溅射镀膜的方法和特点。

图 2 溅射镀膜的原理示意图过程:该装置是由一对阴极和阳极组成的冷阴极辉光放电结构。

被溅射靶(阴极)和成膜的基片及其固定架(阳极)构成溅射装置的两个极,阳极上接上1-3KV的直流负高压,阳极通常接地。

工作时通常用机械泵和扩散泵组将真空室抽到6.65*10-3Pa,通入氩气,使真空室压力维持在(1.33-4)*10-1Pa,而后逐渐关闭主阀,使真空室内达到溅射电压,即10-1-10Pa,接通电源,阳极耙上的负高压在两极间产生辉光放电并建立起一个等离子区,其中带正电的氩离子在阴极附近的阳极电位降的作用下,加速轰击阴极靶,使靶物质由表面被溅射出,并以分子或原子状态沉积在基体表面,形成靶材料的薄膜。

将欲沉积的材料制成板材——靶,固定在阴极上。

基片置于正对靶面的阳极上,距靶几厘米。

系统抽至高真空后充入10~1帕的气体(通常为氩气),在阴极和阳极间加几千伏电压,两极间即产生辉光放电。

放电产生的正离子在电场作用下飞向阴极,与靶表面原子碰撞,受碰撞从靶面逸出的靶原子称为溅射原子,其能量在1至几十电子伏范围。

溅射原子在基片表面沉积成膜直流阴极溅射镀膜法:特点是设备简单,在大面积的基片或材料上可以制取均匀的薄膜,放电电流随气压和电压的变化而变化,可溅射高熔点金属。

但是,它的溅射电压高、沉积速率低、基片温升较高,加之真空度不良,致使膜中混入的杂质气体也多,从而影响膜的质量。

高频溅射镀膜法:利用高频电磁辐射来维持低气压的辉光放电。

阴极安置在紧贴介质靶材的后面,把高频电压加在靶子上,这样,在一个周期内正离子和电子可以交替地轰击靶子,从而实现溅射介质材料的目的。

这种方法可以采用任何材料的靶,在任何基板上沉积任何薄膜。

若采用磁控源,还可以实现高速溅射沉积。

磁控溅射镀膜法:磁控溅射的特点是电场和磁场的方向互相垂直,它有效的克服了阴极溅射速率低和电子使基片温度升高的致命弱点,具有高速、低温、低损伤等优点,易于连续制作大面积膜层,便于实现自动化和大批量生产,高速指沉积速率快;低温和低损伤是指基片的温升低,对膜层的损伤小。

此外还具有一般溅射的优点,如沉积的膜层均匀致密,针孔少,纯度高,附着力强,应用的靶材广,可进行反应溅射,可制取成分稳定的合金膜等。

工作压力范围广,操作电压低也是其显著特点。

反应溅射镀膜法:在阴极溅射的惰性气体中,人为的掺入反应气体,可以制取反应物膜。

非对称交流溅射和偏压溅射镀膜法:特点是可以减少溅射镀膜过程中阴极溅射膜中的混入气体。

3.图3为一个PECVD的反应室结构图,试叙述其工作原理和特点图3 PECVD的反应室结构图原理:图中是一种平行板结构装置。

衬底放在具有温控装置的下面平板上,压强通常保持在133Pa左右,射频电压加在上下平行板之间,于是在上下平板间就会出现电容耦合式的气体放电,并产生等离子体。

利用等离子体的活性来促进反应,使化学反应能在较低温度下进行,这种方法称为等离子体强化气相沉积(PECVD),是一种高频辉光放电物理过程和化学反应相结合的技术。

在高温真空压力下,加在电极板上的射频RF电场,使反应室气体产生辉光放电,在辉光放电区域产生大量的电子。

这些电子在电场的作用下获得充足的能量,其本身温度很高,它与气体分子相碰撞,负气体分子活化,它们吸附在衬底上,并发生化学反应天生介质膜,副产物从衬底上解析,随主流由真空抽走。

特点:1、PECVD需要增加一个能产生等离子体的高频源。

2、采用PECVD可以显著降低沉积时的基体温度,并具有沉积速率快、成膜质量好、针孔少、不易龟裂等优点。

3、但等离子体的轰击会使沉积表面产生缺陷,同时等离子体中产生的多种反应物质使反应复杂化,因此会使薄膜的质量下降;4、另外设备投资大、成本高,对气体的纯度要求高;5、涂层过程中产生的剧烈噪音、强光辐射、有害气体、金属蒸汽粉尘等对人体有害;6、对小孔孔径内表面难以涂层等。

4.试叙述LPCVD的原理、特点和典型应用LPCVD原理是用加热的方式在低压条件下使气态化合物在基片表面反应并淀积形成稳定固体薄膜。

由于工作压力低,气体分子的品滚自由程和扩散系数大,故可采用密集装片方式来提高生产效率,并在衬底表面获得均匀性良好的薄膜淀积层。

LPCVD用于淀积Poly-Si、Si3N4、SiO2、磷硅玻璃、硼磷硅玻璃、非晶硅及难溶金属硅化物等多种薄膜。

广泛应用于半导体集成电路、电力电子、光电子及MEMS等行业的生产工艺中。

5.简述分子束外延(MBE)的结构、原理和应用。

结构:MBE主要由分子束源、基片支架、四极质谱仪、反射高能电子衍射装置、俄歇电子谱仪、二次离子分析仪构成。

原理:分子束外延(MBE)是新发展起来的外延制膜法,它是将真空蒸发镀膜加以改进和提高而形成的新的成膜技术。

在超高真空环境中,通过薄膜诸组分元素的分子束流,直接喷到温度适宜的衬底表面上,在合适条件下就能淀积除所需的外延层。

其系统包括一个沉积腔室,室内维持在10-10托的低压,在腔室中有一个或多个小格室(称为反射格:effusion cells),内含圆晶上所欲沉积的高纯度材料(靶材),发射格前有快门(shutter)以使圆晶能暴露于原料蒸汽;将电子束导引至靶材中央,靶材被加热而融化成液态,因为低压故部分表面的液态靶材会蒸发成气态,由发射格的开孔处离开,沉积到晶圆上。

MBE是一种将原子一个一个的在衬底上进行沉积的方法,因此它通常与CVD外延和真空蒸发镀膜相比,有以下几个典型特点:(1)MBE虽然也是一个以气体分子论为基础的蒸发过程,但它并不以蒸发温度为监控参数,而是用系统中的四极质朴仪和原子吸收光谱等现代分析仪器,精密的监控分子束的种类和强度,从而严格的控制生长过程和生长速率。

(2)MBE是一个超高真空的淀积过程,既不需要考虑中间的化学反应,又不受质量传输的影响,并且利用开闭挡板来实现对生长和中断的瞬间控制。

因此,膜的组分和掺杂浓度可随着源的变化而迅速调整。

(3)MBE的显著特点之一是生长速率低,MBE使微细加工在结构上的分辩能力高于CVD和LPE。

(4)在获得单晶薄膜的技术中,MBE的衬底温度低,因此有利于减少自掺杂。

(5)由于衬底和分子束源分开,所以可以随时观察生长面的外貌,有利于科学研究。

(6)MBE能有效的利用平面技术,用它制成的肖特基势垒特性达到或超过CVD和LPE制作的特性。

应用:MBE的突出优点在于能生长极薄的单晶膜层,并且能精确的控制膜厚和组分与掺杂。

适于制作微波、光电和多层结构器件,从而为制作集成光学和超大规模集成电路提供了有力手段。

6.如图4为绝缘体薄膜在导电方面较有意义的金属-绝缘体-金属结构,试分析该种结构下的绝缘体薄膜的导电机理。

图4 金属-绝缘体-金属结构答:如图所示,两块金属被绝缘体隔开,形成一个电容器,两金属端为电极,绝缘体为电介质薄膜。

当电极两端分别加上正负电荷时,在两电极间形成电场,在电场作用下,电介质薄膜内的正负电荷中心相对移动从而出现电距现象,完成电场的传播。

在直流电路中,该结构相当于断路。

在交流电路中,因为电流的方向是随时间成成一定的函数关系变化的。

而电容器充放电的过程是有时间的,这个时候,在极板间形成的电场也是随时间变化的函数,从而使得电流痛过场的形式在电容器间通过,完成在交流电下的导电。

7. 试叙述压电薄膜的工作原理和常用的制备方法。

原理:压电材料是基于压电效应的原理工作的,在晶体中,当在某一特定方向对晶体施加应力时,在于应力垂直方向两端表面出现数量相等、符号相反的束缚电荷,这一现象成为“正压电效应”,作用力相反时,表面电荷符号相反,点和密度与外加作用力大小成正比;同时,当一块具有压电效应的晶体处于外电场中,由于晶体的电极化造成的正负电荷中心位移,导致晶体形变,型变量与电场大小成正比,这是逆压电效应。

具有压电效应的薄膜称为压电薄膜。

制备:压电薄膜的制备主要有气相沉积法,其中包括物理气相沉积法(PVD)和化学气相沉积法(cvd ),有时也用溶胶-凝胶法(sol-gel )、等离子喷涂法、热氧化法和阳极氧化法制备。

8. 试阐述一种常用电介质薄膜的制备方法及其应用氧化物电介质薄膜2o s i的制备方法:氧化物电介质薄膜在集成电路和其他薄膜器件中有着广泛的应用,2o s i 薄膜材料可以用电子束蒸发镀膜法、溅射度魔法、反应溅射镀膜法等方法制备外,还经常用单晶表面氧化的方法来生长这种薄膜,这是一种反应扩散过程,在硅单晶表面形成连续氧化层后,氧化剂通过氧化层扩散到氧化层/硅界面,和硅反应生成新的氧化层,使2o s i厚度不断增大。

2o s i 薄膜的氧化生长是平面工艺的基础,氧化法主要有三种:1、阳极氧化(室温)2、等离子体阳极氧化(200-800度)3、热氧化(700-1250度)。

氧化物电介质薄膜的应用:1、用作电容器介质2、用作隔离和掩膜层3、用作表面钝化膜4、集成电路多层布线绝缘膜9. 试阐述一种常用金属薄膜的制备方法及其应用制备金属薄膜最常用的方法是双喷电解抛光法。

此装置主要由三部分组成:电解冷却与循环部分,电解抛光减薄部分以及观察样品部分。

图2为双喷电解抛光装置示意图。

(l )电解冷却与循环部分通过耐酸泵把低温电解液经喷嘴打在样品表面。

低温循环电解减薄,不使样品因过热而氧化;同时又可得到表面平滑而光亮的薄膜,见图2中(1)及(2)。

(2)电解抛光减薄部分。

电解液由泵打出后,通过相对的两个铂阴极玻璃嘴喷到样品表面。

喷嘴口径为1mm ,样品放在聚四氟乙烯制作的夹具上(见图3)。

样品通过直径为0.5mm 的铂丝与不锈钢阳极之间保持电接触,调节喷嘴位置使两个喷嘴位于同一直线上。

见图2中(3)。

(3)观察样品部分电解抛光时一根光导纤维管把外部光源传送到样品的一个侧面。

当样品刚一穿孔时,透过样品的光通过在样品另一侧的光导纤维管传到外面的光电管,切断电解抛光射流,并发出报警声响。

图2 双喷电解抛光装置原理示意图 图3 样品夹具(1)冷却设备;(2)泵、电解液;(3)喷嘴(4)试样; (5)样品架; (6)光导纤维管喷射法电流一电压曲线 最后制成的薄膜应用:金属薄膜开关,金属化薄膜电容,装饰材料,包装。

10.阐述GaAs 薄膜作为光电发射材料的原理、结构和应用 原理:GaAs 光电阴极是建立在,根据该理论,如果阴极材料表面的真空能级低于其体内的导带底能级,即材料的有效电子亲和势小于零,则由光照激发产生的光电子只要能从阴极体内运行到表面,就可以轻而易举地发射到真空,而无需过剩的动能去克服材料表面的势垒,这样光电子的逸出深度和几率都将大大增加,发射效率将会大幅度提高。

相关文档
最新文档