(第八章)空间滤波分析解读
空间滤波的理论和方法

的卷积的平方。通常可运用这一原理,根据对输入信息的具体要求,进行变 换或滤波。如果从光学系统所能完成的功能分析,系统的空间滤波可以实现 输入信息与滤波器脉冲响应的卷积运算。在频谱平面上放置滤波器其后有
AF fx, fy H fx, fy . 实际上是实现了输入频谱和滤波器复振幅透过率的乘
阿贝——波特实验图示
空间滤波的基本原理
阿贝—波特实验:结论
1.实验充分证明了阿贝成像理论的正确性:像的结构直接 依赖于频谱的结构,只要改变频谱的组分,便能够改变像 的结构;像和物的相似程度完全取决于物体有多少频率成 分能被系统传递到像面。
2.实验充分证明了傅里叶分析和综合的正确性: (1)频谱面上的横向分布是物的纵向结构的信息(图B); 频谱面上的纵向分布是物的横向结构的信息(图C); (2)零频分量是直流分量,它只代表像的本底(图D); (3)阻挡零频分量,在一定条件下可使像的衬度发生反转 (图E); (4)仅允许低频分量通过时,像的边缘锐度降低;仅允许 高频分量通过时,像的边缘效应增强; (5)采用选择型滤波器,可望完全改变像的性质(图F)。
空间滤波的理论和方法
重点
• 1. 空间滤波的基本原理 • 2. 空间滤波的基本系统 • 3. 空间滤波器 • 4. 空间滤波应用举例
空间滤波的基本原理 阿贝——波特成像理论
阿贝成像原理
阿贝——波特成像理论
• 阿贝认为相干成像过程分两步完成,如图所示。第一步 是物体在相干平行光垂直照明下,可看作是一个复杂的 光栅,照明光通过物体被衍射,衍射光波在透镜后焦平 面射上光P斑1形作成为物新体的O次的级夫波琅源禾发费出光球斑面图子样波;,第在二像步平是面各相衍干 叠加形成物体的像。将显微镜成像过程看成是上述两步 成像过程,人们称其为阿贝成像理论。
8 空间滤波

例1 设物函数中含有从低频到高频的各种结构信息, 物被直径为d=2cm的圆孔所限制,将它放在直径D=
4 cm、焦距f=50 cm的透镜的前焦面上。今用波长l
=600 nm的单色光垂直照射该物并测量透镜后焦面上 的光强分布。问:
(1)物函数中什么频率范围内的频谱可以通过测量得 到准确值? (2)什么频率范围内的信息被完全阻止?
t ( x1 ) t 0 t1 cos( 2x 0 x1 )
(1)在频谱面的中央设置一小圆屏挡住光栅的零级谱,求像 的强度分布及可见度; (2)移动小圆屏,挡住光栅的+1级谱,像面的强度分布和可 见度又如何?
例2 在相干照明4f系统中, 在物平面上有两个图像,它们的中 心在X轴上,距离坐标原点分别为a和-a ,今在频谱面上放置一 正弦光栅,其振幅透过率为
2、傅立叶透镜的信息容量——空间带宽积
信息容量N=频 带 宽 度´ 空 间 宽 度
空间带宽积
截止频率
x D D1 2lf
频带宽度
x 2x D D1 lf
衍射发散角
中的线状构造越密集,则在P2沿r方向空间频 谱分布延伸越远;反之亦然
频谱分析器,又称为衍射图像采样器
由在半圆中不同直径的32个环状 PN结硅光二极管元件和另半圆 呈辐射状分布的32个楔形PN结 硅光二极管元件组成,据此可测 出整个频谱面上各处的光强分布
楔-环探测器 针尖缺陷检查、掩模线宽测量、织物疵病以及纸张印刷质量的 检查等。
一、二元振幅滤波器 (1)低通滤波器 带针孔的不透明模板
低通滤波器结构 只允许位于频谱面中心及其附近的低频分量通过,可以用来滤 掉高频噪声
(2)高通滤波器 带不透明小圆屏的透明模片
阻挡低频分量而允许高频通过,以增强像的 边缘,提高对模糊图像的识别能力或实现衬 度反转,但由于能量损失较大,所以得到的 结果一般较暗。 高通滤波器结构
空间域滤波——精选推荐

空间域滤波空间域滤波基础 某些邻域处理⼯作是操作邻域的图像像素值以及相应的与邻域有相同维数的⼦图像的值。
这些⼦图像可以被称为滤波器、掩模、核、模板或窗⼝,其中前三个词是更为普遍的术语。
在滤波器⼦图像中的值是系数值,⽽不是像素值。
空间滤波就是在待处理图像中逐点地移动掩模。
在每⼀点 (x, y) 处,滤波器在该点的响应通过事先定义的关系来计算。
对于线性空间滤波,其响应由滤波器系数与滤波掩模扫过区域的相应像素值的乘积之和给出。
对于⼀个尺⼨为 m×n 的掩模,我们假设 m=2a+1 且 n=2b+1,这⾥的 a、b 为⾮负整数。
在后续的讨论中,处理的掩模的长与宽都为奇数。
⼀般来说,在 M×N 的图像 f 上,⽤ m×n ⼤⼩的滤波器掩模进⾏线性滤波由下式给出: 这⾥,a=(m-1)/2 且 b=(n-1)/2。
为了得到⼀幅完整的经过滤波处理的图像,必须对 x=0, 1, 2, …, M-1 和 y=0, 1, 2, …, N-1 依次应⽤公式。
这样,就保证了对图像中的所有像素进⾏了处理。
式中的线性滤波处理与频率域中卷积处理的概念很相似。
因此,线性空间滤波处理经常被称为“掩模与图像的卷积”。
类似地,滤波掩模有时也可以称为“卷积模板”或“卷积核”。
当滤波中⼼靠近图像轮廓时发⽣的情况 考虑⼀个简单的⼤⼩为 n×n 的⽅形掩模,当掩模中⼼距离图像边缘为 (n-1)/2 个像素时,该掩模⾄少有⼀条边与图像轮廓相重合。
如果掩模的中⼼继续向图像边缘靠近,那么掩模的⾏或列就会处于图像平⾯之外。
⽅法⼀:最简单的⽅法就是将掩模中⼼点的移动范围限制在距离图像边缘不⼩于 (n-1)/2 个像素处。
如果要保持与原图像⼀样⼤⼩,可以直接将未处理的图像边缘像素直接复制到结果图像,或者⽤全部包含于图像中的掩模部分滤波所有像素。
通过这种⽅法,图像靠近边缘部分的像素带将⽤部分滤波掩模来处理。
⽅法⼆:在图像边缘以外再补上 (n-1)/2 ⾏和 (n-1)/2 列灰度值为0(也可为其它常值)的像素点,或者将边缘复制补在图像之外。
遥感图像处理实例分析05(空间滤波)

空间滤波(spatial filters)空间滤波(又称local operation)空间滤波是一种通用的光栅图像处理操作。
是根据某像素周围像素的数值,修改图像中的该像素值.它能增强或抑制图像的空间细节信号,提高图像的可视化解释。
如应用滤波增强图像的边界信息,去除或减少图像中的噪音图案。
突出结构特征等.空间频率(Spatial frequency)空间频率是所有类型的光栅数据共有的特性,它的定义是指图像中的任何一特定部分,每单位距离内数据值的变化数量.对图像上数据变化小、或渐进变化的区域称为低频区域(如平滑的湖面),对图像上数据变化大、或迅速变化的区域称为高频区域(如布满密集公路网的城区).空间滤波分为三大类:低通滤波(Low pass filters):强调的是低频信息,平滑了图像的噪音、减少了数据的菱角。
因为它不在重视图像的细节部分,所以低通滤波有时又称为平滑或均值滤波。
高通滤波(High pass filters):强调的是高频信息,增强或锐化线性特征,象公路、断层、水陆边界。
因为它没有图像的低频部分,增强了图像的细节信息,所以高通滤波有时又称为锐化滤波。
边界检测滤波(Edge detection filters):强调的是图像中目标或特征的边界,以便更容易分析。
边界检测滤波通常建立一个灰色背景图和围绕图像目标或特征边界的黑白色线.卷积核(convolution kernels)卷积核是指二维矩形滤波距阵(或窗口),包含着与图像像素值有关的权值。
滤波距阵(或窗口)在图像上从左向右,自上而下,进行平移滑动,窗口中心的像素值是根据其周围像素值与窗口中对应的每个像素的权值乘积就和而计算出来的。
ER Mapper滤波对话框如图1—1。
包含着滤波文件名、滤波距阵和滤波编辑等项。
图1-1 ER Mapper滤波对话框实习目的:建立和删除滤波,应用不同的滤波距阵,查看结果。
实习步骤:(一)增加滤波1.打开和显示一个已存在的算法文件①在标准工具条上,点击Open按钮,打开图像显示窗口和文件输入窗口。
空间滤波实验观察报告

空间滤波实验观察报告实验目的:通过进行空间滤波实验,观察和分析不同滤波器对图像的处理效果和特点。
实验原理:空间滤波是基于图像中像素点周围的领域信息进行像素值改变的一种图像处理方法。
在本实验中,我们将使用一些常见的空间滤波器,如均值滤波器、中值滤波器和高斯滤波器。
实验步骤:1. 实验准备- 载入待处理的图像,确保图像格式正确。
- 选择合适的滤波器,如均值滤波器、中值滤波器和高斯滤波器。
2. 均值滤波实验- 将选择的滤波器应用于图像,将图像中每个像素点的值替换为其领域内像素点的平均值。
- 观察处理后的图像,注意边缘和细节的变化。
3. 中值滤波实验- 将选择的滤波器应用于图像,将图像中每个像素点的值替换为其领域内像素点的中值。
- 观察处理后的图像,注意对椒盐噪声和悬浮粒子等噪声的去除效果。
4. 高斯滤波实验- 将选择的滤波器应用于图像,将图像中每个像素点的值替换为其领域内像素点的加权平均值。
- 观察处理后的图像,注意平滑程度和对边缘的影响。
5. 记录观察结果- 针对每个滤波器,观察处理后的图像,记录并比较其效果和特点。
- 注意观察图像的细节变化、噪声去除效果和平滑程度等。
实验结果与分析:经过实验观察和比较,我们得出以下结论:- 均值滤波器对图像进行平滑处理,可以去除高频噪声,但会导致细节部分的模糊。
- 中值滤波器能够很好地去除椒盐噪声和其他离群像素,对图像的平滑效果也较好,但在某些情况下可能会对细节造成损失。
- 高斯滤波器在平滑图像的同时,对边缘的保留效果较好,能够更好地抑制高频噪声,但在一些情况下可能会导致图像的细节模糊。
综上所述,在不同的应用场景下,选择合适的空间滤波器可以实现对图像的不同处理需求。
根据实际需求,可以灵活选择对应的滤波器。
空间频率与空间滤波

空间频谱与空间滤波一, 实验背景:阿贝成像原理认为:透镜成像过程可分为两步,第一步是通过物体衍射的光在系统的频谱面上形成空间频谱,这是衍射引起的“分频”作用;第二步是代表不同空间频率的各光束在像平面上相互叠加而形成物体的像,这是干涉引起的“合成”作用。
这两步从本质上对应着两次傅里叶变换。
如果这两次傅里叶变换完全理想,则像和物应完全一样。
如果在频谱面上设置各种空间滤波器,当去频谱中某一频率的成分,则将明显地影响图像,此即为空间滤波。
二, 实验目的:1, 掌握光具座上光学调整技术;2, 掌握空间滤波的基本原理,理解成像过程中“分频” 与“合成”作用。
3, 掌握方向滤波,高通滤波,低通滤波等滤波技术,观察各种滤波器产生的滤波效果,加深对光学信息处理实质的认识。
三, 实验原理:1, 傅立叶变换近代光学中,对光的传播和成像过程用傅立叶变换来表达,形成了傅立叶光学,可以处理一些无法用经典光学理论解决的问题。
傅立叶变换时处理振荡和波这类问题的有力工具。
对振动和波的傅立叶分析一般在时域和频域中进行,而对光的传播与成像分析是在空间和倒数空间中进行的。
不考虑时域,单色平面光波的表达式如下:0()[()]f r Aexp i k r ϕ=⋅+ (1)直角坐标系中,k 的方向余弦为(cos ,cos ,cos )αβγ,r 为(x ,y ,z )2(cos cos ,cos )k r x y z παβγλ⋅=+ (2) 波矢量的物理意义可以理解为平面波的空间频率,在x ,y ,z 方向上三个分量分别为222cos , cos , cos x y z f f f πππαβγλλλ=== (3)在傅立叶光学中,将物光作为一个输入函数(物函数),研究其经过具有傅立叶变换作用的光学元件后在接收面上得到的输出函数(像函数)。
以物是平面图像为例,物函数g (x ,y )可以表示成一系列不同空间频率的单色平面波的线性叠加,即(,)(,)exp[2()]x y x y x y g x y G f f i xf yf df df π∞-∞=+⎰⎰ (4)其中(,)x y G f f 被称为物函数的空间频谱函数。
XXGX第8章 空间滤波

sinc
⎡ ⎢⎣
L
⎛ ⎜⎝
u
−
m d
⎞⎤ ⎟⎠⎥⎦
L>>d 时,可忽略 各项之间的交叠
=
aL d
⎧ ⎨sinc
(
Lu )
⎩
+
sinc
⎛ ⎜⎝
a d
⎞ ⎟⎠
sinc
⎡ ⎢⎣
L
⎛ ⎜⎝
u
−
1 d
⎞⎤ ⎟⎠⎥⎦
+
sinc
⎛ ⎜⎝
a d
⎞ ⎟⎠
sinc
⎡⎢⎣ L
⎛ ⎜⎝
u
+
1 d
⎞⎤ ⎟⎠⎥⎦
+ L⎫⎬ ⎭
解:(可能与教材略有不同)
设两个输入图像分别用f1(x,y)和f2(x,y)表示,由给定条件可知,整个输入图象
为:
t(x1, y1) = f1(x1 − a, y1) + f2 (x1 + a, y1)
单位振幅T平(u面, v波)垂=直F照1(射u,输v)入e面xp,[频−谱j2为π au] + F2 (u, v) exp[ j2π au]
滤波后的频谱:
T '(u,v) = T(u,v)H(u,v) = {F1(u,v)exp[− j2π au]+ F2(u,v)exp[ j2π au]}
[1+ cos(2π au)] 21
T '(u,v) = F1(u,v) exp[− j2π au]+ F2(u,v)exp[ j2π au]
+ (1/ 2)[F1(u,v) + F2(u,v)]
δ
(u
+
(第八章)空间滤波解析

8.1.3 空间滤波的傅里叶分析
设光栅常数为d, 缝宽为a,光栅沿x1方向的宽度为L,则它的透过 率为: x 1 x x (8.1.3) t xo rect o comb o rect o
a d a L
在P1平面上的光场分布应正比于物体的频谱,即:
1 xo xo xo F rect F comb F rect d a d L
1 a sin c af x d comb df x L sin c Lf x d aL m sin c af x f x sin c Lf x d d m
1 xo xo xo T f x F t xo F rect comb rect d a d L
1 xo xo xo F rect comb F rect d a d L
事实上,早在1864年在阿贝提出他的理论以前,Toepler就发明了Schlieren(纹 影)方法,早先用来探测透镜的疵病.Schlieren在德语中是条纹的意思.在这一 方法中,只是简单地把衍射图形挡去一半多一点,透镜中的疵病等相位物体就可 以看见.这简单而有效的方法沿用至今,使风洞中气压分布变成可见的图像. 下图中HS是光阑,它挡去一半多一点的衍射图形.P仍用相干光照明.
1 f f x 或 x1 L L f x为其他值 aL sinc(Lf x ) (8.1.5) 则紧靠狭缝后的透射光场为 T(f x )H(f x )= d 1 H(f x )= 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
早期发展
1873 Abbe 提出二次成像理论 1875 Abbe’s experiment:
D
f
Objective low pass filter
D Relative Aperture f
Abbe (1893) -Porter (1906)实验
1935荷兰物理学家Zernike发明 相衬显微镜 Phase contrast microscope
8.1.1 阿贝成像理论
根据阿贝成像理论,当不考虑物镜孔径的限制时,物体所有频 率分量都形成频谱,所有频谱都参与成像,像就是物体的准确 复现。实际上,物镜的孔径总是有限大小的,由于受孔径光瞳 的限制,物体的频率分量只有一部分形成频谱,只有这部分的 频谱参与成像。一些高频的成分丢失而没有通过物镜,使像产 生失真,影响像的清晰度或分辨本领。当高频成分的能量很大, 物体孔径光瞳较小,丢失的高频成分影响较大,像的失真就较 严重;当高频成分的能量较小,物镜的光瞳较大,丢失的高频 成分影响较小,像的失真不大,像就与物体比较相似。因此, 所有由透镜组成的光学系统的作用,都类似于一个低通滤波器。
8.1.2 阿贝——波特实验
图8.1.3给出了不同方向放置的狭缝或小孔光阑对成像的影响。
上述实验可用阿贝的成像理论进行定性的解释。
物体的空间频谱,包含着物体信息中的各种空间频率分量。 在空间频谱平面上的频谱坐标中,中央原点的频谱,由物体 衍射光波与光轴平行的平面波分量相应的角谱形成,称为零 频,相当于直流分量,也就是物体图像的背景光;沿水平或 垂直坐标方向上,依次为基频、倍频、高频频谱,离中心原 点越远,相应的空间频谱的频率成分越高。他们分别由垂直 或水平光栅衍射的光波相应的角谱,即不同传播方向的平面 波分量通过透镜L2形成。物体的像和物体被系统传递的空间 频谱有一一对应的关系。他们的相似程度,完全有能够被系 统传递到像平面的频谱的多少决定。在空间频谱面上放置不 同透射情况的光阑,改变透射的空间频谱,能够被系统传递 的频谱受到调制,像平面上输出像的结构也相应发生变化。
8.1.2 阿贝——波特实验
xo Po yo y1 图8.1.2 阿贝——波特实验
在图8.1.2 所示的实验中,物体是二维正交光栅。相干光垂直照明下, 在L2的后焦面P1上出现物体的空间频谱。这些频谱是排列成平行于 正交光栅的等间距分布的光点点阵。在L3的后焦面Pi出现光点点阵 空间频谱所综合成的正交光栅的像。如不考虑透镜的有限孔径的 影响,物体的全部信息中的频率成分都形成空间的频谱,所有空间 频谱又都参与综合成像,得到的像是几何光学理想像。
Chapter 8
第八章
Optical Spatial Filtering
光学空间滤波
Spatial Filtering
f(x,y)
F{f}
F fx , f y
F
1{F}
f(u,v)
Spatial Filtering
f(x,y)
F{f}
F fx , f y
F
1{F}
f(u,v)
P
L
HS
AI
相干光 f
8.1 阿贝——波特成像理论
8.1.1 阿贝成像理论
图8.1.1 阿贝成像原理
• 二步成像理论 ------ 相干照明下的成像实质上是 • 物谱:第一次衍射第一次傅里叶变换 • 谱像:第二次衍射第二次傅里叶变换
8.1.1 阿贝成像理论
阿贝认为相干成像过程分两步完成,如图8.1.1 所示。第一步是 物体在相干平行光垂直照明下,可看作是一个复杂的光栅,照 明光通过物体贝衍射,衍射光波在透镜后焦平面上P1形成物体O 的夫琅禾费光斑图样;第二步是各衍射光斑作为新的次级波源 发出球面子波,在像平面相干叠加形成物体的像。将显微镜成 像过程看成是上述两步成像过程,人们称其为阿贝成像理论。 两步成像理论,是用频谱语言描述的波动光学观点。 参考3.2节讨论透镜成像性质过程中的式(3.2.6)。两次衍射过程, 也就是两次傅里叶变换的过程。由物平面到后焦面,经过物体 衍射的光波被分解为不同空间频率成分的角谱分量。也就是不 同传播方向的平面波分量,在后焦平面上形成物体的频谱。后 焦面就是频谱面,这是一次傅里叶变换过程。由物镜的后焦面 即频谱面到像平面,各角频谱分量合成为像,这是一次傅里叶 逆变换过程。
8.1.1 阿贝成像理论
应用阿贝成像原理分析显微镜的分辩本领。 设物体是间距为d的光栅,受相干光垂直照明。物体后焦面上有 直径为D的孔径光阑。由傅里叶变换时空间频率的取值与空间坐 标的关系可得,光栅在物镜后焦面上的一级频谱的位置为 f / d ,0 f为物镜的焦距。显然,d越小,一级频谱离开频谱面中心的距离 越远。当d减少到 , 并有
事实上,早在1864年在阿贝提出他的理论以前,Toepler就发明了Schlieren(纹 影)方法,早先用来探测透镜的疵病.Schlieren在德语中是条纹的意思.在这一 方法中,只是简单地把衍射图形挡去一半多一点,透镜中的疵病等相位物体就可 以看见.这简单而有效的方法沿用至今,使风洞中气压分布变成可见的图像. 下图中HS是光阑,它挡去一半多一点的衍射图形.P仍用相干光照明.
humaneye
objective piece
eye piece
生物学家观察透明显微镜标本(如生物切片,油膜、细菌等)时, 由于人眼只能感受光强度的变化,不能辨别位相变化,无法观察 到它的位相结构。 解决这一困难需要把位相变化转化为强度(或振幅)的变化,就 是把空间位相调制的信息变换为空间强度(或振幅)调制的信息。
D/ 2 f /
(8.1.1)
时,到达衍射极限。由式(8.1.1)可得
2 f / D
(8.1.2)
即为显微镜的分辨极限。它与孔径光阑的直径成反比。
8.1.2 阿贝——波特实验
Abbe (1893) -Porter (1906)实验
物体 平行激光 L 焦 平 面 像
f
f
f
f
L: Fourier变换透镜 焦平面 : 滤波平面
x1 P1
Pi yi
xi
8.1.2 阿贝——波特实验
Abbe-Porter实验 空间滤波 低通滤波 D 高通滤波 E 方向滤波 B,C,F 如果在频谱平面上不 同位置放置不同方向 的狭缝或小孔光阑, 分别阻挡部分频谱, 透射传递部分频谱, 则在像平面上就会观 察到改变了的物体的 不同输出像.
图8.1.3 阿贝——波特实验图示