系统的能控性和能观测性
第三章 线性系统的能控性与能观测性

。 显见第二、三行元素相同。 rank Qk 2 3 故不能控。
例6 桥式电路图中,若取电感L的电流 i及电容 L C的电压 v 为状态变量,取 为输出变量,则系 iL c 统方程为:
R R 1 R R iL ( 1 2 3 4 ) d L R1 R2 R3 R4 1 dt ( R2 R4 ) vC C R1 R2 R3 R4 1 R3 1 R1 ( ) iL L R1 R2 R3 R4 L u 1 1 1 ( ) vC 0 C R1 R2 R3 R4
1 0 ~ 2 A n 0 中,输入矩阵
~ b11 ~ ~ b21 , B ~ bn1
~ b12 ~ b21 ~ bn 2
~ b1r ~ b2r ~ bnr
(3.4)
.
表明: 状态变量 , x1 都可通过选择输入u而 x2 由始点 终点完全能控。 输出y只能反映状态变量 ,所以 不能观测。 x x
2
1
完全能控,不完全能观系统!
例3: 桥式电路如图所示, 选取电感L的电流为 为 状态变量, i (t ) x(t )
u (t ) 为电桥输 入,输出
量为 y (t ) 。 解: 从电路可以直观看出,如果 x(t 0 ) 0 u (t ,则不论 如何 ) 选取,对于所有 ,有 t 0 ,即ut(t)不能控制x(t)的变化, x( ) 0 t 故系统状态为不能控。 若u(t)=0,则不论电感L上的 x(t 0 ) 初始电流 取为多少, 对所有时刻 t 都恒有y(t)=0,即状态x(t)不能由输出y(t)反映,故 t0 系统是状态不能观测的。 该电路为状态既不能控,也不能观测系统。
能控性与能观性

假使输出矩阵C中有某一列全为零,譬如说第2列中c12, c22, …, cm2均为零,则在 t y(t)中将不包含 e 2 x20这个自由分量,亦即不包含 x2(t)这个状态变量,很明显,这 个x2(t)不可能从y(t)的测量值中推算出来,即x2(t)是不能观的状态。
系统是状态完全能控的
x 2 1 x2 b2u y c1 c2 x
1 1 b1 x x u; 0 0 1
对于式(3-5)的系统
x 1 1 x1 x2 b1u x 2 1 x2
x2不受u(t)的控制,而为不能控的系统。
对式(3-3)的系统,系统矩阵A为对角线型,其标量微分方程形式为
x 1 1 x1
x 2 2 x2 b2u
x 2
x 1
1 1 0 x x u; 0 1 b2
对于式(3-4)的系统
y c1 c2 x
x 1 1 x1 x2
c13 c23 c33
1 2 1t 1t 1t e x10 te x20 t e x30 2! x1 (t ) 1t 1t e x20 te x30 这时,状态方程的解为 x(t ) x2 (t ) x ( t ) 3 1t e x 30
从而
y1 (t ) c11 c12 y (t ) y2 (t ) c21 c22 y3 (t ) c31 c32
第4章(1)线性控制系统的能控性和能观性

第4章(1)线性控制系统的能控性和能观性第四章线性控制系统的能控性和能观性在现代控制理论中,能控性(Controllability)和能观性(Observ- ability)是两个重要的概念,它是卡尔曼(Kalman)在1960年提出的,是最优控制和最优估计的设计基础。
能观(测)性针对的是系统状态空间模型中的状态的可观测性,它反映系统的内部状态x(t)(通常是不可以直接测量的)被系统的输出量y(t)(通常是可以直接测量的)所反映的能⼒。
能控性严格上说有两种,⼀种是系统控制输⼊u(t)对系统内部状态x(t)的控制能⼒,另⼀种是控制输⼊u(t)对系统输出y(t)的控制能⼒。
但是⼀般没有特别指明时,指的都是状态的可控性。
所以,系统的能控性和能观性研究⼀般都是基于系统的状态空间表达式的。
4-1 线性连续定常系统的能控性定义对于单输⼊n 阶线性定常连续系统bu Ax x+= 若存在⼀个分段连续的控制函数u(t),能在有限的时间段 []f t t ,0内把系统从0t 时刻的初始状态()0t x 转移到任意指定的终态()f t x ,那么就称系统在0t 时刻的状态()0t x 是能控的;如果系统每⼀个状态()0t x 都能控,那么就称系统是状态完全可控的。
反之,只要有⼀个状态不可控,我们就称系统不可控。
对于线性定常连续系统,为简便计,可以假设00=t ,()0=f t x ,即00=t 时刻的任意初始状态()0x ,在有限时间段转移到零状态()0=f t x (原点)。
4-2线性连续定常系统的能控性判别4-2-1具有约旦标准型系统的能控性判别 1.单输⼊系统具有约旦标准型系统bu x x+Λ==Λn λλλλ0000000000000321n λλλλ≠≠≠≠ 321即为n 个互异根或bu Jx x+==++n m m J λλλλλλ000000000000000100000000121111m 个重根1λn-m 个互异根n m m λλλ≠≠≠++ 21 例:分析下列系统的能控性(1)u b x x+??=221000λλ[]x c c y 21=解:?=111x xλ 1x 与u ⽆关,即不受u 控制 ?+=u b x x2222λ 2x 为能控状态该系统为状态不完全能控,因⽽为不能控系统。
控制系统的能控性和能观测性

3)只有整个状态空间中所有的有限点都是能控的,系统才是能 控的。 4)满足(3)式的初始状态,必是能控状态。
x(0) e Aτ Bu( τ ) d τ
0
t1
(3)
5)当系统中存在不依赖于 u(t ) 的确定性干扰 f (t ) 时,f (t ) 不会改 变系统的能控性。 Ax Bu f (t ) x (4)
定理3-2 (2)式的线性定常系统为状态能控的充分必要条件是下 面的n×nr 维能控性矩阵满秩。
QC [ B AB
A2 B An1 B]
(6)
(7)
rankQC n
证明
应用凯-哈定理,有
e Aτ a0 ( τ ) I a1 ( τ )ቤተ መጻሕፍቲ ባይዱA an1 ( τ ) An-1 ai ( τ ) Ai
上式代入(3)式
n 1 i 0
x(0) A B ai ( τ )u( τ ) d τ
i t1 i 0 0
n 1
(8)
βi1 β t1 i2 a ( τ ) u ( τ ) d τ i 0 i βir
(i 0,1,, n 1)
定理3-7 状态在时刻 t 0 能控的充分必要条件是存在一个有限时 间 t1 t0 ,使得以下格拉姆矩阵非奇异。
WC [t0 , t1 ] (t0 , t ) B(t ) BT (t ) T (t0 , t ) d t
t0
t1
(14)
定义:M k 1 (t ) A(t ) M k (t ) d M k (t )
0 7 2 x 0 u (1) x 5 1 0 9 0 7 0 1 (2) x 4 0u x 5 1 0 7 5
能控性和能观测性

0 0
0 0
−1 0
0 2
0 1
0 0
0⎥⎥ 0⎥
x
+
⎢⎢0 ⎢0
0 0
04⎥⎥⎥u
⎢
⎥⎢
⎥
⎢ 0 0 0 0 0 2 0 0⎥ ⎢1 2 0⎥
⎢ ⎢
0
0
0
0 0 0 2 0⎥⎥
⎢⎢0 3 3⎥⎥
⎢⎣ 0 0 0 0 0 0 0 5⎥⎦ ⎣⎢3 0 0⎥⎦
解:此为8阶系统,n=8
19
S=
⎡0 0 0 1 0 0 −2 0 0 3 0 0 −4 0 0 5 0 0 −6 0 0 7 0 0 ⎤
再证必要性,即已知系统能控,证明rankS=n。
同样采用反证法假设rankS<n,表明S的各行线性相关,那么一
定存在一个非零的向量α使
α T [B AB L An−1B] = 0,
α T Ai B = 0,i = 1,2,Ln −1
12
α T Ai B = 0, i = 1,2,Ln −1
根据凯莱-哈密尔顿定理 α T Ai B = 0, i = n, n +1,L
α T e−At B = α T [I − At + 1 A2t 2 − 1 A3t3 + L]B
2!
3!
= α T B −α T ABt + 1 α T A2Bt 2 − 1 α T A3Bt 3 + L = 0
2!
3!
∫t1 [α T e−Aτ B][α T e−Aτ B]T dτ = 0
0
∫ ∫ t1 α T e−Aτ BBT e−ATταdτ = α T t1 e−Aτ BBT e−ATτ dτα
(整理)控制系统的能控性和能观测性

第三章 控制系统的能控性和能观测性3-1能控性及其判据 一:能控性概念定义:线性定常系统(A,B,C),对任意给定的一个初始状态x(t 0),如果在t 1> t 0的有限时间区间[t 0,t 1]内,存在一个无约束的控制矢量u(t),使x(t 1)=0,则称系统是状态完全能控的,简称系统是能控的。
可见系统的能控性反映了控制矢量u(t)对系统状态的控制性质,与系统的内部结构和参数有关。
二:线性定常系统能控性判据设系统动态方程为:x 2不能控y2则系统不能控,若2121,C C R R ==⎩⎨⎧+=+=DuCx y Bu Ax x设初始时刻为t 0=0,对于任意的初始状态x(t 0),有: 根据系统能控性定义,令x(t f )=0,得:即:由凯莱-哈密尔顿定理:令 上式变为:对于任意x(0),上式有解的充分必要条件是Q C 满秩。
判据1:线性定常系统状态完全能控的充分必要条件是:⎰-+=ft f f f d Bu t x t t x 0)()()0()()(τττφφ⎰⎰---=--=-ff t f f t f f d Bu t t d Bu t t x 01)()()()()()()0(τττφφτττφφ⎰--=f t d Bu x 0)()()0(τττφ∑-=-==-1)()(n k kk A A eτατφτ∑⎰⎰∑-=-=-=-=101)()()()()0(n k t k k t n k k k ff d u B A d Bu A x ττταττταkt k u d u f=⎰)()(ττταUQ u u u u B A B A AB B Bu A x c k n n k kk -=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=-=--=∑ 321121],,,[)0(能控性矩阵Q C =[B ,AB ,A 2B ,…A n-1B]满秩。
对于单输入系统,Q C =[b ,Ab ,A 2b ,…A n-1b] 如果系统是完全能控的,称(A 、B )或(A 、b )为能控对。
现代控制理论能控性和能观测性

I A1
B
I A
B f
(3-21)
式中B 为元素埏是I A的伴随矩阵。方程(3-21)两端右 乘 I A得:
BI A f I
(3-22)
由于 B 的元素 I A代数余子式,均为 n 1 次多项式,
故据矩阵加法运算规则,可将其分解为n个矩阵之和:
B
B n1 n1
B n2 n2
Bn1 I
Bn2 Bn1A an1I
Bn3 Bn2A an2I
M
B0 B1A a1I
B0A a0I
Bn1An An
Bn2An1 Bn1An an1An1
Bn3An2 Bn2An1 an2An2 M
0 1 M 1 -2 M 2 3
S2 G2 G2 L 2G2 0 0 M 0 1 0 M 0
0 M 0 0 1 M 1 -2
显见出现全零行,rankS2 2 3 ,故不能控。
多输入系统能控阵 S2,其行数小于列数,在计算列写能控阵时, 若有显时见可通过矩计S阵2算的秩为Sn的2,秩S便T2 是不否必为把n来判矩断S阵2多的输所入有系列统都的写能出控。性。 这只是需因计为算,一当次n阶非行奇列S异式2 时即,可确定能必S控非2 性奇ST2,异但,在而计算 为S方2 S阵T2 ,
系统矩阵 的阶数,或系统特征方程的阶次数。
以上研究假定了终态 x 0 0。若令终态为任意给定状态xn
则方程(3-2)变为:
n 1
nx 0 x n n1igu i
i0
(3-9)
方程两端左乘 n ,有
x 0-nx n 1g 2g L
u0
ng
u 1
M
u n 1
(3-10)
系统的能控性能观测性稳定性分析

系统的能控性能观测性稳定性分析1. 能控性(Controllability)能控性是指系统输出能否通过适当的输入方式对系统进行控制。
如果一个系统是能控的,意味着通过控制器的输入信号,我们能够将系统的输出发展到我们所期望的状态。
对于一个线性时不变(LTI)系统,能控性可以通过判断其控制矩阵的秩来确定。
控制矩阵(也称为控制可达矩阵)是由系统的状态方程和控制器的输入方程组成的。
如果控制矩阵的秩等于系统的状态数量,则系统是能控的;否则,系统是无法被完全控制的。
能控性的分析可以帮助我们选择合适的控制策略和控制器设计。
当系统的能控性差时,我们可能需要通过增加或修改系统的状态变量或控制器的输入方式来提高系统的能控性。
2. 能观测性(Observability)能观测性是指系统的内部状态能否通过系统的输出信号来判断。
一个能观测的系统意味着我们可以通过观测系统的输出来估计系统的状态。
对于一个线性时不变系统,能观测性可以通过判断其观测矩阵的秩来确定。
观测矩阵(也称为观测可达矩阵)是由系统的状态方程和输出方程组成的。
如果观测矩阵的秩等于系统的状态数量,则系统是能观测的;否则,系统的一些状态是无法通过输出来观测到的。
能观测性的分析可以帮助我们选择合适的观测器设计,以实现对系统状态的估计。
当系统的能观测性差时,我们可能需要增加或改变系统的输出方程来提高系统的能观测性。
3. 稳定性(Stability)稳定性是指系统在受到扰动后是否会逐渐恢复到原来的状态。
对于线性时不变系统,稳定性可以分为几种类型:零状态稳定、有限状态稳定和无限状态稳定。
零状态稳定(Zero-state stability)是指当系统受到初始条件扰动时,输出信号会在有限时间内收敛到零。
有限状态稳定(Finite state stability)是指当系统受到初始条件扰动时,输出信号会在有限时间内收敛到一些有限值。
无限状态稳定(Infinite state stability)是指当系统受到初始条件扰动时,输出信号会在无限时间内收敛到一些有限值。