第三章 控制系统的能控性和能观测性

合集下载

第三章 线性系统的能控性与能观测性

第三章 线性系统的能控性与能观测性



。 显见第二、三行元素相同。 rank Qk 2 3 故不能控。
例6 桥式电路图中,若取电感L的电流 i及电容 L C的电压 v 为状态变量,取 为输出变量,则系 iL c 统方程为:
R R 1 R R iL ( 1 2 3 4 ) d L R1 R2 R3 R4 1 dt ( R2 R4 ) vC C R1 R2 R3 R4 1 R3 1 R1 ( ) iL L R1 R2 R3 R4 L u 1 1 1 ( ) vC 0 C R1 R2 R3 R4
1 0 ~ 2 A n 0 中,输入矩阵
~ b11 ~ ~ b21 , B ~ bn1
~ b12 ~ b21 ~ bn 2

~ b1r ~ b2r ~ bnr
(3.4)
.
表明: 状态变量 , x1 都可通过选择输入u而 x2 由始点 终点完全能控。 输出y只能反映状态变量 ,所以 不能观测。 x x
2
1
完全能控,不完全能观系统!
例3: 桥式电路如图所示, 选取电感L的电流为 为 状态变量, i (t ) x(t )
u (t ) 为电桥输 入,输出
量为 y (t ) 。 解: 从电路可以直观看出,如果 x(t 0 ) 0 u (t ,则不论 如何 ) 选取,对于所有 ,有 t 0 ,即ut(t)不能控制x(t)的变化, x( ) 0 t 故系统状态为不能控。 若u(t)=0,则不论电感L上的 x(t 0 ) 初始电流 取为多少, 对所有时刻 t 都恒有y(t)=0,即状态x(t)不能由输出y(t)反映,故 t0 系统是状态不能观测的。 该电路为状态既不能控,也不能观测系统。

控制系统的能控性与能观性

控制系统的能控性与能观性
然是不能控的,即该系统的状态是不 完全能控的。
▪ 式(3-2)表示的系统中,没有孤立的部分, 状态变量 x2 直接受控于 u(t) ,状态变量 x1 通过 x2 等受控于 u(t) ,也就是说改变 u(t) 即
可改变系统的状态。因此,该系统是完全能 控的。
▪ 注意到(3-1)中的A是对角线型,(3-2)中的A是 约当标准型,因此,可总结出系统能控性的判别准 则如下:
▪ 根据所要解决的问题需要,常常将状态空 间表达式变换成一些特定的形式,前边讲 述的约旦标准型不仅容易计算状态转移矩 阵,求解状态方程,而且对于可控性和可 观性的分析也是十分方便的。然而对于后 续要讲解的状态反馈和状态观测器来说, 需要新的形式,即:能控标准型和能观标 准型。
▪ 一、能控标准型
▪ 1. 能控标准Ⅰ型
y
1 0
1 1
0 1
x
2 1 0 0 0 0 1
0
2
1
0
0
0 0
x& 0 0 2 0 0 x 3 0 u
0
0
0
5
1
0 0
0 0 0 0 5 2 1
y [1 0 1 0 2]x
系统能控能观性与传递函数的关系
▪ 传递函数的实现可有无穷多,若传递函数 没有零极点对消现象,则传递函数的阶次 最低,由此得到状态方程的维数也最低, 称为最小实现。最小实现所得到的状态空 间表达式必定是能控和能观的;
x&
1
0
1
1
x
0 b2
u;
y
c1
c2 x
画出模拟结构图
(3-2)
u b2
x1
c1
1
x2
c2

控制系统的能控性和能观测性

控制系统的能控性和能观测性


根据定理3-5, 系统(1)能控 ; 系统(2)不能控
(定理(3-4)、定理(3-5)不仅可以判断系统能控性,而且对 于不能控的系统,可以知道哪个状态分量不能控。) 说明:1.上面通过几个定理给出判断系统能控性的判据。虽然它们 的表达形式、方法不同,但是,在判断线性定常系统能控性时是等 价的。
2.在线性连续定常系统中,由于能达性和能控性是等价的,因此, 能控性判据同样可以判断能达性。
一般情况下,系统方程可以表示为
Ax Bu x y Cx
(1)
状态能控与否,不仅取决于B 阵(直接关系),还取决于A 阵(间 接关系)。 系统能观测问题是研究测量输出变量 y 去确定状态变量的问题。
y(t )为输出量,两个电 例3-3 电路如下图所示。选取 u(t )为输入量, 感上的电流分别作为状态变量,则系统方程为
λi Ji 0
1 λi
0 1 阵 B 中与每一个约当子块最下面 一行对应行的元素不全为零。
例3-7 有如下两个线性定常系统,判断其能控性。
0 4 1 0 (1) x 0 4 0 x 4 u 0 2 0 3 0 4 1 4 2 (2) x 0 4 0 x 0 0 u 0 2 0 3 0
3)只有整个状态空间中所有的有限点都是能控的,系统才是能 控的。 4)满足(3)式的初始状态,必是能控状态。
x(0) e Aτ Bu( τ ) d τ
0
t1
(3)
5)当系统中存在不依赖于 u(t ) 的确定性干扰 f (t ) 时,f (t ) 不会改 变系统的能控性。 Ax Bu f (t ) x (4)

现代控制理论-线性控制系统的能控性与能观性例题精选全文完整版

现代控制理论-线性控制系统的能控性与能观性例题精选全文完整版
x Ax Bu
如果线性定常系统: y Cx 是状态不完全能控的, 它的能控性判别矩阵的秩
rankM n1 n
则存在非奇异变换:x Rcxˆ
将状态空间描述变换为:
xˆ y
Aˆ xˆ Cˆ xˆ
Bˆ u
n1 n n1
其中:

xˆ1

2
n1
n n1

R c1AR c
Aˆ 11 0
3.6.1 线性系统的对偶关系
线性系统1、2如下:
1:yx 11
A1x1 C1x1
B1u1
2:
x 2 y 2
A2x2 C2x2
B2u2
如果满足如下关系
A2 A1T , B2 C1T , C2 B1T
则称两系统是互为对偶的.
u1(t) B
x1(t)
x1(t)
++

y1(t) C
A
y2(t) BT
0
A 0 1 0 , b 0, c 1 1 1
1 4 3
1
解: 能控性矩阵
0 1 4
M b Ab A2b 0 0
0
1 3 8
rankM 2 n1 dim A n 3 不能控
构造变换矩阵
0 1 0 Rc 0 0 1
1 3 0
✓与前2个列向量 线性无关; ✓尽可能简单
结构分解
u
co
y
co
依据能控能观 性,将系统分解
co
为四个子系统
co
x Ax Bu
y Cx Du
特殊的线性变换
x xTco xTco xTco xTco
分解步骤:
1、将系统分解成能控与不能控子系统;

现代控制理论第三章

现代控制理论第三章
方法一: 直接根据状态方程的A阵和B阵
方法二:
转化为约旦标准形 ( Aˆ, Bˆ ) ,再根据 Bˆ 判断
方法三: 传递函数
3.2 线性连续系统的能控性
方法一:线性定常连续系统(A,B), 其状态完全能控的 充要条件是其能控性矩阵的秩为n,即:
rankQc = n Qc = [ B AB A2B … An 1B ]
0 0 2
3
4 1 0
4 2
(2)
x (t)
0
4
0 x(t) 0 0u(t)
0 0 2
3 0
3.2 线性连续系统的能控性 方法三:
3.2 线性连续系统的能控性 例:从输入和状态矢量间的传递函数确定其能控性?
3.2 线性连续系统的能控性 例:判断线性连续系统能控性?
解:
3.2 线性连续系统的能控性
3.3 线性系统的能观测性
例:判断能观测性?
x (t)
2 1
1 3
x(t
)
1
1
u(t)
y(t
)
1 1
0 0 x(t)
解:
C Q0 CA
10 1 0
2 1 2 1
rankQo = 2 = n
系统能观测
3.3 线性系统的能观测性
例: 若系统的状态空间表达式为
x (t)
a d
5
x(t
)
1
7
(2)
x (t)
5
x(t)
1
y(t) 0 4 5x(t)
3 2 0 y(t) 0 3 1 x(t)
(3)
3 1 0
0 3 1
x (t) 0 0 3
x(t)
2

现代控制理论第三章

现代控制理论第三章

B
AB
0 1 An 1B n 1
如果系统是能控的,对于任意给定的初始状态x(0)都 能解出 i , i 0, , n 1,其有解的充分必要条件为
rank B AB An 1 B n
判断下面系统的能控性
输出能控性定义:如果系统的输入信号能在有限的 时间区间[t0,tf]内,将系统的任意初始输出转移到y(tf), 那么该系统为输出完全能控的。
输出能控性判据:考虑系统
x ' Ax Bu y Cx Du
状态完全能控的充分必要条件是
rank CB CAB CAn 1 B D m
上式表明,根据在[0,tf]时间的量测值y(t),能够 将初始状态x(0)唯一地确定下来的充要条件是
C CA n rank n 1 CA
(1)在能观测性定义中之所以把其规定为对初始 状态的确定,是因为一旦确定了初始状态,便可以 根据给定的输入信号u(t),利用状态转移方程求出系 统在各个瞬时的状态。 (2)能观测性表示的是y(t)反映状态向量x(t)的能 力,考虑到输入信号u(t)所引起的输出是可计算的, 所以在分析能观测性问题时,常令u(t)=0。
S1的能控性等价于S2的能观性
S1的能观性等价于S2的能控性
四、能控标准型和能观标准型(单变量系统线性系统) 1 、能控标准型 若系统的状态空间表达式为:
x ' Ac x bcu y Cc x
0 Ac 0 an
1 0 an 1
0 1 a1
能控性判据:考虑系统
x ' Ax Bu
状态完全能控的充分必要条件是
rank B AB An 1 B n

现代控制理论第三章线性系统的能控性和能观测性

现代控制理论第三章线性系统的能控性和能观测性

1 x1 u x 2 2 x2 u x y x x 1 2
1 x
u
1 s 1 s
2
x1
y
x2
2 x
由于状态变量x1、x2都受控于输入u,所以系统 是能控的;输出y能反映状态变量x1,又能反映状 态变量x2的变化,所以系统是可观测的。 即状态变量x1能控、可观测;状态变量x2能控、 可观测。
任意初态 x(t0 ) x 零终态 x(t f ) 0
状态完全能控
Байду номын сангаас
第 三章 线性控制系统式的能控性和能观测性
②把系统的初始状态规定为状态空间的原点, 即 x(t 0 ) 0,终端状态规定为任意非零有限点, 则可达定义表述如下: 对于给定的线性定常系统
Ax Bu ,如果 x
存在一个分段连续的输入 u (t ),能在 [t 0 , t f ] 有限时间间隔内,将系统由零初始状态 x(t 0 ) 转移 到任一指定的非零终端状态 x(t f ) ,则称此系统 是状态完全可达的,简称系统是可达的(能达的)。 任意初态 x(t0 ) 0 零终态 x(t f ) x 状态完全可达
第 三章 线性控制系统式的能控性和能观测性
1. 直接由A,B矩阵的结构判断系统的能控性 定理: 系统
( A, B )

A(t )x B(t )u x y C (t )x D(t )u
状态完全能控的充分必要条件是其能控性矩阵
Qk [ B AB A2 B An1 B]
一、线性定常连续系统状态能控性的定义 定义3.1(状态能控性定义):
Ax Bu,如果存在一个 对于线性定常系统 x 分段连续的输入u(t),能在有限时间间隔[t0,tf]内, 使得系统从某一初始状态x(t0)转移到指定的任一 终端状态x(tf) ,则称此状态是能控的。若系统的 所有状态都是能控的,则称此系统是状态完全能 控的,简称系统是能控的。

(整理)控制系统的能控性和能观测性

(整理)控制系统的能控性和能观测性

第三章 控制系统的能控性和能观测性3-1能控性及其判据 一:能控性概念定义:线性定常系统(A,B,C),对任意给定的一个初始状态x(t 0),如果在t 1> t 0的有限时间区间[t 0,t 1]内,存在一个无约束的控制矢量u(t),使x(t 1)=0,则称系统是状态完全能控的,简称系统是能控的。

可见系统的能控性反映了控制矢量u(t)对系统状态的控制性质,与系统的内部结构和参数有关。

二:线性定常系统能控性判据设系统动态方程为:x 2不能控y2则系统不能控,若2121,C C R R ==⎩⎨⎧+=+=DuCx y Bu Ax x设初始时刻为t 0=0,对于任意的初始状态x(t 0),有: 根据系统能控性定义,令x(t f )=0,得:即:由凯莱-哈密尔顿定理:令 上式变为:对于任意x(0),上式有解的充分必要条件是Q C 满秩。

判据1:线性定常系统状态完全能控的充分必要条件是:⎰-+=ft f f f d Bu t x t t x 0)()()0()()(τττφφ⎰⎰---=--=-ff t f f t f f d Bu t t d Bu t t x 01)()()()()()()0(τττφφτττφφ⎰--=f t d Bu x 0)()()0(τττφ∑-=-==-1)()(n k kk A A eτατφτ∑⎰⎰∑-=-=-=-=101)()()()()0(n k t k k t n k k k ff d u B A d Bu A x ττταττταkt k u d u f=⎰)()(ττταUQ u u u u B A B A AB B Bu A x c k n n k kk -=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=-=--=∑ 321121],,,[)0(能控性矩阵Q C =[B ,AB ,A 2B ,…A n-1B]满秩。

对于单输入系统,Q C =[b ,Ab ,A 2b ,…A n-1b] 如果系统是完全能控的,称(A 、B )或(A 、b )为能控对。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定理3-5(2)式的线性定常系统的矩阵 A 具有重特征值,λ1、λ2 、
l 2 重、 λ3 、…、 λk 分别为 l1 重、 l3 重、…、l k 重。

l
i 1
k
i
n , λi λ j ,(i j ) 经过非奇异线性变换,得到约当阵
J1 x 0
J2
0 x Bu Jk
例3-2 电路如下图所示,如果选择电容C1、 C2两端的电压为状态 x1 uC1 , x2 uC 2 ,电路的输出 y 为C2上的电压, 变量,即: 即 y x2 ,则电路的系统方程为
2 1 1 x Ax bu x 1u 1 2
x(t ) e x(0) e A(t τ ) bu(t τ ) d τ
At 0 t
为了简便起见,令 u(t ) 0

x(t ) e At x(0)
y(t ) C e At x(0) [ x1 (0) x2 (0)]e3t
从上式可知,不论初始状态为什么数值,输出 仅仅取决于其差 值 [ x1 (0) x2 (0)] 。当 x1 (0) x2 (0) ,则输出恒等于零。显然,无法通过对 输出的观测去确定初始状态,称这样的系统是不能观测的。 一般情况下,系统方程如式(1)所示,状态能观测与否,不仅取 决于C 阵(直接关系),还取决于A阵(间接关系)。
上式代入(3)式
n 1 i 0
x(0) A B ai ( τ )u( τ ) d τ
i t1 i 0 0
n 1
(8)
βi1 β t1 i2 a ( τ ) u ( τ ) d τ i 0 i βir
(i 0,1,, n 1)
-2 1 1 x Ax Bu x u 1 -2 0
y Cx 1 1x
系统状态转移矩阵为
t 3t e e 1 e At t 3t 2 e e
e t e 3t e t e 3t
系统状态方程的解为
y Cx 0 1x
系统状态转移矩阵为
0 如果初始状态为 x (0) 0
t 3t e e 1 e At t 3t 2 e e
e t e 3t e t e 3t
系统状态方程的解为 1 t (t τ ) x(t ) e u(τ ) d τ 1 0 可见,不论加入什么样的 输入信号,总是有 x1 x2
3)只有整个状态空间中所有的有限点都是能控的,系统才是能 控的。 4)满足(3)式的初始状态,必是能控状态。
x(0) e Aτ Bu(τ ) d τ
0
t1
(3)
5)当系统中存在不依赖于 u(t ) 的确定性干扰 f (t ) 时,f (t ) 不会改 变系统的能控性。 Ax Bu f (t ) x (4)
(10)
(i 1,2,, n) 将系统经过非奇异线性变换变换成对角阵
λi 互异,
0 λ1 λ 2 x Bu (11) x 0 λ n 则系统能控的充分必要条件是矩阵 B 中不包含元素全为零的行。
例3-6 有如下两个线性定常系统,判断其能控性。
授课接点
2)如果在有限时间区间[t0 , t1 ] 内,存在容许控制 u(t ) ,使系统 x (t1 ) ,则称系统是状态 从状态空间坐标原点推向预先指定的状态 能达的;由于连续系统的状态转移矩阵是非奇异的,因此系统的能 控性和能达性是等价的容许控制
(对于一个实际的控制问题,输入控制的u(t)的取值必定要受一定条件的约束。 满足约束条件的控制作用u(t)的一个取值对应于r维空间的一个点,所有满足条件的控 制作用u(t)的取值构成r维空间的一个集合,记为Ω,称之为容许控制集。凡是属于容 许控制集Ω的控制,都是容许控制。)。
定理3-7 状态在时刻 t 0 能控的充分必要条件是存在一个有限时 间 t1 t0 ,使得以下格拉姆矩阵非奇异。
WC [t0 , t1 ] (t0 , t ) B(t ) BT (t ) T (t0 , t ) d t
t0
t1
(14)
定义:M k 1 (t ) A(t ) M k (t ) d定理3-3 (PBH判别法) (2)式的线性定常系统为状态能 控的充分必要条件是,对A 的所有特征值 λi,都有
rank[ λi I A B] n (i 1,2,, n) (证明略)
定理3-4 (2)式的线性定常系统的矩阵 A 的特征值
2. 能控性判据
定理3-1 (2)式的线性定常系统为状态能控的充分必要条件是 下面的n×n维格拉姆矩阵满秩
WC (0, t1 )
t1
0
e

BB e
T
AT τ

(5)
(这个定理为能控性的一般判据,所谓满秩就是每个状态能控。但 是,由于要计算状态转移矩阵,比较繁琐。实际上,常用下面介绍 的判据。)
0 7 2 x 0 u (1) x 5 1 0 9 0 7 0 1 (2) x 4 0u x 5 1 0 7 5
解 根据定理3-4, 系统(1) 不能控 ; 系统(2)能控。
dt M0 (t ) B(t )
k 0,1,, n 1 (15)
当 k 0
k 1 k2
d M1 (t ) A(t ) M 0 (t ) M 0 (t ) dt d M 2 (t ) A(t ) M1 (t ) M1 (t ) dt d M 3 (t ) A(t ) M 2 (t ) M 2 (t ) dt
于是
x (0) [ B
β0 β AB An-1 B ] 1 β n 1
(9)
如果系统能控,必能够从(9)式中解得 样就要求
0 , 1 , … , n1 。这
rankQC rank[B AB A2 B An1 B] n
对于不能观测的系统,其不能观测的状态分量与y 既无直接关系, 又无间接关系。状态是否能观测不仅取决于C,还与A 有关。 两个例子的分析结论是:能控与A,B阵有关;能观与A,C阵 有关。
3.2
1. 能控性定义
能控性及其判据
3.2.1 线性定常系统的能控性及其判据
线性定常系统的状态方程为
Ax Bu x
λi Ji 0
1 λi
0 1 λi
(12)
则系统能控的充分必要条件是矩阵 B 中与每一个约当子块最下面 一行对应行的元素不全为零。
例3-7 有如下两个线性定常系统,判断其能控性。
0 4 1 0 (1) x 0 4 0 x 4 u 0 2 0 3 0 4 1 4 2 (2) x 0 4 0 x 0 0 u 0 2 0 3 0
一般情况下,系统方程可以表示为
Ax Bu x y Cx
(1)
状态能控与否,不仅取决于B 阵(直接关系),还取决于A 阵(间 接关系)。 系统能观测问题是研究测量输出变量 y 去确定状态变量的问题。
y(t )为输出量,两个电 例3-3 电路如下图所示。选取 u(t )为输入量, 感上的电流分别作为状态变量,则系统方程为

根据定理3-5, 系统(1)能控 ; 系统(2)不能控
(定理(3-4)、定理(3-5)不仅可以判断系统能控性,而且对 于不能控的系统,可以知道哪个状态分量不能控。) 说明:1.上面通过几个定理给出判断系统能控性的判据。虽然它们 的表达形式、方法不同,但是,在判断线性定常系统能控性时是等 价的。
2.在线性连续定常系统中,由于能达性和能控性是等价的,因此, 能控性判据同样可以判断能达性。
3.2.2 线性时变系统的能控性判据 线性时变系统的状态方程为
A(t ) x B(t )u x
x (t0 )
(13)
定理3-6 状态在时刻 t 0 能控的充分必要条件是存在一个有限时 间 t1 t0 ,使得函数矩阵 (t0 , t1 ) B(t ) 的n个行在 [t1 , t0 ] 上线性无关。 (证明略)
5.
对偶原理
问题的提出



这是由于在经典控制理论中,只限于讨论控制作用(输入)对输出的 控制。输入与输出这两个量的关系,唯一地由系统的传递函数所确定, 只要系统是稳定的,系统就是能控的。另一方面,系统的输出量本身 就是被控量,对于一个实际的物理系统来说,它当然是可以观测到的, 所以在经典控制理论中没有必要涉及能控性和能观性。 然而在现代控制理论中,是把反映系统内部运动状态的状态向量作为 被控量,而且它们不一定是实际上可观测到的物理量,至于输出量则 是状态向量的线性组合,这就产生了从输入量 到状态量 的能控性问 题和从输出量 到状态量 的能观测性问题。 最优控制(optimal control)在满足一定约束条件下,寻求最优控制 策略,使得性能指标取极大值或极小值。 最优估计(optimum estimate )即滤波(是将信号中特定波段频率 滤除的操作,是抑制和防止干扰的一项重要措施。)方法的优化。
(2)
给定系统一个初始状态 x (t0 ) ,如果在 t1 t0 的有限时间区间[t0 , t1 ] 内,存在容许控制 u(t ) ,使 x (t1 ) 0 ,则称系统状态在 t 0 时刻是 能控的;如果系统对任意一个初始状态都能控,则称系统是状态完 全能控的。 说明: 1) 初始状态 是状态空间中的任意非零有限点,控制的目标是 状态空间的坐标原点。(如果控制目标不是坐标原点,可以通过坐 标平移,使其在新的坐标系下是坐标原点。)
相关文档
最新文档