雅礼中学2019届高三月考试卷(三)
最新届湖南省雅礼中学高三上学期11月份月考(三)数学理试题

雅礼中学2019届高三11月月考试卷(三)数学(理科)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟.满分150分.第I 卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集I 是实数集R ,{}()(){}3,310M x x N x x x =≥=--≤都是I 的子集(如图所示),则阴影部分所表示的集合为 A. {}13x x << B .{}13x x ≤< C .{}13x x <≤D .{}13x x ≤≤2.设()1+1i x yi =+,其中,x y 是实数,则x yi += A.1B .2C.3D .23.已知命题p :函数12x y a+=-的图象恒过定点(1,2);命题q :若函数()1y f x =-为偶函数,则函数()y f x =的图象关于直线1x =对称,则下列命题为真命题的是A. p q ∨B .p q ∧C .p q ⌝∧D .p q ∨⌝4.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是A.56 B .60 C .120 D .140 5.执行如图所示的程序框图,若输入如下四个函数: ①()sin f x x =;②()cos f x x =;③()1f x x=;④()2.f x x =则输出的函数是A. ()sin f x x =B. ()cos f x x =C. ()1f x x=D. ()2f x x =6.若变量,x y 满足222,239,0,x y x y x y x +≤⎧⎪-≤+⎨⎪≥⎩则的最大值是A.4 B .9 C.10 D .12 7.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.则下列说法错误..的是 A. 此人第二天走了九十六里路B .此人第一天走的路程比后五天走的路程多六里C .此人第三天走的路程占全程的18D .此人后三天共走了42里路8.如图,下列三图中的多边形均为正多边形,M 、N 是所在边上的中点,双曲线均以图中12F F ,为焦点.设图①②③中双曲线的离心率分别为123,,e e e ,则A. 123e e e >>B. 321e e e >>C. 213e e e >=D. 132e e e =>9.已知△ABC 是边长为4的等边三角形,P 为△ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值为A. 3-B .6-C .2-D .83-10.已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该截面的面积为 A.92B .4C .3D.310211.如图,已知抛物线1C 的顶点在坐标原点,焦点在x 轴上,且过点(2,4),圆222:430C x y x +-+=,过圆心2C 的直线l 与抛物线和圆分别交于P ,Q ,M ,N ,则9PN QM +的最小值为 A.36 B .42 C.49D .5012.已知函数()23236,0,34,0,x x x f x A x x x ⎧-+≥⎪==⎨--+<⎪⎩设()({}0x Z x f x a ∈-≥,若A 中有且仅有4个元素,则满足条件的整数a 的个数为A.31B .32 C.33 D.34第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.13.已知{}n a 是等差数列,n S 是其前n 项和.若212593,10a a S a +=-=,则的值是___________.14.定义在区间[]03π,上的函数sin 2y x =的图象与cos y x =的图象的交点个数是___________. 15.若直线1ax by +=(,a b 都是正实数)与圆221x y +=相交于A ,B 两点,当△AOB(O 是坐标原点)的面积最大时,a b +的最大值为________.16.如右图,在棱长为1的正方体1111ABCD A B C D -中,作以A 为顶点,分别以AB ,AD ,AA 1为轴,底面圆半径为()01r r <≤的圆锥.当半径r 变化时,正方体挖去三个14圆锥部分后,余下的几何体的表面积的最小值是__________. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:60分. 17.(本小题满分12分)已知△ABC 三个内角A ,B ,C 的对边分别为,,,a b c ABC ∆的面积S 满足2223S a b c -=+-. (1)求角C 的值;(2)求()cos2cos A A B +-的取值范围.18.(本小题满分12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,AD=2BC=2,∠BAD=∠ABC= 90°. (1)证明:PC BC ⊥;(2)若直线PC 与平面PAD 所成角为30°,求二面角B —PC —D 的余弦值.19.(本小题满分12分)已知椭圆22124x y +=两焦点分别为12,F F P 、是椭圆在第一象限弧上一点,并满足121PF PF =u u u r u u u u r g ,过P 作倾斜角互补的两条直线PA 、PB 分别交椭圆于A 、B 两点.(1)求P 点坐标;(2)求证:直线AB 的斜率为定值; (3)求△PAB 面积的最大值.20.(本小题满分12分)十九大提出,加快水污染防治,建设美丽中国.根据环保部门对某河流的每年污水排放量X(单位:吨)的历史统计数据,得到如下频率分布表:将污水排放量落入各组的频率作为概率,并假设每年该河流的污水排放量相互独立. (1)求在未来3年里,至多1年污水排放量[)270310X ∈,的概率;(2)该河流的污水排放对沿河的经济影响如下:当[)2300X ∈,27时,没有影响;当[)270310X ∈,时,经济损失为10万元;当X ∈[310,350)时,经济损失为60万元.为减少损失,现有三种应对方案: 方案一:防治350吨的污水排放,每年需要防治费3.8万元; 方案二:防治310吨的污水排放,每年需要防治费2万元; 方案三:不采取措施.试比较上述三种方案,哪种方案好,并请说明理由.21.(本小题满分12分)已知函数()()28ln f x x x a x a R =-+∈.(1)当1x =时,()f x 取得极值,求a 的.(2)当函数()f x 有两个极值点()12121,1x x x x x <≠,且时,总有()()21111ln 2431a x m x x x >-+--成立,求m 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—4:坐标系与参数方程在极坐标系中,曲线1:2cos C ρθ=,曲线22:sin 4cos C ρθθ=.以极点为坐标原点,极轴为x 轴正半轴建立直角坐标系xOy ,曲线C的参数方程为12,22x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)(1)求12,C C 的直角坐标方程;(2)C 与12,C C 交于不同四点,这四点在C 上的排列顺次为P ,Q ,R ,S ,求PQ RS -的值. 23.(本小题满分10分)选修4—5:不等式选讲 已知函数()243f x x a x =-++.(1)若2a =时,解不等式:()22f x >;(2)对任意实数x ,不等式()34f x a ≥+恒成立,求实数a 的取值范围.。
湖南省长沙市雅礼中学2024-2025学年高三上学期月考(三)政治试题 Word版含解析

雅礼中学2025届高三月考试卷(三)思想政治本试题卷分为选择题和非选择题两部分,共8页。
时量75分钟,满分100分。
第Ⅰ卷选择题(共48分)一、选择题(本大题共16小题,每小题3分,共48分。
每小题只有一项符合题目要求)1.研读经典,致敬伟人。
对下列两则原文相同点的解读,科学的是()1847年,马克思在《哲学的贫困》中指出:“当文明一开始的时候,生产就开始建立在级别、等级和阶级的对抗上,最后建立在积累的劳动和直接的劳动的对抗上。
没有对抗就没有进步。
这是文明直到今天所遵循的规律。
”1848年,马克思、恩格斯在《共产党宣言》中指出:“资产阶级赖以形成的生产资料和交换手段,是在封建社会里造成的。
在这些生产资料和交换手段发展的一定阶段上……封建的所有制关系,就不再适应已经发展的生产力了……起而代之的是自由竞争以及与自由竞争相适应的社会制度和政治制度、资产阶级的经济统治和政治统治。
”①两者都依据社会基本矛盾运动规律阐释社会形态的更替问题②前者揭示社会形态更替的条件性,后者揭示其更替的必然性③依据两者都能推断资本主义终将被社会主义取代的必然趋势④两者都揭示了人类社会的发展历史就是一部阶级斗争的历史A.①③B.①④C.②③D.②④2.习近平总书记提出:“我们的教育要善于从五千年中华传统文化中汲取优秀的东西,同时也不摒弃西方文明成果,真正把青少年培养成为拥有‘四个自信’的孩子。
”关于“四个自信”,下列说法正确的是()①中国特色社会主义道路是实现社会主义现代化、创造美好生活的必由之路②中国特色社会主义理论体系科学回答了建设社会主义的一系列的基本问题③中国特色社会主义制度是党和人民在长期实践探索中形成的科学制度体系④中国特色社会主义文化是激励全党全国各族人民奋勇前进的强大物质力量A.①②B.①③C.②④D.③④3.中国特色社会主义开创于改革开放时期,但了解其形成和发展的脉络,认识其历史必然性和科学真理性,应该拉长时间尺度,了解社会主义演进的历程。
湖南省雅礼中学2022-2023学年高三上学期月考卷(三)英语试题及答案(雅礼3次)

雅礼中学2023届高三月考试卷(三)英语命题人、审题人: 高三英语备课组得分: _________本试题卷分为听力、阅读、语言运用和写作四个部分, 共10页。
时量120分钟。
满分150分。
第一部分听力(共两节, 满分30分)做题时, 先将答案标在试卷上。
录音内容结束后, 你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题; 每小题1. 5分, 满分7. 5分)听下面5段对话。
每段对话后有一个小题, 从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后, 你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例: How much is the shirt?A. £19. 15.B. £9. 18.C. £9. 15.答案是C。
1. Why does the woman speak to the boy?A. To look for her cat.B. To invite him for a game.C. To ask about Bob.2. What did the man do yesterday?A. He went to the zoo.B. He went swimming.C. He played basketball.3. What will the man buy?A. Toothpaste.B. Soap.C. Tissues.4. What will the woman do tomorrow?A. Run a marathon.B. Practice singing.C. Play table tennis.5. What is Michael going to do next Friday?A. Go to hospital.B. Rest at home.C. Take an exam.第二节(共15小题; 每小题1. 5分, 满分22. 5分)听下面5段对话或独白。
湖南省长沙市雅礼中学2022-2023学年高三上学期月考卷(三)语文试题含答案解析

雅礼中学2023届高三月考试卷(三)语文一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,17分)阅读下面的文字,完成1~5题。
材料一:多年以来,许多哲学家、大多数科学家、神经学家以及以自然为基础的人工智能研究者都在激烈地争论着一个问题:意识可否通过人工智能再造。
1980年,持不可造观念的加利福尼亚大学哲学家约翰·希尔勒,用“汉语房间”的形式来表达他的观点。
假设一个非汉语语者坐在一间屋子里,当门外传进来一串用汉语字符提出的问题,这个人可以根据手中特别详尽而聪明的规则表,排出一串包含有该问题答案的新的汉语字符,并把它们传出门外。
从在房间外提出问题的汉语语者的角度看,似乎有一个特别聪明的人在房间里阅读他的问题并给出答案。
但是对房间里的人而言,问题和答案都只是一些毫无意义的符号。
希尔勒认为这就是人工智能最有可能做到的:一个机器给出一个合理的答案,同时却不理解答案的意思。
所以说,无论机器的程序有多复杂,它都不可能有意识——它将用最愚蠢的方式来显示它的聪明。
借由“汉语房间”理论,希尔勒加强了他对人工智能的攻击。
他坚持认为,既然说意识是由非程序、非计算机的生物化学过程来产生,那么人工装置得到意识的希望几乎不存在。
但是,希尔勒的观点看来又是相当容易反驳的。
就像从理论上、经验中论证的一样,生物化学作用与信息处理之间的界限非常模糊,且低级但是完整的生物化学计算机装置的问世也是在将来几年内肯定可以预见的,同时非生物化学神经网络在模拟大脑功能方面也取得了很大的成功。
一些传统人工智能学者也反击说,高度繁杂的人工智能程序并不是简单地以最愚蠢的方式从一系列规则中作出选择,而是考虑许多并列的不同规则、处理规则之间的冲突、对各种规则进行推测、认识规则之间的联系,还要组建新的规则。
他们认为,这就好比一个锁在汉语房间里的、特别敏锐的、不懂汉语的人最终有可能开始理解汉语一样,一个繁杂的、建立在规则之上的系统是有可能得到基础意识的。
湖南省长沙市雅礼中学2024-2025学年高三上学期月考(三)数学试题(含解析)

雅礼中学2025届高三月考试卷(三)数学命题人:审题人:得分:________本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“存在,”的否定是A.存在,B.不存在,C.任意,D.任意,2.若集合(i 是虚数单位),,则等于A. B. C. D.3.已知奇函数,则A.-1B.0C.1D.4.已知,是两条不同的直线,,是两个不同的平面,则下列可以推出的是A.,, B.,,C.,, D.,,5.已知函数图象的一个最高点与相邻的对称中心之间的距离为5,则A.0B. C.4D.x ∈Z 220x x m ++…x ∈Z 220x x m ++>x ∈Z 220x x m ++>x ∈Z 220x x m ++…x ∈Z 220x x m ++>{}2341,i ,i ,i A ={}1,1B =-A B ⋂{}1-{}1{}1,1-∅()()22cos x x f x m x -=+⋅m =12m l αβαβ⊥m l ⊥m β⊂l α⊥m l ⊥l αβ⋂=m α⊂m l m α⊥l β⊥l α⊥m l m β()()4cos (0)f x x ωϕω=+>6f ϕπ⎛⎫-=⎪⎝⎭2ϕ2ϕ6.已知是圆上一个动点,且直线与直线(,,)相交于点,则的取值范围为A. B.C. D.7.是椭圆上一点,,是的两个焦点,,点在的角平分线上,为原点,,且.则的离心率为A.8.设集合,那么集合中满足条件“”的元素个数为A.60B.90C.120D.130二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.如图为某地2014年至2023年的粮食年产量折线图,则下列说法正确的是A.这10年粮食年产量的极差为16B.这10年粮食年产量的第70百分位数为35C.这10年粮食年产量的平均数为33.7D.前5年的粮食年产量的方差小于后5年粮食年产量的方差10.已知函数满足,,并且当时,,则下列关于函数说法正确的是M 22:1C x y +=1:30l mx ny m n --+=2:30l nx my m n +--=m n ∈R 220m n +≠P PM 1,1⎤-+⎦1⎤-⎦1,1⎤-+⎦1⎤+⎦P 2222:1(0)x y C a b a b+=>>1F 2F C 120PF PF ⋅= Q 12F PF ∠O 1OQPF OQ b =C 12(){}{}{}12345,,,,|1,0,1,1,2,3,4,5iAx x x x x x i ∈-=A 1234513x x x x x ++++……()f x ()()22f x f x ππ+=-()()0fx f x ππ++-=()0,x π∈()cos f x x =()f xA. B.最小正周期C.的图象关于直线对称D.的图象关于对称11.若双曲线,,分别为左、右焦点,设点是在双曲线上且在第一象限的动点,点为的内心,,则下列说法不正确的是A.双曲线的渐近线方程为B.点的运动轨迹为双曲线的一部分C.若,,则D.不存在点,使得取得最小值答题卡题号1234567891011得分答案第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.的展开式中的系数为________.13.各角的对应边分别为,,,满足,则角的取值范围为________.14.对任意的,不等式(其中e 是自然对数的底)恒成立,则的最大值为________.四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)设为正项等比数列的前项和,,.(1)求数列的通项公式;(2)数列满足,,求数列的前项和.302f π⎛⎫=⎪⎝⎭2T π=()f x x π=()f x (),0π-22:145x y C -=1F 2F P I12PF F △()0,4A C 045x y±=I 122PF PF =12PI xPF yPF =+ 29y x -=P 1PA PF +523x x ⎛⎫+ ⎪⎝⎭4x ABC △a b c 1b ca c a b+++…A *n ∈N 11e 1nan n n ⎛⎫⎛⎫+⋅ ⎪ ⎪+⎝⎭⎝⎭…a n S {}n a n 21332S a a =+416a ={}n a {}n b 11b =1222log log n nn n b a b a ++={}n b n n T16.(本小题满分15分)如图,在四棱锥,,,,点在上,且,.(1)若为线段的中点,求证:平面;(2)若平面,求平面与平面所成夹角的余弦值.17.(本小题满分15分)已知函数有两个极值点为,,.(1)当时,求的值;(2)若(e 为自然对数的底数),求的最大值.18.(本小题满分17分)已知抛物线的焦点为,为上任意一点,且的最小值为1.(1)求抛物线的方程;(2)已知为平面上一动点,且过能向作两条切线,切点为,,记直线,,的斜率分别为,,,且满足.①求点的轨迹方程;②试探究:是否存在一个圆心为,半径为1的圆,使得过可以作圆的两条切线,,切线,分别交抛物线于不同的两点,和点,,且为定值?若存在,求圆的方程,不存在,说明理由.19.(本小题满分17分)对于一组向量,,,…,(且),令,如果存在,使得,那么称是该向量组的“长向量”.(1)设,且,若是向量组,,的“长向量”,求实数的取值范P ABCD -BCAD 1AB BC ==3AD =E AD PE AD ⊥2DE PE ==F PE BFPCD AB ⊥PAD PAB PCD ()21ln 2f x x x ax =+-1x ()212x x x <a ∈R 52a =()()21f x f x -21e x x …()()21f x f x -2:2(0)E x py p =>F H E HF E P P E M N PM PN PF 1k 2k 3k 123112k k k +=P ()0,(0)Q λλ>P Q 1l 2l 1l 2l E ()11,A s t ()22,B s t ()33,C s t ()44,D s t 1234s s s s Q 1a 2a 3a n a N n ∈3n …123n n S a a a a =++++{}()1,2,3,,p a p n ∈ p n p a S a - …p a(),2n a n x n =+n ∈N 0n >3a 1a 2a 3ax围;(2)若,且,向量组,,,…,是否存在“长向量”?给出你的结论并说明理由;(3)已知,,均是向量组,,的“长向量”,其中,.设在平面直角坐标系中有一点列,,,…,,满足为坐标原点,为的位置向量的终点,且与关于点对称,与(且)关于点对称,求的最小值.sin,cos 22n n n a ππ⎛⎫= ⎪⎝⎭n ∈N 0n >1a 2a 3a 7a 1a 2a 3a 1a2a3a()1sin ,cos a x x =()22cos ,2sin a x x = 1P 2P 3P n P 1P 2P 3a 21k P +2k P 1P 22k P +21k P +k ∈N 0k >2P10151016P P参考答案一、二、选择题题号1234567891011答案DCADCBCDACDADABD1.D2.C 【解析】集合,,.故选C.3.A【解析】是奇函数,,,,,.故选A.4.D 【解析】有可能出现,平行这种情况,故A 错误;会出现平面,相交但不垂直的情况,故B 错误;,,,故C 错误;,,又由,故D 正确.故选D.5.C 【解析】设的最小正周期为,函数图象的一个最高点与相邻的对称中心之间的距离为5,则有,得,则有,解得,所以,所以.故选C.6.B 【解析】依题意,直线恒过定点,直线恒过定点,显然直线,因此,直线与交点的轨迹是以线段为直径的圆,其方程为:,圆心,半径,而圆的圆心,半径,如图:,两圆外离,由圆的几何性质得:,{}i,1,1,i A =--{}1,1B =-{}1,1A B ⋂=-()f x ()()22cos x x f x m x -=+⋅()()()2222x x x xf x f x m --⎡⎤∴+-=+++⎣⎦cos 0x =()()122cos 0x x m x -∴++=10m ∴+=1m =-αβαβm l m α⊥l βαβ⊥⇒ l α⊥m l m α⇒⊥ m βαβ⇒⊥ ()f x T 224254T ⎛⎫+= ⎪⎝⎭12T =212πω=6πω=()4cos 6f x x πϕ⎛⎫=+ ⎪⎝⎭664cos 4cos046f ϕϕπϕππ⎛⎫⎛⎫-=-⨯+== ⎪ ⎪⎝⎭⎝⎭()()1:310l m x n y ---=()3,1A ()()2:130l n x m y -+-=()1,3B 12l l ⊥1l 2l P AB 22(2)(2)2x y -+-=()2,2N 2r =C ()0,0C 11r =12NC r r =>+12min1PMNC r r =--=-,所以的取值范围为.故选B.7.C 【解析】如图,设,,延长交于点,由题意知,为的中点,故为中点,又,即,则,又由点在的角平分线上得,则是等腰直角三角形,故有化简得即代入得,即,又,所以,所以,.故选C.8.D 【解析】因为或,所以若,则在中至少有一个,且不多于3个.所以可根据中含0的个数进行分类讨论.①五个数中有2个0,则另外3个从1,-1中取,共有方法数为,②五个数中有3个0,则另外2个从1,-1中取,共有方法数为,③五个数中有4个0,则另外1个从1,-1中取,共有方法数为,所以共有种.故选D.9.ACD 【解析】将样本数据从小到大排列为26,28,30,32,32,35,35,38,39,42,这10年的粮食年产量极差为,故A 正确;,结合A 选项可知第70百分位数为第7个数和第812max1PMNC r r =++=+PM 1⎤-+⎦1PF m =2PF n =OQ 2PF A 1OQ PF O 12F F A 2PF 120PF PF ⋅= 12PF PF ⊥2QAP π∠=Q 12F PF ∠4QPA π∠=AQP △2222,4,11,22m n a m n c b n m ⎧⎪+=⎪+=⎨⎪⎪+=⎩2,2,m n b m n a -=⎧⎨+=⎩,,m a b n a b =+⎧⎨=-⎩2224m n c +=222()()4a b a b c ++-=2222a b c +=222b a c =-2223a c =223e =e =0i x =1i x =1234513x x x x x ++++……()1,2,3,4,5i x i =1i x =i x 2315C 2N =⋅3225C 2N =⋅435C 2N =⋅23324555C 2C 2C 2130N =⋅+⋅+⋅=422616-=1070%7⨯=个数的平均数,即,故B 不正确;这10年粮食年产量的平均数为,故C 正确;结合图形可知,前5年的粮食年产量的波动小于后5年的粮食产量波动,所以前5年的粮食年产量的方差小于后5年的粮食年产量的方差,故D 正确.故选ACD.10.AD 【解析】由于时,,并且满足,则函数的图象关于直线对称.由于,所以,故,故,故函数的最小正周期为,根据,知函数的图象关于对称.由于时,,,故A 正确,由于函数的最小正周期为,故B 错误;由函数的图象关于对称,易知的图象不关于直线对称,故C 错误;根据函数图象关于点对称,且函数图象关于直线对称,知函数图象关于点对称,又函数的最小正周期为,则函数图象一定关于点对称,故D 正确.故选AD.11.ABD 【解析】双曲线,可知其渐近线方程为,A 错误;设,,的内切圆与,,分别切于点,,,可得,,,由双曲线的定义可得:,即,又,解得,则点的横坐标为,由点与点的横坐标相同,即点的横坐标为,故在定直线上运动,B 错误;由,且,解得,,,,则,同理可得:,设直线,直线,联立方程得,设的内切圆的半径为,则,解得,即,353836.52+=()13232302835384239263533.710⨯+++++++++=()0,x π∈()cos f x x =()()22f x f x ππ+=-()f x 2x π=()()0fx f x ππ++-=()()fx f x ππ+=--()()()()()22f xf x f x f x ππππ--+=+=--=-()()()24f x f x f x ππ=-+=+4π()()0fx f x ππ++-=()f x (),0π()0,x π∈()cos f x x =3cos 022222f f ff πππππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=--=-=-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭4π()f x (),0π()f x x π=(),0π2x π=()3,0π4π(),0π-22:145x y C -=02x =1PF m =2PF n =12PF F △1PF 2PF 12F F S K T PS PK =11F S FT =22F T F K =2m n a -=12122F S F K FT F T a -=-=122FT F T c +=2F T c a =-T a I T I 2a =I 2x =122PF PF =1224PF PF a -==18PF =24PF =1226F F c ==126436167cos 2868PF F ∠+-∴==⨯⨯12sin PF F ∠==12tan PF F ∠∴=21tan PF F ∠=)1:3PF y x =+)2:3PF y x =-(P 12PF F △r ()12118684622PF F S r =⨯⨯=⨯++⋅△r =I ⎛ ⎝,,,由,可得解得,,故,C 正确;,,当且仅当,,三点共线取等号,易知,故存在使得取最小值,D 错误.故选ABD.三、填空题:本题共3小题,每小题5分,共15分.12.90 【解析】展开式的通项公式为,令,解得,所以展开式中的系数为.13. 【解析】从所给条件入手,进行不等式化简,观察到余弦定理公式特征,进而利用余弦定理表示,由可得,可得.14. 【解析】对任意的,不等式(其中e 是自然对数的底)恒成立,只需恒成立,只需恒成立,只需恒成立,2,PI ⎛∴=- ⎝ (17,PF =- (21,PF =- 12PI xPF yPF =+ 27,,x y -=--⎧⎪⎨=⎪⎩29x =49y =29y x -=1224PF PF a -== 12244PA PF PA PF AF ∴+=+++…A P 2F ()1min549PA PF +=+=P 1PA PF +523x x ⎛⎫+ ⎪⎝⎭()()521031553C C 3rr rrr r r T x x x --+⎛⎫=⋅⋅=⋅⋅ ⎪⎝⎭1034r -=2r =4x 225C 310990⋅=⨯=0,3π⎛⎤⎥⎝⎦()()1b c b a b c a c a c a b+⇒+++++……()()222a c a b b c a bc ++⇒++…cos A 222b c a ac +-…2221cos 22b c a A bc +-=…0,3A π⎛⎤∈ ⎥⎝⎦11ln2-*n ∈N 11e 1n an n n ⎛⎫⎛⎫+⋅ ⎪ ⎪+⎝⎭⎝⎭…11e n an +⎛⎫+ ⎪⎝⎭…()1ln 11n a n ⎛⎫++ ⎪⎝⎭…11ln 1a n n -⎛⎫+ ⎪⎝⎭…构造,,,.下证,再构造函数,,,,设,,,令,,,,在时,,单调递减,,即,所以递减,,即,所以递减,并且,所以有,,所以,所以在上递减,所以的最小值为.,即的最大值为.四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.【解析】(1)因为是正项等比数列,所以,公比,因为,所以,即,则,解得(舍去)或,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(3分)又因为,所以,所以数列的通项公式为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(6分)(2)依题意得,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(7分)当时,,所以,因为,所以,当时,符合上式,所以数列的通项公式为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(10分)()()11ln 1m x x x =-+(]0,1x ∈()()()()()22221ln 11ln 1x x x m x x x x ++-=++'(]0,1x ∈()(]22ln 1,0,11x x x x+<∈+()()22ln 11x h x x x =+-+(]0,1x ∈()()()2221ln 12(1)x x x xh x x ++-'-=+(]0,1x ∈()()()221ln 12F x x x x x =++--()()2ln 12F x x x =+-'(]0,1x ∈()()2ln 12G x x x =+-(]0,1x ∈()21xG x x=-+'(]0,1x ∈(]0,1x ∈()0G x '<()G x ()()00G x G <=()0F x '<()F x ()()00F x F <=()0h x '<()h x ()00h =()22ln 11x x x+<+(]0,1x ∈()0m x '<()m x (]0,1x ∈()m x ()111ln2m =-11ln2a ∴-…a 11ln2-{}n a 10a >0q >21332S a a =+()121332a a a a +=+21112320a q a q a --=22320q q --=12q =-2q =3411816a a q a ===12a ={}n a 2n n a =1222222log log 2log log 22n n n n n n b a nb a n +++===+2n …()324123112311234511n n b b b b n b b b b n n n --⨯⋅⋅⋅=⨯⨯⨯⨯=++ ()121n b b n n =+11b =()21n b n n =+1n =1n b ={}n b ()21n b n n =+因为,所以.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(13分)16.【解析】(1)设为的中点,连接,,因为是中点,所以,且,因为,,,,所以四边形为平行四边形,,且,所以,且,即四边形为平行四边形,所以,因为平面平面,所以平面.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(6分)(2)因为平面,所以平面,又,所以,,相互垂直,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(7分)以为坐标原点,建立如图所示的空间直角坐标系,则,,,,,所以,,,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(9分)设平面的一个法向量为,则取,则,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(11分)设平面的一个法向量为,()211211n b n n n n ⎛⎫==- ⎪++⎝⎭1111112212221223111n n T n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-=⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭M PD FM CM F PE FMED 12FM ED =AD BC 1AB BC ==3AD =2DE PE ==ABCE BC ED 12BC ED =FM BC FM BC =BCMF BFCM BF ⊄,PCD CM ⊂PCD BF PCD AB ⊥PAD CE ⊥PAD PE AD ⊥EP ED EC E ()0,0,2P ()0,1,0A -()1,1,0B -()1,0,0C ()0,2,0D ()1,0,0AB = ()0,1,2AP = ()1,0,2PC =- ()1,2,0CD =-PAB ()111,,m x y z =1110,20,m AB x m AP y z ⎧⋅==⎪⎨⋅=+=⎪⎩ 11z =-()0,2,1m =- PCD ()222,,n x y z =则取,则,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(13分)设平面与平面所成夹角为,则∙∙∙∙∙∙∙∙∙∙∙(15分)17.【解析】(1)函数的定义域为,则,当时,可得,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(2分)当或时,;当时,;所以在区间,上单调递增,在区间上单调递减;∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(4分)所以和是函数的两个极值点,又,所以,;所以,即当时,.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(6分)(2)易知,又,所以,是方程的两个实数根,则且,,所以,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(9分)所以,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(11分)设,由,可得,令,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(13分)则,所以在区间上单调递减,222220,20,n PC x z n CD x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ 21z =()2,1,1n = PAB PCD θcos θ=()21ln 2f x x x ax =+-()0,+∞()211x ax f x x a x x -+=+-='52a =()()2152122x x x x f x x x'⎛⎫---+ ⎪⎝⎭==10,2x ⎛⎫∈ ⎪⎝⎭()2,x ∈+∞()0f x '>1,22x ⎛⎫∈ ⎪⎝⎭()0f x '<()f x 10,2⎛⎫ ⎪⎝⎭()2,+∞1,22⎛⎫ ⎪⎝⎭12x =2x =()f x 12x x <112x =22x =()()()211115152ln225ln 2ln222848f x f x f f ⎛⎫⎛⎫-=-=+--+-=- ⎪ ⎪⎝⎭⎝⎭52a =()()21152ln28f x f x -=-()()()()22221212111ln2x f x f x x x a x x x -=+---()21x ax f x x-+='1x 2x 210x ax -+=2Δ40a =->120x x a +=>121x x =2a >()()()()()()()2222222121212112211111lnln 22x x f x f x x x a x x x x x x x x x x -=+---=+--+-()()222222221212111121121111lnln ln 222x x x x x x x x x x x x x x x x ⎛⎫=--=-⋅-=-- ⎪⎝⎭21x t x =21e x x (21)e x t x =…()11ln 2g t t t t ⎛⎫=-- ⎪⎝⎭e t …()222111(1)1022t g t t t t-⎛⎫=-+=-< ⎪⎝⎭'()g t [)e,+∞得,故的最大值为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙(15分)18.【解析】(1)设抛物线的准线为,过点作直线于点,由抛物线的定义得,所以当点与原点重合时,,所以,所以抛物线的方程为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(4分)(2)①设,过点且斜率存在的直线,联立消去,整理得:,由题可知,即,所以,是该方程的两个不等实根,由韦达定理可得∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(6分)又因为,所以,,由,有,所以,因为,,,所以点的轨迹方程为.②由①知,设,,且,∙∙∙∙∙∙∙∙∙(9分)联立消去,整理得,又,,,,由韦达定理可得,同理可得,所以,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(11分)又因为和以圆心为,半径为1的圆相切,,即.同理,所以,是方程的两个不等实根,()()11e 1e 1e 12e 22eg t g ⎛⎫=--=-+ ⎪⎝⎭…()()21f x f x -e 1122e -+E l 2py =-H 1HH ⊥l 1H 1HF HH =H O 1min 12pHH ==2p =E 24x y =(),P m n P ():l y k x m n =-+()24,,x y y k x m n ⎧=⎪⎨=-+⎪⎩y 24440x kx km n -+-=()2Δ164440k km n =--=20k mk n -+=1k 2k 1212,,k k m k k n +=⎧⎨=⎩()0,1F 31n k m -=0m ≠123112k k k +=121232k k k k k +=21m m n n =-0m ≠12n n -=1n ∴=-P ()10y x =-≠(),1P m -()14:1l y k x m =--()25:1l y k x m =--1m ≠±0m ≠()244,1,x y y k x m ⎧=⎪⎨=--⎪⎩y 2444440x k x k m -++=()11,A s t ()22,B s t ()33,C s t ()44,D s t 12444s s k m =+34544s s k m =+()()()212344515454444161616s s s s k m k m k k m m k k =++=+++1l ()0,(0)Q λλ>1()()2224412120m k m k λλλ-++++=()()2225512120m k m k λλλ-++++=4k 5k ()()22212120m k m k λλλ-++++=所以由韦达定理可得∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(14分)所以,若为定值,则,又因为,所以,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(16分)所以圆的方程为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(17分)19.【解析】(1)由题意可得:,解得.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(3分)(2)存在“长向量”,且“长向量”为,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(5分)理由如下:由题意可得,若存在“长向量”,只需使,又,故只需使,即,即,当或6时,符合要求,故存在“长向量”,且“长向量”为,.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(8分)(3)由题意,得,,即,即,同理,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(10分)三式相加并化简,得,即,,所以,设,由得∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(12分)设,则依题意得:∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(13分)()452245221,12,1m k k m k k m λλλ⎧++=-⎪⎪-⎨+⎪=⎪-⎩()()()22222123445452216161616162221621611m m s s s s k k m m k k m m λλλλ=+++=+--+=-+--1234s s s s 220λ-=0λ>λ=Q 22(1x y +=312a a a +…40x -……2a 6a1n a ==p a1n p S a - …()()712371010101,01010100,1S a a a a =++++=+-+++--+++-+=-71p S a -=== 022cos12p π+ (1)1cos 22p π--……2p =2a 6a123a a a + (2)2123a a a + …()22123a a a +...222123232a a a a a ++⋅ (2)22213132a a a a a ++⋅ …222312122a a a a a ++⋅…2221231213230222a a a a a a a a a +++⋅+⋅+⋅…()21230a a a ++…1230a a a ++ …1230a a a ++=()3,a u v = 1220a a a ++= sin 2cos ,cos 2sin ,u x x v x x =--⎧⎨=--⎩(),n n n P x y ()()()()()()212111222222222121,2,,,,2,,,k k k k k k k k x y x y x y x y x y x y ++++++⎧=-⎪⎨=-⎪⎩得,故,,所以,,当且仅当时等号成立,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(16分)故.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(17分)()()()()2222221122,2,,,k k k k x y x y x y x y ++⎡⎤=-+⎣⎦()()()()2222221122,2,,,k k x y k x y x y x y ++⎡⎤=-+⎣⎦()()()()2121221122,2,,,k k x y k x y x y x y ++⎡⎤=--+⎣⎦()()()212222212221221112,4,,4k k k k k k P P x x y y k x y x y k PP ++++++⎡⎤=--=-=⎣⎦22212(sin 2cos )(cos 2sin )58sin cos 54sin21PP x x x x x x x =--+--=+=+ …()4x t t ππ=-∈Z 10151016min1014420282P P =⨯=。
湖南省雅礼中学2019-2020学年高三第3次月考英语试题(原卷版)

雅礼中学2020届高三月考试卷(三)英语试题注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号. 回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1. 5分,满分7. 5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt?A. £ 19. 15.B. £ 9. 18.C. £ 9. 15.答案是C。
1.What does the man mean? A. The man shows pity for the woman. B. The man persuades the woman not to go with Tom. C. The man suggests the woman should reconsider her plan. 2. How did the woman feel about her holiday after the trip? A. Disappointed. B. Pleased. C. Excited. 3. What do we know about Hannah? A. She likes collecting postcards. B. She likes travelling. C. She is on vacation. 4. How will the woman come home? A. Susie will take her home. B. Her father will pick her up.C. Susie's mother will give her a ride.5. What will the woman do this weekend?A. Invite the man to dinner.B. Stay at home and relax.C. Go out with Simon.第二节(共15小题;每小题1. 5分,满分22. 5分)听下面5段对话或独白。
最新2019届雅礼中学第三次月考文数(试题)

姓!名!
" "
炎德英才大联考雅礼中学#$!%届高三月考试卷!三"
"
"
" "
数!学!文科"
"
"
"
命题人#李武辉!!审题人#滕晓军!汤!灏
"
"
得分#!!!!!!!
"
" "
!!本试卷分第卷!选 择 题 "和 第 卷 !非 选 择 题 "两 部 分$共 " 页% 时 量
" !#$分钟%满分!&$分%
" "
&!若圆$#)##+'$+##)'0$上有且仅有三个点到直线&$+#)!0$!&
"
是实数"的距离为!$则&等于
"
"
,!6!
"
-!6槡2#
.!6槡#
/!6槡#(
" "
'!在("%( 中$角"$%$( 所对的边长分别是&$)$*$若角%0($&$)$*成等
"பைடு நூலகம்
差数列$且&*0'$则)的值是
"
"
,!槡#
-!槡(
.!槡&
/!槡'
" 7!如图$函数#0+!$"的图象在点 ,!&$+!&""处的切
" "
线方程是#0+$)"$则+!&")+-!&"0
雅礼中学高三数学月考试卷

考试时间:120分钟满分:100分一、选择题(每小题5分,共50分)1. 已知函数$f(x) = x^3 - 3x^2 + 2$,则函数的对称中心为:A. $(0, 2)$B. $(1, -1)$C. $(1, 2)$D. $(0, -1)$2. 在三角形ABC中,已知$\angle A = 60^\circ$,$a = 2\sqrt{3}$,$b = 4$,则$c$的取值范围是:A. $(2, 6)$B. $(4, 6)$C. $(2, 4)$D. $(4, 8)$3. 已知复数$z = a + bi$(其中$a, b \in \mathbb{R}$),若$|z-2i| =|z+2i|$,则实数$a$的取值范围是:A. $[-2, 2]$B. $(-\infty, -2] \cup [2, +\infty)$C. $(-2, 2)$D. $(-\infty, -2) \cup (2, +\infty)$4. 已知等差数列$\{a_n\}$的前$n$项和为$S_n$,若$S_3 = 9$,$S_5 = 21$,则$a_4$的值为:A. 6B. 7C. 8D. 95. 设集合$A = \{x | x^2 - 2x + 1 \leq 0\}$,$B = \{x | x^2 - 4x + 3 \geq 0\}$,则集合$A \cap B$的元素个数是:A. 2B. 3C. 4D. 56. 已知函数$f(x) = \ln(x+1) - x$在区间$(-1, +\infty)$上的单调性为:A. 单调递增B. 单调递减C. 先增后减D. 先减后增7. 在极坐标系中,点$P(2, \frac{\pi}{3})$对应的直角坐标为:A. $(1, \sqrt{3})$B. $(1, -\sqrt{3})$C. $(-1, \sqrt{3})$D. $(-1, -\sqrt{3})$8. 已知向量$\vec{a} = (1, 2)$,$\vec{b} = (2, 1)$,则$\vec{a} \cdot\vec{b}$的值为:A. 5B. -5C. 3D. -39. 已知数列$\{a_n\}$满足$a_1 = 1$,$a_{n+1} = a_n + \frac{1}{a_n}$($n\in \mathbb{N}^$),则$\lim_{n \to +\infty} a_n$的值为:A. 2B. $\frac{1+\sqrt{5}}{2}$C. $\frac{1-\sqrt{5}}{2}$D. 010. 已知函数$f(x) = ax^2 + bx + c$在$x = 1$处取得极小值,且$f(0) = 1$,$f(2) = 5$,则实数$a$,$b$,$c$的值分别为:A. $a = 1, b = -2, c = 1$B. $a = 1, b = 2, c = 1$C. $a = -1, b = -2, c = 1$D. $a = -1, b = 2, c = 1$二、填空题(每小题5分,共25分)11. 若复数$z$满足$|z-1| = |z+1|$,则实部$\operatorname{Re}(z)$的值为______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
雅礼中学2019届高三月考试卷(三)
数学(理科)
命题人:李云皇 审题人:雅礼中学高三数学备课组
得分:___________
本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟.满分150分.
第I 卷
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设全集I 是实数集R ,{}()(){}
3,310M x x N x x x =≥=--≤都是I 的子集(如图所示),则阴影部分所表示的集合为
A. {}
13x x << B .{}
13x x ≤< C .{}13x x <≤
D .{}
13x x ≤≤
2.设()1+1i x yi =+,其中,x y 是实数,则x yi +=
A.1
B
C.
D .2
3.已知命题p :函数12x y a +=-的图象恒过定点(1,2);命题q :若函数()1y f x =-为偶函数,则函数()y f x =的图象关于直线1x =对称,则下列命题为真命题的是 A. p q ∨
B .p q ∧
C .p q ⌝∧
D .p q ∨⌝
4.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是
A.56
B .60
C .120
D .140
5.执行如图所示的程序框图,若输入如下四个函数: ①()sin f x x =;②()cos f x x =;③()1
f x x
=
;④()2.f x x =则输出的函数是
A. ()sin f x x =
B. ()cos f x x =
C. ()1f x x
=
D. ()2f x x =
6.若变量,x y 满足22
2,239,0,x y x y x y x +≤⎧⎪-≤+⎨⎪≥⎩
则的最大值是
A.4 B .9 C.10 D .12 7.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.则下列说法错误..的是 A. 此人第二天走了九十六里路
B .此人第一天走的路程比后五天走的路程多六里
C .此人第三天走的路程占全程的
18
D .此人后三天共走了42里路
8.如图,下列三图中的多边形均为正多边形,M 、N 是所在边上的中点,双曲线均以图中12F F ,为焦点.设图①②③中双曲线的离心率分别为123,,e e e ,则
A. 123e e e >>
B. 321e e e >>
C. 213e e e >=
D. 132e e e =>
9.已知△ABC 是边长为4的等边三角形,P 为△ABC 内一点,则()
PA PB PC ⋅+的最小值为 A. 3-
B .6-
C .2-
D .8
3
-
10.已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该截面的面积为 A.
92
B .4
C .3
D.
11.如图,已知抛物线1C 的顶点在坐标原点,焦点在x 轴上,且过点(2,4),圆222:430C x y x +-+=,过圆心2C 的直线l 与抛物线和圆分别交于P ,Q ,M ,N ,则
9PN QM +的最小值为
A.36 B .42 C.49
D .50
12.已知函数()2
3
2
36,0,
34,0,
x x x f x A x x x ⎧-+≥⎪==⎨--+<⎪⎩设()({}
0x Z x f x a ∈-≥,若A 中有且仅有4个元素,则满足条件的整数a 的个数为
A.31 B .32 C.33
D.34
二、填空题:本大题共4小题,每小题5分,共20分.
13.已知{}n a 是等差数列,n S 是其前n 项和.若2
12593,10a a S a +=-=,则的值是
___________.
14.定义在区间[]03π,上的函数sin 2y x =的图象与cos y x =的图象的交点个数是___________.
15.若直线1ax by +=(,a b 都是正实数)与圆2
2
1x y +=相交于A ,B 两点,当△AOB(O 是坐标原点)的面积最大时,a b +的最大值为________.
16.如右图,在棱长为1的正方体1111ABCD A BC D -中,作以A 为顶点,分别以AB ,AD ,AA 1为轴,底面圆半径为
()01r r <≤的圆锥.当半径r 变化时,正方体挖去三个1
4
圆锥
部分后,余下的几何体的表面积的最小值是__________.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:60分. 17.(本小题满分12分)
已知△ABC 三个内角A ,B ,C 的对边分别为,,,a b c ABC ∆的面积S 满足
222
a b c =+-. (1)求角C 的值;
(2)求()cos2cos A A B +-的取值范围.
18.(本小题满分12分) 如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,AD=2BC=2,∠BAD=∠ABC= 90°. (1)证明:PC BC ⊥;
(2)若直线PC 与平面PAD 所成角为30°,求二面角B —PC —D 的余弦值.
已知椭圆
22
1
24
x y
+=两焦点分别为
12
,
F F P
、是椭圆在第一象限弧上一点,并满足
121
PF PF=,过P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点.
(1)求P点坐标;
(2)求证:直线AB的斜率为定值;
(3)求△PAB面积的最大值.
十九大提出,加快水污染防治,建设美丽中国.根据环保部门对某河流的每年污水排放量X(单位:吨)的历史统计数据,得到如下频率分布表:
将污水排放量落入各组的频率作为概率,并假设每年该河流的污水排放量相互独立. (1)求在未来3年里,至多1年污水排放量[)270310X ∈,的概率;
(2)该河流的污水排放对沿河的经济影响如下:当[)2300X ∈,27时,没有影响;当
[)270310X ∈,时,经济损失为10万元;当X ∈[310,350)时,经济损失为60万元.为
减少损失,现有三种应对方案:
方案一:防治350吨的污水排放,每年需要防治费3.8万元; 方案二:防治310吨的污水排放,每年需要防治费2万元; 方案三:不采取措施.
试比较上述三种方案,哪种方案好,并请说明理由.
已知函数()()28ln f x x x a x a R =-+∈. (1)当1x =时,()f x 取得极值,求a 的. (2)当函数
()f x 有两个极值点()12121
,1x x x x x <≠,且时,总有()()21
111
ln 2431a x m x x x >-+--成立,求m 的取值范围.
(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.
22.(本小题满分10分)选修4—4:坐标系与参数方程
在极坐标系中,曲线1:2cos C ρθ=,曲线22:sin 4cos C ρθθ=.以极点为坐标原点,
极轴为x 轴正半轴建立直角坐标系xOy ,曲线C
的参数方程为12,2x t y ⎧=+⎪⎪
⎨⎪=⎪⎩(t 为参数)
(1)求12,C C 的直角坐标方程;
(2)C 与12,C C 交于不同四点,这四点在C 上的排列顺次为P ,Q ,R ,S ,求PQ RS -的值.
23.(本小题满分10分)选修4—5:不等式选讲 已知函数()243f x x a x =-++. (1)若2a =时,解不等式:()22f x >;
(2)对任意实数x ,不等式()34f x a ≥+恒成立,求实数a 的取值范围.。