认识半导体和测试设备
半导体和测试设备介绍

半导体和测试设备介绍半导体是一种电子材料,通常由硅、锗等元素组成,具有导电性能介于导体和绝缘体之间。
它的特点是可以在特定条件下控制电流的流动,主要应用在电子器件如晶体管、集成电路等中。
半导体的发展可以追溯到20世纪50年代开始的晶体管时代,随后发展为20世纪60年代的集成电路时代,再到21世纪的芯片时代。
半导体技术的进步使得电子产品变得更小、更快、更强大,成为现代科技和信息技术发展的关键驱动力。
半导体的制造过程非常复杂,需要经过多个步骤,包括晶圆制备、掩膜制造、曝光、蚀刻、沉积、刻蚀、清洗等。
这些步骤需要精密的设备和工艺控制,以保证半导体器件的质量和性能。
为了确保半导体器件的质量和性能,需要进行严格的测试。
测试设备是用于对半导体器件进行电性能、可靠性和参数测试的设备。
测试设备可以分为芯片测试设备和封装测试设备两类。
芯片测试设备用于测试独立芯片的电性能和参数。
它通常由测试头和测试座椅组成,测试头用于与芯片的测试接点连接,而测试座椅则用于稳定测试头和芯片的相对位置。
芯片测试设备可以通过高精度的测试仪器对芯片进行电流、电压、频率等多种电性能和参数进行测试,以验证芯片的质量和性能。
封装测试设备用于测试封装后的芯片或电子器件的电性能和可靠性。
这些封装测试设备通常包括测试座椅、测试引脚、测试仪器等。
测试座椅用于固定测试引脚和电子器件,测试引脚用于连接测试仪器和电子器件的引脚,测试仪器则用于测量电流、电压、功率等电性能和参数。
封装测试设备可以对整个芯片或电子器件进行全面的电性能和可靠性测试,以保证它们能够正常工作和长时间稳定运行。
除了芯片和封装测试设备,还有一些其他的测试设备也非常重要。
例如,绝缘测试设备用于测试半导体器件的绝缘性能,温度测试设备用于测试半导体器件在不同温度下的电性能,可靠性测试设备用于测试半导体器件的可靠性和寿命等。
这些测试设备能够对半导体器件进行全方位的测试,为其在不同应用场景中提供可靠的性能和质量保证。
半导体量测设备及应用介绍_202409

半导体量测设备及应用介绍_2024091.参数分析仪参数分析仪是用于测量半导体器件的电学特性的设备。
它可以测量器件的电流、电压、功率、电容等参数,并通过对这些参数的分析来评估器件的性能和可靠性。
参数分析仪广泛应用于半导体器件的研发、制造和质量控制过程中。
2.光刻仪光刻仪是用于在半导体芯片制造过程中将电子图形模式转移到硅片上的设备。
它通过将紫外线或电子束照射在光刻胶层上,然后通过化学腐蚀或离子注入等工艺步骤将图形转移到硅片上。
光刻仪在芯片制造过程中起到了关键作用,能够实现微米级别的图形转移。
3.处理设备处理设备是用于在半导体器件制造过程中进行各种加工和处理的设备。
例如,薄膜沉积设备用于在硅片上沉积各种薄膜材料;离子注入设备用于将杂质离子注入硅片中以改变其电学特性;蚀刻设备用于去除杂质或改变硅片表面的形貌等。
处理设备对于半导体器件的制造和性能改善非常关键。
4.组件测试仪组件测试仪是用于测试半导体器件组装完成后的功能和可靠性的设备。
它可以对芯片、封装、电路板等组件进行电学性能测试和可靠性测试,以保证产品的质量和可靠性。
组件测试仪广泛应用于半导体器件组装和电子产品制造行业。
5.纳米测量仪器纳米测量仪器是用于测量纳米级尺寸和表面特性的设备。
在半导体器件和材料研发中,纳米测量仪器可以提供对材料结构、电学性能、磁学性能等方面的高分辨率测量。
纳米测量仪器的应用对于研发新型半导体材料和器件具有重要意义。
这些半导体量测设备在半导体行业中起到了至关重要的作用,它们可以帮助研发人员和制造工程师评估器件的性能、优化制造过程,并确保产品质量和可靠性。
随着半导体技术的不断发展,半导体量测设备也在不断创新和提高,以满足新的量测需求。
对于半导体行业来说,合理、高效、准确的量测设备是实现半导体技术突破和产品创新的关键之一。
半导体和测试设备介绍

第一章.认识半导体和测试设备(1)本章节包括以下内容,●晶圆(Wafers)、晶片(Dice)和封装(Packages)●自动测试设备(ATE)的总体认识●模拟、数字和存储器测试等系统的介绍●负载板(Loadboards)、探测机(Probers)、机械手(Handlers)和温度控制单元(Temperature units)一、晶圆、晶片和封装1947年,第一只晶体管的诞生标志着半导体工业的开始,从那时起,半导体生产和制造技术变得越来越重要。
以前许多单个的晶体管现在可以互联加工成一种复杂的集成的电路形式,这就是半导体工业目前正在制造的称之为"超大规模"(VLSI,Very Large Scale Integration)的集成电路,通常包含上百万甚至上千万门晶体管。
半导体电路最初是以晶圆形式制造出来的。
晶圆是一个圆形的硅片,在这个半导体的基础之上,建立了许多独立的单个的电路;一片晶圆上这种单个的电路被称为die(我前面翻译成"晶片",不一定准确,大家还是称之为die好了),它的复数形式是dice.每个die都是一个完整的电路,和其他的dice没有电路上的联系。
当制造过程完成,每个die都必须经过测试。
测试一片晶圆称为"Circuit probing"(即我们常说的CP测试)、"Wafer porbing"或者"Die sort"。
在这个过程中,每个die都被测试以确保它能基本满足器件的特征或设计规格书(Specification),通常包括电压、电流、时序和功能的验证。
如果某个die不符合规格书,那么它会被测试过程判为失效(fail),通常会用墨点将其标示出来(当然现在也可以通过Maping图来区分)。
在所有的die都被探测(Probed)之后,晶圆被切割成独立的dice,这就是常说的晶圆锯解,所有被标示为失效的die都报废(扔掉)。
半导体行业对外测试设备介绍

半导体行业对外测试设备介绍首先,半导体行业对外测试设备中最常见的是测试工作站。
测试工作站是一个高度集成的自动化系统,用于对芯片和集成电路进行功能测试、可靠性测试和质量控制。
测试工作站通常由测试座、设备接口、测试探针、测量设备和自动控制系统等组成。
它能够通过电子探针或射频传感器对芯片进行信号采集和分析,以验证芯片的工作性能和电气特性。
其次,多功能测试系统也是半导体行业常用的对外测试设备之一、多功能测试系统集成了多个测试功能,并具备高度自动化和灵活性。
它可以进行芯片的功能测试、温度测试、电流测试、功耗测试、射频测试等多种测试。
多功能测试系统通常由测试仪器、测试软件和设备控制系统组成,可以在高速度和高精度下进行测试。
除了测试工作站和多功能测试系统,还有其他一些对外测试设备也被广泛应用于半导体行业。
例如,测试机械臂是一种能够对芯片进行自动加载和卸载的设备,可以提高测试效率和减少人工操作。
测试探针站是一种用于安装和更换测试探针的设备,它能够快速准确地完成测试探针的组装和拆卸。
测试封装设备是一种用于对芯片进行封装测试的设备,可以测试芯片的机械强度、封装完整性和封装结构等性能。
除了这些设备,还有一些专门用于特定测试的设备在半导体行业中应用广泛。
例如,红外热像仪用于测试芯片的温度分布和热特性;X射线检测仪用于检测芯片的封装完整性和焊点接触性能;电子显微镜用于对芯片表面和细微结构进行检查和分析。
总之,半导体行业对外测试设备是进行芯片和集成电路测试的重要工具。
这些设备的应用可以提高测试效率和测试精度,保证产品质量和可靠性。
随着半导体技术的不断进步,对外测试设备也将继续发展和创新,以适应半导体行业的需求。
教你认识半导体与测试设备

⏹第一章.认识半导体和测试设备(1)本章节包括以下内容,●晶圆(Wafers)、晶片(Dice)和封装(Packages)●自动测试设备(ATE)的总体认识●模拟、数字和存储器测试等系统的介绍●负载板(Loadboards)、探测机(Probers)、机械手(Handlers)和温度控制单元(Temperature units)一、晶圆、晶片和封装1947年,第一只晶体管的诞生标志着半导体工业的开始,从那时起,半导体生产和制造技术变得越来越重要。
以前许多单个的晶体管现在可以互联加工成一种复杂的集成的电路形式,这就是半导体工业目前正在制造的称之为"超大规模"(VLSI,Very Large Scale Integration)的集成电路,通常包含上百万甚至上千万门晶体管。
半导体电路最初是以晶圆形式制造出来的。
晶圆是一个圆形的硅片,在这个半导体的基础之上,建立了许多独立的单个的电路;一片晶圆上这种单个的电路被称为die(我前面翻译成"晶片",不一定准确,大家还是称之为die好了),它的复数形式是dice.每个die都是一个完整的电路,和其他的dice没有电路上的联系。
当制造过程完成,每个die都必须经过测试。
测试一片晶圆称为"Circuit probing"(即我们常说的CP测试)、"Wafer porbing"或者"Die sort"。
在这个过程中,每个die都被测试以确保它能基本满足器件的特征或设计规格书(Specification),通常包括电压、电流、时序和功能的验证。
如果某个die不符合规格书,那么它会被测试过程判为失效(fail),通常会用墨点将其标示出来(当然现在也可以通过Maping图来区分)。
在所有的die都被探测(Probed)之后,晶圆被切割成独立的dice,这就是常说的晶圆锯解,所有被标示为失效的die都报废(扔掉)。
教你认识半导体与测试设备(doc 14页)

教你认识半导体与测试设备(doc 14页)更多企业学院:《中小企业管理全能版》183套讲座+89700份资料《总经理、高层管理》49套讲座+16388份资料《中层管理学院》46套讲座+6020份资料《国学智慧、易经》46套讲座《人力资源学院》56套讲座+27123份资料《各阶段员工培训学院》77套讲座+ 324份资料《员工管理企业学院》67套讲座+ 8720份资料《工厂生产管理学院》52套讲座+ 13920份资料《财务管理学院》53套讲座+ 17945份资料《销售经理学院》56套讲座+ 14350份资料《销售人员培训学院》72套讲座+ 4879份资料第一章.认识半导体和测试设备(1)本章节包括以下内容,●晶圆(Wafers)、晶片(Dice)和封装(Packages)●自动测试设备(ATE)的总体认识●模拟、数字和存储器测试等系统的介绍●负载板(Loadboards)、探测机(Probers)、机械手(Handlers)和温度控制单元(Temperature units)一、晶圆、晶片和封装1947年,第一只晶体管的诞生标志着半导体工业的开始,从那时起,半导体生产和制造技术变得越来越重要。
以前许多单个的晶体管现在可以互联加工成一种复杂的集成的电路形式,这就是半导体工业目前正在制造的称之为"超大规模"(VLSI,Very Large Scale Integration)的集成电路,通常包含上百万甚至上千万门晶体管。
半导体电路最初是以晶圆形式制造出来的。
晶圆是一个圆形的硅片,在这个半导体的基础之上,建立了许多独立的单个的电路;一片晶圆上这种单个的电路被称为die(我前面翻译成"晶片",不一定准确,大家还是称之为die好了),它的复数形式是dice.每个die都是一第一章.认识半导体和测试设备(3)二、自动测试设备随着集成电路复杂度的提高,其测试的复杂度也随之水涨船高,一些器件的测试成本甚至占到了芯片成本的大部分。
半导体测试仪

• 半导体产业链包括设计、制造、封装、测试等环节 • 测试仪在测试环节中对器件性能进行全面评估 • 合格的半导体器件对整个电子产业的正常运行至关重要
半导体测试仪的发展历程
20世纪50年代,半导体测试仪开始 出现
20世纪80年代,半导 体测试仪进入数字化时
代
21世纪初,半导体测 试仪向高精度、高速、
交流测试仪器的应用领域
• 变压器、电感、电容等器件的测试 • 电动机、发电机、变频器等设备的测试 • 电力系统、通信设备的测试
射频测试仪器的特点与应用
射频测试仪器主要用于测试半导体器件的射频性能
• 射频性能包括频率、功率、增益等参数 • 射频测试仪器具有较高的精度和稳定性,适用于对性能要求较高的场景
半导体测试仪的性能和水平直接影响半导体产品的质量
• 高性能的测试仪可以更准确地评估器件性能,筛选出不良品 • 低性能的测试仪可能导致不合格产品流入市场,影响电子产品质量 • 因此,半导体测试仪在半导体产业链中具有举足轻重的地位
02
半导体测试仪的分类及特点
直流测试仪器的特点与应用
直流测试仪器主要用于测试半导体器件的直流性能
• 直流性能包括电压、电流、电阻等参数 • 直流测试仪器具有较高的精度和稳定性,适用于对性能要求较高的场景
直流测试仪器的应用领域
• 集成电路的测试 • 晶体管、二极管的测试 • 电池、电源模块的测试
交流测试仪器的特点与应用
交流测试仪器主要用于测试半导体器件的交流性能
• 交流性能包括电压、电流、功率等参数 • 交流测试仪器具有较高的精度和稳定性,适用于对性能要求较高的场景
半导体测试仪器行业的发展机遇
教你认识半导体与测试设备

教你认识半导体与测试设备引言在现代科技的发展中,半导体技术起着至关重要的作用。
半导体是一种材料,具有介于导体(如铜或银)和绝缘体(如橡胶或塑料)之间的导电特性。
半导体的特性使其成为电子器件中必不可少的基本组件。
为了保证半导体器件的质量和性能,测试设备被广泛应用于半导体制造和研发过程中。
本文将介绍半导体以及半导体测试设备的基本原理和应用。
半导体的基本知识半导体是由一些具有特殊电子结构的材料组成。
它们的电阻程度介于导体和绝缘体之间。
1. 功能半导体在电子器件中具有多种功能,包括但不限于:整流、放大、开关、发光和计算。
2. 典型材料常见的半导体材料包括硅(Si)和锗(Ge)。
硅是最常用的半导体材料,由于其丰富的资源和相对容易的加工工艺,被广泛应用于各种应用领域。
3. N型和P型半导体半导体材料可以被掺杂以改变其导电性质。
N型半导体中掺杂了少量杂质,产生过剩电子,使之成为电子的主要载流子。
P型半导体中掺杂了少量杂质,产生过剩空穴,使之成为空穴的主要载流子。
4. 硅晶体结构硅通常以晶体形式存在。
硅晶体具有有序的结构,其中硅原子通过共价键相互连接。
硅晶体中原子的排列方式决定了其特殊的物理和电子特性。
半导体测试设备半导体测试设备用于评估和验证半导体器件的性能和可靠性。
它们是半导体制造和研发过程中不可缺少的工具。
1. 测试的目的半导体测试设备的主要目的是:•验证器件的功能和性能:测试设备可以用来验证半导体器件是否按照预期工作,并检测任何故障或性能问题。
•提高产能和效率:测试设备可以帮助提高生产线的效率,加快产品测试和验证速度。
•确保品质和可靠性:测试设备可以用来验证半导体器件的质量和可靠性,以确保它们可以在严苛的工作环境中长时间稳定运行。
2. 常见的测试设备以下是一些常见的半导体测试设备:•逻辑分析仪(Logic Analyzer):逻辑分析仪主要用于捕获和分析数字信号,以验证和调试半导体器件的逻辑功能。
•多用途测试仪(Multimeter):多用途测试仪可用于测量电压、电流和电阻等基本参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
认识半导体和测试设备本章节包括以下内容,●晶圆(Wafers)、晶片(Dice)和封装(Packages)●自动测试设备(ATE)的总体认识●模拟、数字和存储器测试等系统的介绍●负载板(Loadboards)、探测机(Probers)、机械手(Handlers)和温度控制单元(Temperature units)一、晶圆、晶片和封装1947年,第一只晶体管的诞生标志着半导体工业的开始,从那时起,半导体生产和制造技术变得越来越重要。
以前许多单个的晶体管现在可以互联加工成一种复杂的集成的电路形式,这就是半导体工业目前正在制造的称之为"超大规模"(VLSI,Very Large Scale Integration)的集成电路,通常包含上百万甚至上千万门晶体管。
半导体电路最初是以晶圆形式制造出来的。
晶圆是一个圆形的硅片,在这个半导体的基础之上,建立了许多独立的单个的电路;一片晶圆上这种单个的电路被称为die(我前面翻译成"晶片",不一定准确,大家还是称之为die好了),它的复数形式是dice.每个die 都是一个完整的电路,和其他的dice没有电路上的联系。
当制造过程完成,每个die都必须经过测试。
测试一片晶圆称为"Circuit probing"(即我们常说的CP测试)、"Wafer porbing"或者"Die sort"。
在这个过程中,每个die都被测试以确保它能基本满足器件的特征或设计规格书(Specification),通常包括电压、电流、时序和功能的验证。
如果某个die不符合规格书,那么它会被测试过程判为失效(fail),通常会用墨点将其标示出来(当然现在也可以通过Maping图来区分)。
在所有的die都被探测(Probed)之后,晶圆被切割成独立的dice,这就是常说的晶圆锯解,所有被标示为失效的die都报废(扔掉)。
图2显示的是一个从晶圆上锯解下来没有被标黑点的die,它即将被封装成我们通常看到的芯片形式。
注:本标题系列连载内容及图片均出自《The Fundamentals Of Digital Semiconductor Testing》第一章.认识半导体和测试设备(2)在一个Die封装之后,需要经过生产流程中的再次测试。
这次测试称为“Final test”(即我们常说的FT测试)或“Package test”。
在电路的特性要求界限方面,FT测试通常执行比CP 测试更为严格的标准。
芯片也许会在多组温度条件下进行多次测试以确保那些对温度敏感的特征参数。
商业用途(民品)芯片通常会经过0℃、25℃和75℃条件下的测试,而军事用途(军品)芯片则需要经过 -55℃、25℃和125℃。
芯片可以封装成不同的封装形式,图4显示了其中的一些样例。
一些常用的封装形式如下表:DIP:Dual Inline Package (dual indicates the package has pins on two sides)CerDIP:Ceramic Dual Inline PackagePDIP:Plastic Dual Inline PackagePGA:Pin Grid ArrayBGA:Ball Grid ArraySOP:Small Outline PackageTSOP:Thin Small Outline PackageTSSOP:Thin Shrink Small Outline Package (this one is really getting small!)SIP:Single Inline PackageSIMM:Single Inline Memory Modules (like the memory inside of a computer)QFP:Quad Flat Pack (quad indicates the package has pins on four sides)TQFP:Thin version of the QFPMQFP:Metric Quad Flat PackMCM:Multi Chip Modules (packages with more than 1 die (formerly called hybrids)第一章.认识半导体和测试设备(3)二、自动测试设备随着集成电路复杂度的提高,其测试的复杂度也随之水涨船高,一些器件的测试成本甚至占到了芯片成本的大部分。
大规模集成电路会要求几百次的电压、电流和时序的测试,以及百万次的功能测试步骤以保证器件的完全正确。
要实现如此复杂的测试,靠手工是无法完成的,因此要用到自动测试设备(ATE,Automated Test Equipment)。
ATE是一种由高性能计算机控制的测试仪器的集合体,是由测试仪和计算机组合而成的测试系统,计算机通过运行测试程序的指令来控制测试硬件。
测试系统最基本的要求是可以快速且可靠地重复一致的测试结果,即速度、可靠性和稳定性。
为保持正确性和一致性,测试系统需要进行定期校验,用以保证信号源和测量单元的精度。
当一个测试系统用来验证一片晶圆上的某个独立的Die的正确与否,需要用ProbeCard来实现测试系统和Die之间物理的和电气的连接,而ProbeCard和测试系统内部的测试仪之间的连接则通过一种叫做“Load board”或“Performance board”的接口电路板来实现。
在CP测试中,Performance board和Probe card一起使用构成回路使电信号得以在测试系统和Die之间传输。
当Die封装出来后,它们还要经过FT测试,这种封装后的测试需要手工将一个个这些独立的电路放入负载板(Load board)上的插座(Socket)里,这叫手工测试(hand test)。
一种快速进行FT测试的方法是使用自动化的机械手(Handler),机械手上有一种接触装置实现封装引脚到负载板的连接,这可以在测试机和封装内的Die之间提供完整的电路。
机械手可以快速的抓起待测的芯片放入测试点(插座),然后拿走测试过的芯片并根据测试pass/fail的结果放入事先定义好的相应的Bin区。
三、半导体技术有一系列的方法被用来生产和制造数字半导体电路,这些方法称为半导体技术或工艺,常用的技术或工艺包括:TTL (Transistor-Transistor Logic a.k.a. bipolar logic), ECL (Emitter Coupled Logic), SOS (Silicon on Sapphire), and CMOS (Complimentary Metal-Oxide Semiconductor)。
不管什么技术或工艺,出来的产品都要经过测试,这里我们关注数字TTL和CMOS电路。
第一章.认识半导体和测试设备(4)四、数字和模拟电路过去,在模拟和数字电路设计之间,有着显著的不同。
数字电路控制电子信号,表现为逻辑电平“0”和“1”,它们被分别定义成一种特殊的电压分量,所有有效的数字电路数据都用它们来表示,每一个“0”或“1”表示数据的一个比特(bit)位,任何数值都可以由按照一定顺序排列的“0”“1”比特位组成的二进制数据来表示,数值越大,需要的比特位越多。
每8个比特一组构成一个Byte,数字电路中的数据经常以Byte为单位进行处理。
不同于数字信号的“0”“1”界限分明(离散),模拟电路时连续的——在任何两个信号电平之间有着无穷的数值。
模拟电路可以使用电压或电流来表示数值,我们常见的也是最常用的模拟电路实例就是运算放大器,简称运放。
为帮助理解模拟和数字电路数值的基本差别,我们可以拿时钟来比方。
“模拟”时钟上的指针连续地移动,因此所有的任一时间值可以被观察者直接读出,但是所得数值的准确度或者说精度取决于观察着认知的程度。
而在“数字”时钟上,只有最小增量以上的值才能被显示,而比最小增量小的值则无法显示。
如果有更高的精度需求,则需要增加数据位,每个新增的数据位表示最小的时间增量。
有的电路里既有数字部分也有模拟部分,如AD转换器(ADC)将模拟信号转换成数字信号,DA转换器(DAC)则相反,我们称之为“混合信号电路”(Mixed Signal Devices)。
另一种描述这种混合电路的方法则基于数字部分和模拟部分占到电路的多少:数字部分占大部分而模拟部分所占比例较少归于数字电路,反之则归于模拟电路。
第一章.认识半导体和测试设备(5)五、测试系统的种类一般认为测试系统都是通用的,其实大部分测试系统的设计都是面向专门类型的集成电路,这些专门的电路包括:存储器、数字电路、模拟电路和混合信号电路;每种类型下还可以细分成更多种类,我们这里只考虑这四种类型。
5.1存储器件类我们一般认为存储器是数字的,而且很多DC测试参数对于存储类和非存储类的数字器件是通用的,虽然如此,存储器的测试还是用到了一些独特的功能测试过程。
带内存的自动测试系统使用一种算法模式生成器(APG,algorithmic pattern generator)去生成功能测试模型,使得从硬件上生成复杂的功能测试序列成为可能,这样我们就不用把它们当作测试向量来保存。
存储器测试的一些典型模型包括:棋盘法、反棋盘法、走0、走1、蝶形法,等等…… APG在器件的每次测试时生成测试模型,而不带内存的测试系统将预先生成的模型保存到向量存储区,然后每次测试时从中取出数据。
存储器测试通常需要很长的测试时间去运行所要求的测试模型,为了减少测试成本,测试仪通常同时并行测试多颗器件。
5.2模拟或线形器件类模拟器件测试需要精确地生成与测量电信号,经常会要求生成和测量微伏级的电压和纳安级的电流。
相比于数字电路,模拟电路对很小的信号波动都很敏感,DC测试参数的要求也和数字电路不一样,需要更专业的测试仪器设备,通常会按照客户的选择在设计中使用特殊的测试仪器甚至机架。
模拟器件需要测试的一些参数或特性包括:增益、输入偏移量的电压和电流、线性度、通用模式、供电、动态响应、频率响应、建立时间、过冲、谐波失真、信噪比、响应时间、窜扰、邻近通道干扰、精度和噪声。
5.3混合信号器件类混合信号器件包括数字电路和模拟电路,因此需要测试系统包含这两部分的测试仪器或结构。
混合信号测试系统发展为两个系列:大部分数字电路测试结构、少量模拟测试结构的系列,被设计成用于测试以数字电路为主的混合信号器件,它能有效地进行DC参数测试和功能测试,但是仅支持少量的模拟测试;大部分模拟电路测试结构、少量数字测试结构的系列,相反,能够精确地测试模拟参数而在功能测试上稍逊风骚。