平行线的判定专题.docx
第1讲 平行线的性质与判定

∠AMD=∠AGF. 证明:∵BD⊥AC,EF⊥AC(已知), ∴∠BDF=∠EFC=90°(垂直的性质)
∴BD∥EF(同位角相等,两直线平行),
∴∠2=∠CBD(两直线平行,同位角相等), ∵∠2=∠1(已知), ∴∠1=∠CBD(等量代换),
∴∠D=∠AHC(_两___直__线__平__行___,__同__位__角__相___等____) ∵∠A=∠D(已知) ∴∠AHC=∠A(__等__量__代__换____________________)
∴___A__B_∥__C__D___(__内__错__角__相__等___,__两__直__线___平__行_____).
★ 例题精讲
例题5 如图,已知∠ABC+∠BCD+∠CDE=360°,求证:AB∥ED.
解:连接BD, ∴∠DBC+∠BCD+∠CDB=180°, ∵∠ABC+∠BCD+∠EDC=360° ∴∠ABD+∠EDB=180°, ∴AB∥DE.
★ 例题精讲
练习5 如图,EF∥AD,∠1=∠2,∠BAC=75°。 (1)求证:AB∥DG;(2)求∠AGD.
4. 把下列命题写成“如果……那么……”的形式,并判断其真假: (1)等角的补角相等; (2)两个锐角的和是锐角; (3)负数之和仍为负数.
(1)如果两个角相等,那么这两个角的补角相等; 真命题 (2)如果两个角是锐角,那么这两个角的和也是锐角;假命题 (3)如果几个数是负数,那么它们的和也是负数. 真命题
∴ CE∥DF(同位角相等,两直线平行)
∴ ∠BCE=∠BDF(两直线平行,同位角相等) ∠EDF=∠CED(两直线平行,内错角相等)
平行线的判定和性质讲义

在同一平面内,不相交的两条直线叫做平行线.角是平面几何图形中最活跃的元素,前面我们已学习过特殊角、数量关系角等角的知识.当两条直线相交或分别与第三条直线相交,就产生对顶角、同位角、内错角、同旁内角等位置关系角,进一步丰富了角的知识,它们在角的计算与证明中有广泛的应用.与平行线相关的问题一般都是平行线的判定与性质的综合运用,主要体现在如下两个方面:1. 由角定角已知角的关系→(判定)两直线平行→(性质)确定其他角的关系.2.由线定线已知两直线平行→(性质)角的关系行→(判定)确定其他两直线平行..平行线判定方法:(1) 同位角 相等,两直线平行。
.(2) 内错角相等,两直线平行。
(3) 同旁内角互补,两直线平行。
(4) 垂直于同一直线的两直线平行(5) 如果两条直线都与第三条直线平行,那么这两条直线平行。
平行线的性质:(1)两直线平行,同位角相等。
(2) 两直线平行,内错角相等。
(3) 两直线平行, 同旁内角互补。
【基础训练】1.下列命题正确的有 (填序号 )(1)两条直线被第三条直线所截,一定有同位角,所以这两条直线一定平行.(2)两直线不平行,同旁内角不互补.(3)如图,若1l ∥2l ,则∠1+∠2=180°.(4)如图,AD ∥BC ,则∠B +∠C =180°.(5)平行线的同位角的平分线互相平行.2.下列说法正确的是( )A .经过一点有一条直线与已知直线平行B .经过一点有无数条直线与已知直线平行C .经过一点有且只有一条直线与已知直线平行D .经过直线外一点有且只有一条直线与已知直线平行3.下列说法正确的有( )①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种; ③若线段AB 与CD 没有交点,则AB ∥CD ;④若a ∥b ,b ∥c ,则a 与c 不相交.⑤两条射线或线段互相垂直是指它们所在的直线互相垂直.A .1个B .2个C .3个D .4个N FE D C B A N M A CD B EB DC A 4.已知:如图,∠BAE +∠AED =180°,∠1=∠2.求证:∠M =∠N .证明:∵∠BAE +∠AED =180°( ),∴ ∥ ( ).∴∠BAE = .又∵∠1=∠2(已知 ),∴∠BAE -∠1= - ( ).即∠MAE = .∴ ∥ ( ).∴∠M =∠N ( ).5如图,一张长方形纸条ABCD 沿MN 折叠后形成的图形,∠DMN =80°,求∠BNC 的度数.6.已知:如图AB //CD ,BCD DAB ∠=∠,AE 、BE 分别平分DAB ∠、ABC ∠.请求出E ∠的度数.7.如下图,已知AD ⊥BC ,NE ⊥BC ,∠E =∠EFA ,求证:AD 平分∠BAC .8.如图,已知︒=∠+∠18021, B ∠=∠3.试判断AED ∠与C ∠的关系,并予以说明.G EB D 321FCA9.如图,︒=∠25B ,︒=∠45BCD ,︒=∠30CDE ,︒=∠10E .求证: AB ∥EF .【例1】如图,AB ∥CD ,AC ⊥BC ,图中与∠CAB互余的角有个. (安徽省中考题)思路点拨 充分运用对顶角、平行线性质等与角相关的知识,借助互余的概念判断. 注:平面几何的研究除了运用计算方法外,更多的要依靠时图形的观察(直觉能力),运用演绎推理的方法去完成,往往需要通过观察、实验操作进而猜想蛄论(性质),或由预设结论去猜想条件,再运用演绎推理方法加以证明.在学习完相交线、平行线内容后,平面几何的学习就由实验几何阶段进入论证几何阶段,顺利跨越推理论证阶段,需注意以下几点:(1)过好语言关;(2)学会识图;(3)善于分析.【例2】 如图,平行直线AB 、CD 与相交直线EF 、GH 相交,图中的同旁内角共有( ) .A .4对B .8对C .12对D .16对( “希望杯”邀请赛试题)思路点拨 每一个“三线八角”基本图形都有两对同旁内角,从对原图形进行分解人手.【例3】如图,已知∠B =25°,∠BCD =45°,∠CDE=30°,∠E =10°求征:AB ∥EF .思路点拨 解本例的困难在于图形中没有“三线八角”,考虑创造条件,在图中添置“三线八角”或作出与AB 或CD 平行的直线.【例4】 如图,在ΔABC 中,CE ⊥AB 于E ,DF ⊥AB 于F ,AC ∥ED ,CE 是∠ACB 的平分线.求证:∠EDF =∠BDF .(天津市竞赛题)EC DF A MN思路点拨综合运用角平分线、垂直的定义、平行线的判定与性质等知识,因图形复杂,故需恰当分解图形.【例5】探究:(1)如图a,若AB∥CD,则∠B+∠D=∠E,你能说明为什么吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?请证明;(3)若将点E移至图b所示位置,此时∠B、∠D、∠E之间有什么关系?请证明;(4)若将E点移至图c所示位置,情况又如何?(5)在图d中,AB∥CD,∠E+∠G与∠B+∠F+∠D又有何关系?(6)在图e中,若AB∥CD,又得到什么结论?思路点拨已知AB∥CD,连结AB、CD的折线内折或外折,或改变E点位置、或增加折线的条数,通过适当地改变其中的一个条件,就能得出新的结论,给我们创造性的思考留下了极大的空间,解题的关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.注:分析主要从以下两个方面进行:(1)由因导果(综合法),即从已知条件出发推出相应结论.(2)执果溯因(分析法),即要得到结论需具备什么条件.解题时,我们既要抓住条件,又要盯住目标,努力促使已知与来知的转化与沟通.探索性问题一般具有以下特点:(1)给出了条件,但没有明确的结论;(2)给出了结论,但没有给出或没有全部给出应具备的条件,(3)先提出特殊情况进行研究,再要求归纳、猜测和确定一般结论;(4)先对某一给定条件和结论的问题进行研究,再探讨改变条件时其结论相应发生的变化,或改变结论时其条件相应发生的变化;(5)解题方法需要独立创新.“解题千万道,解后抛九霄”是难以达到提高解题能力,发展思维的目的的.善于作解题后小结,回顾解题过程,总结解题经验和体会,再进而作一题多解,一题多问,一题多变的思考,挖掘题目的深度和广度,扩大题目的辐射面,这对解题能力的提高是十分有益的.学力训练1.如图,已知AE∥CD,EF交AB于M,MN⊥EF于M,NN交CD于N,若∠BME=110°,则∠MND= .(湖北成宁市中者题)2.如图,若直线a,b分别与直线c,d相交,且∠1+∠3=90°,∠2一∠3=90°,∠4=115°,那么∠3= .3.如图,已知AB∥CD,∠1=100°,∠2=120°,则∠α= .(内蒙古中考题)4.已知两个角的两边分别平行,其中一个角为40°,那么另一角是度.5.如图,下列条件中,不能判断直线l1∥l2的是( ).A.∠l=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°(南通市中考题)6..已知线段AB的长为10cm,点A、B到直线L的距离分别为6cm和4cm,符合条件l 的条数为( ).A.1 B.2 C.3 D.4(安徽省中考题)7.如图,直线a、b都与直线c相交,给出下列条件:(1)∠l=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判断a∥b的是( ).A.(1)、(3) B.(2)、(4) C.(1)、(3)、(4) D.(1)、(2)、(3)、(4)(江苏盐城市中考题)8.如图,AB∥EF∥DC,EG∥DB,则图中与∠1相等的角(∠1除外)共有( ).A.6个D.5个C.4个D.3个(湖北省荆门市中考题)9.如图,已知∠l+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并对结论进行证明.10.如图,已知∠1十∠2=180°,∠A=∠C,AD平分∠BDF.求证:BC平分∠DBE.15.如图,D、G是ΔABC中AB边上的任意两点,DE∥BC,GH∥DC,则图中相等的角共有( ).A,4对B.5对 C .6对D.7对16.如图,若AB∥CD,则( ).A.∠1=∠2+∠3 B.∠1=∠3一∠2C.∠1+∠2+∠3=180°∠l一∠2十∠3=180°17.如图,AB∥CD∥EF,EH⊥CD于H,则∠BAC+∠ACE+∠CEH等于( ).A.180°B.270°C.360°D.450°18.如图,AB∥EF,∠C=90°,则α、β和γ的关系是( ).A.β=α+γB.α+β+γ=180°C.α+β-γ=180°D.β+γ-α=180°19.如图,已知AB∥CD,P为HD上任意一点,过P点的直线交HF于O点,试问:∠HOP、∠AGF、∠HPO有怎样的关系?用式子表示并证明.20.如图,已知AB∥CD,α=∠A+∠E,β=∠B+∠C+∠D,证明:β=2α.22.如图,已知射线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数.(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.。
【精品】平行线的判定专题(可编辑

平行线的判定专题------------------------------------------作者------------------------------------------日期教学过程:知识点1 平行线的概念1、定义:在同一平面内,存在一个直线a 和直线b 不相交的位置,这时直线a 和b 互相平行,记作b a //2、三线八角:两条直线相交构成四个有公共顶点的角.一条直线与两条直线相交得八个角,简称“三线八角”,则不共顶点的角的位置关系有同位角、内错角、同旁内角.3、平行线的判定:(1)两条直线被第三条直线所截,如果同位角相等,两直线平行. (2)两条直线被第三条直线所截,如果内错角相等,两直线平行. (3)两条直线被第三条直线所截,如果同旁内角互补,两直线平行.◆ 例题讲解1、如图所示,∠1与∠2是一对( )A 、同位角B 、对顶角C 、内错角D 、同旁内角 2.如图:(1)已知34∠=∠,求证1l ∥2l 证明:∵34∠=∠( 已知 ) ____=∠3( 对顶角相等 ) ∴____=∠4∴1l ∥2l ( 同位角相等,两直线平行 )从而得到定理 ; (2)已知35180∠+∠=,求证1l ∥2l354213l 1l 2l3l证明:∵35180∠+∠=( 已知 )_____+∠5=1800( 邻补角相等 )∴∠3=_______( 同角的补角相等 )∴1l∥2l( 内错角相等,两直线平行 )从而得到定理.3.如图:(1)如果∠1=∠B,那么∥根据是(2)如果∠4+∠D=180,那么∥根据是(3)如果∠3=∠D,那么∥根据是(4)如果∠B+∠=180,那么AB∥CD,根据是(5)要使BE∥DF,必须∠1= ,根据是4.如图,一个弯形管道ABCD的拐角120,60ABC BCD∠=∠=,这时说管道AB∥CD对吗?为什么?想一想:1.如图,直线a b c、、被直线l所截,量得123∠=∠=∠.(1)从12∠=∠可以得出直线∥ ,根据;(2)从13∠=∠可以得出直线∥ ,根据;123abclABCDEF1423DACB(3)直线a b c 、、互相平行吗?根据是什么?2.如图,已知直线123l l l 、、被直线l 所截,105,75,75αβγ∠=∠=∠=,运用已知条件,你能找出哪两条直线是平行的吗?若能,请写出理由.平行线的判定习题一、填空题:1.如图③ ∵∠1=∠2,∴_______∥________( ) ∵∠2=∠3,∴_______∥________( )2.如图④ ∵∠1=∠2,∴_______∥________( ) ∵∠3=∠4,∴_______∥________( )二、选择题:1.如图⑦,∠D=∠EFC ,那么( )A .AD ∥BCB .AB ∥CDC .EF ∥BCD .AD ∥EF2.如图⑧,判定AB ∥CE 的理由是( )l1l 3l 2l 1αβγA.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE 3.如图⑨,下列推理正确的是()A.∵∠1=∠3,∴a∥b B.∵∠1=∠2,∴a∥bC.∵∠1=∠2,∴c∥d D.∵∠1=∠3,∴c∥d4.如图,直线a、b被直线c所截,给出下列条件,①∠1=∠2,②∠3=∠6,③∠4+∠7=180°,④∠5+∠8=180°其中能判断a∥b的是()A.①③ B.②④ C.①③④ D.①②③④三、完成推理,填写推理依据:1.如图⑩∵∠B=∠_______,∴ AB∥CD()∵∠BGC=∠_______,∴ CD∥EF()∵AB∥CD ,CD∥EF,∴AB∥____()2.如图⑾填空:(1)∵∠2=∠B(已知)∴ AB__________()(2)∵∠1=∠A(已知)∴ __________()(3)∵∠1=∠D(已知)∴ __________()(4)∵_______=∠F(已知)∴ AC∥DF()3.已知,如图∠1+∠2=180°,填空。
平行线的判定课件

在建筑结构设计中,为了确保结 构的稳定性和安全性,常常需要 使用平行线的概念来设计和建造 支撑结构。
平行线在生产实践中的应用
机械制造
在机械制造中,为了确保机器的精确 度和稳定性,需要使用平行线的概念 来制造和校准机器部件。
电子设备
在电子设备中,平行线被广泛应用于 电路板的布线和元件的排列,以确保 电流的稳定传输和元件的正常工作。
平行线在几何证明中的应用
平行线的判定定理
通过平行线的性质和判定定理,可以证明两条直线是否平行,从而解决一些几何证明问题。
平行线在几何证明中的重要性
平行线是几何证明中的重要工具,通过平行线可以推导出许多重要的几何结论,如角平分线定理、勾股定理等。
平行线在日常生活中的应用
道路规划
在道路规划中,为了确保车辆行 驶的安全和顺畅,需要确保道路 的平直和方向的一致性。平行线 的概念在这里发挥了重要作用。
同旁内角可以判定两条直线平行 。
详细描述
根据平行线的性质,如果两条直线被第三条 直线所截,且同旁内角互补,则这两条直线 平行。可以通过反证法证明这一点,假设两 条直线不平行,则它们相交于一点,由此产 生的同旁内角不互补,与已知条件矛盾,因 此假设不成立,原命题成立。
内错角相等判定法的证明
总结词
通过内错角相等,可以判定两条直线平 行。
VS
详细描述
根据平行线的性质,如果两条直线被第三 条直线所截,且内错角相等,则这两条直 线平行。可以通过相似三角形的性质进行 证明,设两直线分别为AB和CD,交于点 E,若内错角相等,则△ADE与△CBE相似 ,从而AB与CD平行。
同旁内角互补判定法
总结词
当两条直线被第三条直线所截,如果同旁内角互补,则这两条直线平行。
平行线的判定》证明题

平行线的判定》证明题1.当∠1=∠2时,直线a、b平行。
因为这时∠1+∠2=180°,根据平行线的性质可知a、b平行。
2.已知∠XXX∠BCD,且∠ABC+∠CDG=180°,因此∠BCD=∠XXX根据三角形内角和定理可知∠XXX∠BCD+∠XXX∠ABC+∠BCD=180°,所以BC∥GD。
3.已知∠1=15°,∠2=15°,因此∠ACE=∠BDF=75°。
但AE与BF不平行,因为它们交于点F。
4.BE平分∠ABD,DE平分∠XXX,且∠DQP=∠1=∠2,因此∠XXX∠XXX∠BCQ。
根据同位角和内错角性质可知AB∥CD,DE∥BE,因此AD∥BC。
5.已知∠2=∠3,且∠1+∠2=90°,因此∠1=90°-∠2=90°-∠3.根据同位角和内错角性质可知BE∥DF,因为∠AEB=∠DFB=90°。
6.已知∠1=30°,∠B=60°,因此∠C=90°。
根据三角形内角和定理可知∠ABC=∠ACB=60°,因此AB=AC。
又因为∠BAC=90°,所以AD∥BC。
7.已知∠BAD=∠DCB,∠BAC=∠DCA,因此三角形ABD与三角形CBD相似。
根据相似三角形的性质可知AB∥CD。
8.直线EF分别与直线AB、CD相交于点P和点Q,PG 平分∠APQ,QH平分∠DPQ。
根据角平分线的性质可知∠XXX∠GPQ+∠HPQ=1/2(∠APQ+∠DPQ)=1/2(180°)=90°,因此GH∥AB∥CD。
9.已知XXX,XXX,∠1=∠2,因此∠XXX∠BCD。
根据同位角和内错角性质可知BE∥CF。
10.已知AB⊥DF,∠2=90°,∠2=∠3,因此∠1=90°-∠2=90°-∠3.根据同位角和内错角性质可知BE∥DF,因为∠AEB=∠DFB=90°。
平行线的判定及性质 例题及练习

平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。
平行线的判定与性质(习题课)讲解学习

探究2、如图甲:已知AB∥DE,那么∠1+∠2+∠3等于多少度?试加以说明。 当已知条件不变,而图形变为如图乙时,结论改变了吗?图丙中的 ∠1+∠2+∠3+∠4是多少度呢?如果如丁图所示,∠1+∠2+∠3+…+∠n的和又为 多• 少度?你找到了什么规律吗?
1
2 3
1 2
3
1
2
3 4
1 2
3 4
n
求证: CD∥EF.
• 课堂练习6、 已知:如图∠1=∠2, ∠3=∠4,∠5=∠6,求证:EC∥FB
• 问题5、如图,AB∥CD,∠1=∠2,∠E=37°,求: ∠F。
A
B 问题探究 已知:AB∥CD,
1
E
2
C A
1
求证:∠A+ ∠ C+ ∠ AEC=
360°
F
证明:过E点作EF ∥ AB,则∠A+ ∠ 1= 180°
Z 形模式
next
应用模式
如图,若AB∥DF,∠2=∠A,试确定DE与AC的位置关系,并说明理由.
A
E
F
2
B
D
C
引入
建模
应用
小结
next
应用模式
如图,图中包含哪些基本模式?
A E D
B F O C
引入
建模
应用
小结
next
应用模式
已知,如图AB∥EF∥CD,AC∥BD,BC平分∠ABC,则图中 与∠EOD相等的角有( )个.
图形
同a 位 角b
1 2 c
内 错
a3
角b
2
c
4平行线的判定定理

判定平行线的常用方法 (1)同位角相等,两直线平行. (2)内错角相等,两直线平行. (3)同旁内角互补,两直线平行. (4)如果两条直线都和第三条直线平行,那么这两条直线平行. (5)在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.
平行线判定的应用 [例2] 一张四边形纸片ABCD,把纸片按如图折叠,点B落在AD边上的点E处,AF是折痕. (1)若∠B=∠D=90°,求证:EF∥CD.
4 平行线的判定定理
平行线的判定 [例1] (2021莱西期中)如图,DE⊥AB,∠1=∠A,∠2+∠3=180°,试判断CF与AB的位置关 系,并说明理由.
解:CF⊥AB.理由如下:因为∠1=∠A, 所以GF∥AC,所以∠2=∠DCF. 因为∠2+∠3=180°, 所以∠DCF+∠3=180°, 所以DE∥CF. 因为DE⊥AB,所以CF⊥AB.
(1)证明:由折叠,知∠AEF=∠B=90°. 因为∠D=90°(已知), 所以∠AEF=∠D(等量代换), 所以EF∥CD(同位角相等,两直线平行).
(2)当∠AFB与∠C有何数量关系时,EF∥CD?请说明理由.
(EF∥CD. 由折叠,知∠AFB=∠AFE, 所以∠BFE=2∠AFB,即∠C=2∠AFB. 故当∠C=2∠AFB时,EF∥CD.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∣1
3
教学过程:
知识点1平行线的概念
1、定义:在同一平面内,存在一个直线 a 和直线b 不相交的位置,这时直线 a 和b 互相平行,记 作 a// b
a F
.√
2、 三线八角:两条直线相交构成四个有公共顶点的角 .一条直线与两条直线相交得八个角,简称 “三线八角”,则不共顶点的角的位置关系有同位角、内错角、同旁内角 •
3、 平行线的判定:
(1) 两条直线被第三条直线所截,如果同位角相等,两直线平行 (2) 两条直线被第三条直线所截,如果内错角相等,两直线平行 (3) 两条直线被第三条直线所截,如果同旁内角互补,两直线平行
♦例题讲解
1、如图所示,∠ 1与∠ 2是一对(
A 、同位角
B 、对顶角
2. 如图:
⑴已知.3= 4,求证I l // J
证明:I • 3 • . 5=180 (已知) ____ +
∠ 5=1800( 邻补角相等)
⑵已知M 3 £5 =180 ,求证I l // ∣2 I
∙°∙∠3= ______ (同角的补角相等)∙∣1 // ∣2(内错角相
∣2等,两直线平行)
从而得到定理______________________________
△
3. 如图:
⑴如果∠ 1 = ∠ B,那么_______ // ______
根据是____________________________________
(2) 如果∠ 4+∠ D = 180 ,那么 ______ // ____
根据是____________________________________
(3) 如果∠ 3=∠ D,那么_______ // ______ 根据是
⑷如果∠ B+∠ _= 180 ,那么AB // CD,根据是
______________________________________________________________
⑸要使BE // DF ,必须∠1= _____________ L根据是
____________________________________
4.如图,一个弯形管道ABCD 的拐角.ABC =120 ,. BCD =60 ,这时说管道AB // CD 对吗?为什么
D 7
77 G
=B
想一想:1.如图,直线a 、b 、C 被直线I 所截,量得.1=.2=.3. (1)从.1=z 2可以得出直线 _________ // _____ L 根据 ________________________________
⑵从• 1二/3可以得出直线 _______ // ____ U
根据 __________________________ ;
⑶直线a 、b C 互相平行吗?根据是什么?
2.如图,已知直线h 、I2、l3被直线I 所截,•〉=105 ,• : =75 , • =75 ,运用已知条件,你能找出哪两条 直线是平行的吗?若能,请写出理由.
A C
1
1 1
2 l 3
2.如图(11)填空:
平行线的判定习题
一、 填空题:
1. 如图③∙∙∙∠ 1 = ∠ 2,∙∙∙ ___ // _________ (
τ∠ 2=∠ 3,二 ________ // _________ (
2. 如图④ τ∠ 1 = ∠ 2,∙∙∙ ______ // _________ (
τ∠ 3=∠4,∙ ______________ // __________ (
二、 选择题:
1.如图⑦,∠ D= ∠ EFC ,那么( )
A . AD // BC
B . AB // CD
C . EF // BC
3.如图⑨,下列推理正确的是( ) A . ∙∙∙∠ 1 = ∠ 3,∙ a // b B . v∠ 1 = ∠ 2,∙ a // b C . τ∠ 1 = ∠
2,∙ C
//
d
D .
τ∠ 1 = ∠ 3,∙
C
// d
4■如图,直线a 、b 被直线C 所截,给出下列条件,①∠ 1 = ∠ 2,②∠ 3=∠ 6,
A . ∠ B= ∠
ACE B . ∠ A= ∠ ECD C . ∠ B= ∠ ACB
D . ∠ A= ∠ ACE
A .①③
B .②④
C .①③④
D .①②③④
三、完成推理,填写推理依据:
1.如图⑩∙∙∙∠ B= ∠
,∙ AB // CD (
) ∙∙∙∠ BGC= ∠
,
∙
CD // EF (
) V AB // CD , CD // EF , ∙ AB //
(
)
③∠ 4+∠ 7= 180°,④∠ 5+∠ 8= 180°其中能判断a // b 的是() 2.如图⑧,判定 AB // CE 的理由是( )
D . AD //
EF
(1)∙∙∙∠ 2=∠ B (已知)
∙∙∙ AB _________ ( )
求证:CD // BE。
练一练
一、填空题:
1、在图1中,与∠ 1是同位角的是__ ,与∠ 2是内错角的是 ____ ,与∠ A是同旁内角的是
___________________________________ 。
2、如图2,∠5和∠ 7是___________ ,∠ 4和∠ 6是__________ ,∠1和∠ 5是2与∠ 6是__________ ,∠ 1和∠ 3是__________ ,∠ 5和∠ 6是.汙。
仁一J
3、如图3,∠ ADC和∠ BCc是直线___ 、 ______ 被直线______ 所截得到的角;∠ 1和∠ 5是
F
直线 _______ 、 _______ 被直线 _____ 所截得到的 _角;∠ 4和∠ 9是直线 __________ 、_被直线 所截得到的 角;∠ 2和∠ 3是直线 ________ 、 ______ 被直线 _____所截得到的___________ 角;
1、如图5, DM 是AD 的延长线,若∠ MDC ∠C,贝9(
2、两条直线被第三条直线所截,则( )
3、如图6,下列说法一定正确的是(
)
4、在图7中,如果∠ 1与∠ 2、/ 3与∠ 4、/ 2与∠ 5分别互补,那么(
图11
选择题
A 、DC//BC
B 、AB//CD
C 、BC//AD
D 、DC//AB
A 、同位角一定相等
B 、内错角一定相等
C
同旁内角一定互补
D 、以上结论都不对
/5和∠ 6是同位角
A 、 a∕∕b B
CZZd C 、 d // e D 、c∕/ e
5、如图11, ∠ 5=∠ CDA =∠ ABC ∠ 1 = ∠ 4,∠ 2=∠ 3, ∙∙∙∠ 5=∠ CDA(已知)
//
(
∙∙∙∠ 5=∠ ABC(已知) ••• // _______ ( ∙∙∙∠ 2=∠ 3 (已知)
A
D C
A '∠ 1和∠ 4是同位角 B
/ 2和∠ 3是内错角 C /3和∠4是同旁内角 D
) )
//
( )
∙∙∙∠ BAD∠ CDA=180 (已知)
••• _//_ _____ ( )
∙∙∙∠ 5=∠ CDA(已知),又τ∠ 5 与∠ BCD互补( ) ∠ CDA与 _______ 互补(邻补角定义)
∙∙∙∠BCD∠ 6 ( )
〃__________ ( )。