变量泵系统的工作原理
恒压变量泵的液压原理

恒压变量泵的液压原理
恒压变量泵的基本液压原理是流量定量和压力自调节。
恒压变量泵由齿轮泵和调压阀组成。
齿轮泵通过齿轮的旋转,产生流体流动,将液体从低压区域吸入并推送到高压区域。
齿轮泵的流量输出通过调节齿轮泵的转速控制。
而调压阀则用于控制泵输出的液压压力。
恒压变量泵通过调节调压阀的工作状态来实现流量控制和压力控制。
恒压变量泵的调压阀一般采用油液压力控制阀。
该阀由控制阀芯和控制阀座组成。
当系统压力低于设定压力时,控制阀芯向上移动,泵的出口压力上升;当系统压力高于设定压力时,控制阀芯向下移动,泵的出口压力下降。
通过这种方式,调压阀能够根据系统需求自动调节泵的输出压力。
恒压变量泵的液压原理使得它能够根据系统需求自动调节输出流量和压力,从而实现恒定的液压工作状态。
当系统负载增加时,恒压变量泵可以自动增加输出流量来满足系统所需的液压能量;当系统负载减少时,恒压变量泵可以自动减小输出流量,以避免能量的浪费。
总之,恒压变量泵的液压原理基于流量定量和压力自调节。
通过控制泵输出的流量和压力,它能够在系统工作中保持恒定的液压工作状态,满足系统对液压能量的需求。
这种液压原理使得恒压变量泵在工业自动化控制系统等领域具有广泛的应用。
恒压变量泵的工作原理

恒压变量泵的工作原理
恒压变量泵是一种能根据系统需求自动调节输出流量和压力的泵。
它的工作原理如下:
1. 变量泵的流体输出量可由驱动器调节。
驱动器监测系统的流量需求并调整泵的转速来保持恒定的流量,以满足系统对流体的需求。
2. 可变容积泵采用一个可调节的偏心副与泵的腔室相连。
当泵的转子旋转时,泵腔中的容积会随之变化。
偏心副的位置可以通过调整传动机构来变化,从而改变泵腔的容积。
3. 驱动器测量系统中的压力,并根据需要调整泵的输出压力。
如果系统需要更高的压力,驱动器会调整偏心副的位置,使泵的腔室容积减小。
相反,如果系统需要更低的压力,驱动器会调整偏心副的位置,使泵的腔室容积增大。
4.由于变量泵的输出流量和压力可以根据系统需求进行调节,
因此它可用于多种应用中,例如液压系统、供水系统等。
总之,恒压变量泵通过调节流量和压力来满足系统对流体的需求。
驱动器通过监测和调整泵的转速和偏心副的位置来实现这一目标。
该泵具有广泛的应用领域,并能适应不同系统的要求。
液压双向变量泵的工作原理

液压双向变量泵的工作原理
液压双向变量泵是一种常用于液压系统中的泵,它具有调节输出流量和压力的能力。
它的工作原理可以简单地描述如下:
1. 结构:液压双向变量泵通常由一个可调节的斜盘和一个驱动轴组成。
斜盘上有一对叶片,它们可以通过调整斜盘的角度来改变泵的输出流量和压力。
2. 工作过程:当液压双向变量泵开始工作时,驱动轴会转动,带动斜盘和叶片一起旋转。
在旋转过程中,液体会被吸入泵的进口,并被叶片推到泵的出口。
3. 流量调节:通过调整斜盘的角度,可以改变叶片的位置和倾斜角度,从而控制泵的输出流量。
当斜盘的角度增加时,叶片的倾斜角度也会增加,导致泵的输出流量增加。
相反,当斜盘的角度减小时,叶片的倾斜角度减小,泵的输出流量也会减小。
4. 压力调节:液压双向变量泵还可以通过调整斜盘的角度来控制输出压力。
当斜盘的角度增加时,泵的输出压力也会增加。
相反,当斜盘的角度减小时,泵的输出压力也会减小。
总之,液压双向变量泵通过调整斜盘的角度来控制泵的输出流量和压力。
这种泵在液压系统中广泛应用,可以根据实际需求进行灵活调节,以满足不同工作条件
下的要求。
液压变量泵(马达)变量调节原理与应用

液压变量泵(马达)变量调节原理与应用
液压变量泵(马达)是液压传动中一种常用的液压元件,它有着广泛的应用范围和较高的性能指标。
液压变量泵(马达)的可变容积能力是其最大的特点之一,而其变量调节原理与应用则是实现这一特点的关键。
一、变量调节原理
液压变量泵(马达)的可变容积主要通过改变工作腔内有效容积实现。
这种有效容积的变化可以通过机械、液压或电控手段来实现,形成了不同的变量调节方式。
目前主要有以下几种方式:
1. 机械式变量调节
机械式变量调节主要通过改变可变容积泵或马达的偏心距或液压缸路程,实现泵或马达的输出流量调节。
此种方式调节简单,但调节范围较小、调节量不稳定,适用范围较窄。
以上三种方式各有优劣,应根据液压传动系统的实际需要选择适合的变量调节方式。
二、应用
液压变量泵(马达)是液压传动中实现定量供油的重要元件,其可变容积的特点使得其能够适应不同的负载需求,进而实现更高的效率和更低的能耗。
液压变量泵(马达)广泛应用于各种液压传动系统中,如工程机械、农业机械、船舶、飞机和机床等领域。
液压变量泵(马达)的特点决定了其在液压传动中具有广泛的应用前景。
未来,液压变量泵(马达)会更加普及化,应用范围更加广泛,同时为了适应能源的节约和减排等要求,高性能、高效率、节能的液压变量泵(马达)将成为液压传动领域的主流趋势。
恒压变量泵工作原理

恒压变量泵工作原理
恒压变量泵是一种能够保持工作流体流量和压力稳定的泵。
它通过自动调节泵的排量来保持流体的压力恒定。
下面是恒压变量泵的工作原理:
1. 压力传感器:恒压变量泵内置有一个压力传感器,用于感知工作流体的压力变化。
2. 控制系统:泵的控制系统根据压力传感器所感知到的实际工作压力,与设定的恒定压力进行比较,并进行调节。
3. 变量排量控制:恒压变量泵具有变量排量调节机构,可以根据控制系统的指令来调节泵的排量。
当实际工作压力低于设定的恒定压力时,控制系统会增加泵的排量,从而提高工作流体的压力;当实际工作压力高于设定的恒定压力时,控制系统会减小泵的排量,降低工作流体的压力。
4. 反馈控制:恒压变量泵的控制系统通过不断感知工作流体的压力变化,并根据实际压力与设定压力的差异进行调节,进一步实现恒定的工作压力。
综上所述,恒压变量泵通过压力传感器感知工作流体的压力变化,并通过控制系统的调节,不断调整泵的排量,从而保持流体的压力稳定在设定的恒定压力值。
这种工作原理使得恒压变量泵在不同工作条件下均能提供稳定的压力输出,适用于许多工业和农业领域。
A10VSO变量泵机构讲解

• kleine Schwenkwinkel => hohe Drücke große Schwenkwinkel => niedr. Drücke
北京办事处 服务部 郭振会
最低精度等级:NAS1638 : 9 级 SAE : 6级
北京办事处 服务部
A10VSO泵及其变量机构概述
郭振会
Bosch Rexroth The Drive & Control Company
2001 Bosch Rexroth Mobile Hydraulic Seminar
ISO/DIS : 18/15
Bosch Rexroth The Drive & Control Company
北京办事处 服务部
A10VSO泵及其变量机构概述
郭振会
2001 Bosch Rexroth Mobile Hydraulic Seminar
Bosch Rexroth The Drive & Control Company
控制形式:
2001 Bosch Rexroth Mobile Hydraulic Seminar
压力切断+负荷敏感
DR泵的调试顺序:
先将系统的高压溢流阀 调低,将泵的恒压阀调 高。
将闲置的恒流量阀调高 (至死点)。
启动系统,利用溢流阀 将系统压力逐步调高至 溢流阀调定压力,并固 定。
Bosch Rexroth The Drive & Control Company
2001 Bosch Rexroth Mobile Hydraulic Seminar
A10VSO液压泵简介( 变量调节过程)

A10VSO液压泵功能简介一、结构及工作原理A10VSO液压泵是REXROTH公司生产的一种中负荷斜盘式变量泵,由于其优异的性价比,在冶金、机床、化工、工程等各领域得到了广泛的应用。
如图1为其结构图。
图1 结构图1 驱动轴2 止推盘3 控制活塞4 控制阀5 压力侧6 配油盘7 吸油侧8 缸体9 柱塞10 柱塞滑靴11 摇杆12 预压腔13 回程活塞电机把一个输入扭矩传递给泵驱动轴1,缸体8和柱塞9随驱动轴一起旋转,在每个旋转周期内,柱塞9产生一个线性的位移,这个位移的大小由摇杆11的角度决定。
通过止推板2,柱塞滑靴10紧紧地贴在摇杆11上,在每个旋转周期内,每个柱塞9都转过由其初始位置决定的下死点和上死点,通过配油盘6上的两个窗口吸入与排出的流体容积与柱塞面积和位移相匹配。
在吸油区,流体进入柱塞腔容积增大部分,与此同时,各个柱塞把流体压出柱塞腔容积减小部分。
在柱塞到达压力区之前,通过优化的预压缩容腔12,柱塞腔内流体压力已经得到提升。
这就极大地减少了压力冲击。
摇杆11上斜盘的角度在最小与最大范围内无级调整,通过改变斜盘角度,柱塞位移即排量得到改变,通过控制活塞3就能改变斜盘角度。
在静压支撑作用下,摇杆可以平稳运动,并且克服回程活塞13的作用力而保持平衡。
增加斜盘角度即增大排量,减小角度即减小排量。
斜盘角度永远不可能到达完全的零位,因为一个最小的流量是必须的:冷却柱塞补偿内泄漏润滑所有运动部件二、变量形式与其它液压泵一样,该泵也可以组成多种变量形式,主要有压力控制、流量控制、功率控制、电子控制等,还可以把几种控制形式组合成复合控制。
1、两位控制简称DG(Two Position Control),顾名思义,只有两个位置的控制,要么泵最小摆角(零摆角),要么泵最大摆角,是一种特殊的控制方式。
结构和原理分别如图2和图3所示。
图2 DG 结构图 图3 DG 原理图通过将外部控制压力连接到油口X ,此压力直接作用在变量活塞上,根据该压力的大小,可以将变量泵的摆角设置为最大或最小。
变量柱塞泵的流量和压力控制方式(DFR1)的原理详解

变量柱塞泵的流量和压力控制方式(DFR1)的原理详解:
1、图中DR模块的压力阀符号类似于溢流阀的工作原理,区别在于当系统压力达到压力阀设置压力(如执行件运动到位)的时候,压力阀打开,溢流阀将压力油溢流回油箱,而此处压力阀将压力油流入斜盘调节油缸中并驱动斜盘动作,直至变量泵的输出流量为最小流量(油压达到DR控制设定的压力)或者执行器动作所需的指定流量(油压接近DR控制设定的压力,略小)。
其中,调节的流量保持压力阀开启和斜盘位置不变,而最小流量通过变量泵内部系统或者系统溢流阀流回油箱。
DR控制:溢流阀:
DR控制下的压力和流量曲线图如图所示:
2、图中DF模块和可变节流孔(如方向阀)通过管路连接组成的液压回路,其工作原理类似于溢流节流阀的工作方式,区别在于当压力阀对节流阀进行压力补充(达到稳定流量作用)后,溢流节流阀将压力油溢流回油箱,而组合回路将压力油流入斜盘调节油缸中并驱动斜盘动作,直至变量泵的输出流量为通过可变节流孔(如方向阀)的流量。
其中,调节的流量保持压力阀开启和斜盘位置不变,而输出流量通过可变节流孔(如方向阀)作用于系统中。
DF流量控制:溢流调速阀:
DR控制下的压力和流量曲线图如图所示:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
10
变量泵系统的工作原理
二通压力补偿阀工作原理
a
11
变量泵系统的工作原理
那么二通压力补偿阀在补偿的过程中, 会不会使其它回路也会有补偿呢,也就是说, 有的回路的负载比刚才的回路的负载小,这 时使得负载小的回路变快呢,这是不会出现 的。从图中可以看出,当这一回路负载变大 时,梭阀Ls将堵住去其它的回路,使得其它 回路得不到补偿,这样其它回路就不会快。 比刚才的回路的负载大的回路会不会变慢呢, 也不会。因为要是这个回路的负载变大的话, 那么这个回路就会得到补偿,别的回路又得 不到补偿了。
变量泵系统的工作原理
LS阻 尼装置
梭阀
三通流
量阀
a
29
变量泵系统的工作原理
从这两个阀的原理可以看出,三通流量阀是调节流量的,也
就是说是根据负载所需流量进行流量控制。二通阀是补偿压
力的,是根据负载所需压力进a 行压力补偿的。
16
变量泵系统的工作原理
阀三 体通 中阀 的和 位二 置通
阀 在
三通流量控制器
a
阀体 两通压力控制器 梭阀
滑阀阀芯 17
变量泵系统的工作原理
这是泵、二通阀,比例换向阀的 工作路线图
②更换阻尼螺钉
a
23
变量泵系统的工作原理
a
24
变量泵系统的工作原理
连接块中的限压阀开启 了或是阀座漏油 解决方法: 1、对比限压阀的设定压 力和订货代号的规格 2、拆下限压阀,清洗阀座 3、更换连接块
a
25
变量泵系统的工作原理
限压阀
三通流量 调节阀
打闸油路
a
减压阀
26
变量泵系统的工作原理
连接块中的减
故障处理:
1、卸荷压力始终在20bar以上,这可能是三通流量阀 全部打开所致,应检查三通流量阀的阀芯运动是否灵活, 如有必要更换阀芯,包括阻尼。
2、系统的压力始终达不到预定值,可能是三通流量
调节阀的泄漏太大。这时就要更换三通流量调节阀的活塞
或连接块。
a
7
变量泵系统的工作原理
三通流量 调节阀
a
8
变量泵系统的工作原理
变量泵系统的工作原理
PSL∕PSV负载敏感型比例多路阀 工作原理及事故处理
a
1
变量泵系统的工作原理
PSL∕PSV型比例多路阀是一种高质量 的液压产品,每一件产品在出厂前都经过 了严格的调试和检查,阀体,阀芯和控制 零件等有相对运动的表面都经过硬化处理。 但在使用过程中由于液压油的污染或不正 常的使用,使阀件运动表面产生磨损或损 害,导致阀不能正常工作。以下是对常见 问题的说明。
压阀或螺堵(仅
手动操纵的)往
回油路漏油
解决方法:
拆下减压阀
(包括衬套)或螺
堵,检查密封圈
(阀座中的聚四
氟乙烯环和O形
圈.
a
27
变量泵系统的工作原理
压力问题: 某一油路上的执行元件不能
达到最高压力 梭阀(装在阀的螺堵中)泄漏 解决方法: 1,拆下梭阀,检查是否有污物,
如需要,则更换 2,更换阀体
a
28
• 系统压力由 变量控制器 建立
• 系统压力略 高于负载最 高压力
• 变量泵按需 要输出流量
a
22
变量泵系统的工作原理
主系统压力故障的处理
卸荷压力始终保持20bar以上
LS回油箱背压高解决方法:
1、检查中位时的LS油口压力。
2、检查LS油路是否有堵塞。
3、卸荷口被堵(LS回油箱口堵住)
解决方法:
①对阀芯上1mm的孔用压缩空气清理。
a
2
变量泵系统的工作原理
a
3
变量泵系统的工作原理
液压部构成
液压部
操纵台
泵站
油箱组件
电机、泵组件
油缸
a
4
变量泵系统的工作原理
PSL控制原理
a
5
变量泵系统的工作原理
三通流量阀Leabharlann 工作原理三通流量调节阀的作用
1、卸荷系统总流量
2、控制每片阀的流量
3、建立系统所需压力
4、具有一定减震作用
对比限 压阀
这是变量泵系统中换向
a
12
变量泵系统的工作原理
二通压力补偿阀工作原理
事故处理:
流量太小(执行元件的动作太慢)(单个阀的功 能动作)
二通压力补偿阀的故障处理:
二通压力补偿阀没有完全开启。
解决办法:拆开连接块和流量调节阀
(二通流量调节阀)的活塞,检查是否平
滑动作,以及节流嘴是否紧密地贴在阀座
上。
a
13
变量泵系统的工作原理
阀上的三通流量阀。工作原
三通流 量阀
理是:三通流量阀上的弹簧力 是9bar。当油泵起动后,没 有操作比例换向阀时,由于
没有反馈的LS信号,这时,
油泵的压力要大于弹簧的压
弹簧力 力,所以三通流量阀将向下
是9bar
a
推动,高压油将通过三通流6
变量泵系统的工作原理
量阀反回油箱。当某一回路工作后,负载就要反馈一个LS 信号(也就是负载量),这两个量加到一起(LS与弹簧力 的和),要是超过油泵高压油的压力, 三通流量阀将向上 推,使得通过三通流量阀的流量减少。给负载的流量增加。 多余的流量经过三通流量阀流回油箱。通过三通流量阀保 持节流口两端的压差恒定。节流阀的压差只决定于弹簧力 的大小,不受负载的影响。在相同的压差下,节流口的面 积越大,流量就越大。
a
18
变量泵系统的工作原理
a
19
变量泵系统的工作原理
标准系统的效率
• 由主溢流阀设定系 统的最大工作压力
• 系统总是以最大流 量工作
a
20
变量泵系统的工作原理
阀控系统的效率
• 系统压力由三通 阀建立
• 系统压力略高于 负载最高压力
• 多余流量于系统 压力下卸荷。
a
21
变量泵系统的工作原理
泵控系统的效率
二通压力补偿阀工作原理
a
14
变量泵系统的工作原理
二通压力补偿阀工作原理
当第二个功能(执行元件侧具有较低的压力)动 作时,执行元件(第一个功能)迅速减速
二通流量调节阀压力补
偿失效
解决方法:
检查二通流量调节
阀的活塞是否平滑动
作,SOLEX节流嘴是否紧
密地贴在阀座上。 a
15
三通流量控制阀和二通压力补偿阀比较
三通流量 控制阀解 抛图
a
9
变量泵系统的工作原理
二通压力补偿阀工作原理
次级限 压阀
二通压力 补偿阀
弹簧力 为6bar
当打开换向阀后,高压油 通过二通压力补偿阀进入到工 作腔,随着负载的不断增加, 在二通压力补偿阀的输出端的 压力也在不断的升高。此时, 二通压力补偿阀弹簧端的压力 在升高,它的压力值是输出端 压力加上弹簧力。由于三通流 量调节阀的压力始终高于二通 压力补偿阀的压力(原因是三 通流量阀的弹簧力是9bar,二 通流量阀的弹簧力是6bar).随 着负载压力的不断升高,则二 通压力补偿阀不断的给予补偿, 使得负载能够继续工作,直至 达到泵的预定压力值卸载为止。