如何用MINITAB进行过程能力分析
MINITAB下数据的过程能力分析

MINITAB下数据的过程能力分析:1.正态数据:a.检验数据的正态性:统计》基本统计量》正态性检验》确定(MINITAB示例)P>0.05,则数据服从正态分布,因此可进行连续数据中正态数据的过程能力分析及其指数的计算,但在进行分析和计算之前还需判定过程是否受控,可使用控制图;b.控制图监控:统计》控制图》子组的变量控制图》X-R图》确定;可见无异常发生,过程受控;c.过程能力分析与计算:统计》质量工具》能力分析》正态》确定2.非正态数据:a.数据的正态性检验:同上P<0.05,所以数据为非正态数据,需进行转换后方可进行过程能力分析,但这并不妨碍用原始数据进行控制图的绘制。
b.数据的转换:统计》控制图》BOX-COX变换》填入数据“扭曲”,子组大小填“10》选项》将变换后的数据存入“C2”中》确定;得到如下图,可知转换的λ=0.5,即对原始数据求平方根;c.控制图的绘制:步骤同上d. 过程能力分析:统计》质量工具》能力分析》正态》单列为“C2”,子组大小为“10”,规格上限为“2.82”,2.82=81/2,确定3. 离散数据: a . 计算DPMO ,公式参见SRINNI 培训:b .将DPMO 暂时理解为不合格品率,如果DPMO=66807.2,则不合格品率P=0.00668072;c . 计算》概率分布》正态分布》逆累计概率》输入常量“0.0668072”,,确定:d .根据正态分布的对称性:Z =︳-1.5︳+1.5=3,即相应的SIGMA 水平为3, 公式为: Z=︳x︳+1.5如果DPMO=1350,则P=0.00135,按照如上步骤,则有:逆累积分布函数正态分布,平均值 = 0 和标准差 = 1P( X <= x ) x0.00135 -2.99998,所以Z=2.99+1.5=4.5。
Minitab教程-过程能力分析

解释结果 所有测量值都位于规格限内。过程Cpm 均大于 1.33(这是 遍接受的对应于有能力过程的最小值)。 因此,工程师得出结论,锻造过程满足对 活塞环直径的要求。
正态能力分析 的数据注意事项
• 数据应当是连续的 • 收集足够的数据以获取过程能力的可靠估计值 • 如果可能,应当采用合理子组的形式收集数据 • 过程必须稳定且受控制 • 数据应该服从正态分布
在此直方图中,过程展开宽于规格展开, 这表明能力较差。虽然大部分数据都在 规格限内,但是也一些低于规格下限 (LSL) 或者高于规格上限 (USL) 的不合格 项。
• 步骤 3:评估过程的能力
评估潜在能力
可使用 Cpk 基于过程的位置和展开来评估该过程的潜在能力。潜在能力估计值表示在消除过程偏移 和漂移的情况下可实现的能力。 总体上讲,Cpk 值越高,过程的能力越高。Cpk 值低表明可能需要改进过程。 将 Cpk 与基准值(代表可接受的过程最小值)进行比较。许多行业使用基准值 1.33。如果 Cpk 低于 基准值,则考虑如何改进您的过程,例如减少其变异或改变其位置。 比较 Cp 和 Cpk。如果 Cp 和 Cpk 大致相等,则过程位于两个规格限制之间的中心位置。如果 Cp 和 Cpk 不同,则过程未处于中心位置。
对于这些过程数据,Cpk 为 1.09。因为 Cpk 小于 1.33,所以过程的潜在能力无 法满足要求。过程过于接近规格下限。 过程未处于中心位置,因此 Cpk 值不等 于 Cp (2.76)。
评估整体能力
可使用 Ppk 基于过程位置和过程展开来评估该过程的整体能力。整体能力表示您客户在一段时 间内体验到的实际过程性能。 总体上讲,Ppk 值越高,过程的能力越高。Ppk 值低表明可能需要改进过程。 将 Ppk 与基准值(代表可接受的过程最小值)进行比较。许多行业使用基准值 1.33。如果 Ppk 比基准值低,则考虑如何改进您的过程。 比较 Pp 和 Ppk。如果 Pp 和 Ppk 大致相等,则该过程位于两个规格限之间的中心位置。如果 Pp 和 Ppk 不同,则过程未处于中心位置。 比较 Ppk 和 Cpk。当过程在统计意义上受控制时,Ppk 和 Cpk 大致相等。Ppk 和 Cpk 之间的差异 代表在消除过程偏移和漂移的情况下预期可实现的过程能力提高。
第二章MINITAB之制程能力分析

第二章MINITAB之制程能力分析制程能力分析是通过对生产过程进行统计分析,识别和评估生产过程偏离目标值的能力。
MINITAB是一种常用的统计分析软件,可以帮助我们进行制程能力分析。
本文将介绍MINITAB在制程能力分析中的应用,包括测量系统分析、过程稳定性分析和过程能力指数计算等。
首先,我们需要进行测量系统的分析,以确保测量系统具有良好的稳定性和准确性。
MINITAB提供了一系列测量系统分析工具,包括平均值图、范围图、方差分析等。
通过这些工具,我们可以评估测量系统的可靠性,进而确定测量系统是否适合用于制程能力分析。
接下来是过程稳定性分析,主要应用MINITAB中的控制图工具。
控制图可以帮助我们监控过程的稳定性,及时发现和纠正过程中的异常情况。
MINITAB提供了许多不同类型的控制图,例如X-控制图、R-控制图、P-控制图等。
我们可以根据数据类型和分布情况选择合适的控制图,分析过程是否稳定,并识别特殊原因的存在。
最后是过程能力指数的计算。
过程能力指数是衡量过程能力的一个重要指标。
MINITAB提供了能力分析工具,可以帮助我们计算过程的CP、CPK、Pp和Ppk等指数。
通过这些指标,我们可以评估过程是否能够满足要求,并进行相应的改进。
在使用MINITAB进行制程能力分析时,有一些注意事项需要注意。
首先,要选择合适的样本大小和采样方案,以确保分析结果具有一定的可信度。
其次,要确保数据的质量,包括数据的准确性和完整性。
如果数据存在异常值或缺失值,应进行相应的处理。
最后,要结合实际情况对分析结果进行解释和应用,提出相应的改进措施。
综上所述,MINITAB是一种功能强大的统计分析软件,在制程能力分析中有着广泛的应用。
通过MINITAB的测量系统分析、过程稳定性分析和过程能力指数计算等功能,我们可以全面评估和改进生产过程,提高产品质量和生产效率。
运用Minitab进行过程能力(Process+Capability)_1

过程能力概述(Process CapabilityOverview)在过程处于统计控制状态之后,即生产比较稳定时,你很可能希望知道过程能力,也即满足规格界限和生产良品的能力。
你可以将过程变差的宽度与规格界限的差距进行对比来片段过程能力。
在评价其能力之前,过程应该处于控制状态,否则,你得出的过程能力的估计是不正确的。
你可以画能力条形图和能力点图来评价过程能力,这些图形可以帮助你评价数据的分布并验证过程是否受控。
你还可以计算过程指数,即规范公差与自然过程变差的比值。
过程指数是评价过程能力的一个简单方法。
因为它们无单位,你可以用能力统计量来比较不同的过程。
一、选择能力命令(Choosing a capability command)Minitab提供了许多不同的能力分析命令,你可以根据数据的属性及其分布来选择适当的命令。
你可以为以下几个方面进行能力分析:⏹正态或Weibull概率模型(适合于测量数据)⏹很可能来源于具有明显组间变差的总体的正态数据⏹二项分布或泊松概率分布模型(适合于属性数据或计数数据)注:如果你的数据倾斜严重,你可以利用Box-Cox转换或使用Weibull 概率模型。
在进行能力分析时,选择正确的分布是必要的。
例如:Minitab提供基于正态和Weibull概率模型的能力分析。
使用正态概率模型的命令提供更完整的一系列的统计量,但是你的数据必须近似服从正态分布以保证统计量适合于这些数据。
举例来说,Analysis (Normal) 利用正态概率模型来估计期望的PPM。
这些统计量的结实依赖于两个假设:数据来自于稳定的过程,且近似服从的正态分布。
类似地,Capability Analysis (Weibull) 利用Weibull 分布模型计算PPM。
在两种情况下,统计的有效性依赖于假设的分布的有效性。
如果数据倾斜严重,基于正态分布的概率会提供对实际的超出规格的概率做比较差的统计。
这种情况下,转化数据使其更近似于正态分布,或为数据选择不同的概率模型。
过程能力分析minitab版

过程能力概述(Process CapabilityOverview)在过程处于统计控制状态之后,即生产比较稳定时,你很可能希望知道过程能力,也即满足规格界限和生产良品的能力。
你可以将过程变差的宽度与规格界限的差距进行对比来片段过程能力。
在评价其能力之前,过程应该处于控制状态,否则,你得出的过程能力的估计是不正确的。
你可以画能力条形图和能力点图来评价过程能力,这些图形可以帮助你评价数据的分布并验证过程是否受控。
你还可以计算过程指数,即规范公差与自然过程变差的比值。
过程指数是评价过程能力的一个简单方法。
因为它们无单位,你可以用能力统计量来比较不同的过程。
一、选择能力命令(Choosing a capability command)Minitab提供了许多不同的能力分析命令,你可以根据数据的属性及其分布来选择适当的命令。
你可以为以下几个方面进行能力分析:⏹正态或Weibull概率模型(适合于测量数据)⏹很可能来源于具有明显组间变差的总体的正态数据⏹二项分布或泊松概率分布模型(适合于属性数据或计数数据)注:如果你的数据倾斜严重,你可以利用Box-Cox转换或使用Weibull 概率模型。
在进行能力分析时,选择正确的分布是必要的。
例如:Minitab提供基于正态和Weibull概率模型的能力分析。
使用正态概率模型的命令提供更完整的一系列的统计量,但是你的数据必须近似服从正态分布以保证统计量适合于这些数据。
举例来说,Analysis (Normal) 利用正态概率模型来估计期望的PPM。
这些统计量的结实依赖于两个假设:数据来自于稳定的过程,且近似服从的正态分布。
类似地,Capability Analysis (Weibull) 利用Weibull 分布模型计算PPM。
在两种情况下,统计的有效性依赖于假设的分布的有效性。
如果数据倾斜严重,基于正态分布的概率会提供对实际的超出规格的概率做比较差的统计。
这种情况下,转化数据使其更近似于正态分布,或为数据选择不同的概率模型。
05Minitab过程能力分析

Minitab 使用方法介绍
Z值的计算
• 你可以计算任何给定x值对应的Z值. Z 是x值与平均值间 距离对标准偏差的倍数.
Z xm
z
x m +1 +2 +3 +4
Minitab 使用方法介绍
• 例子: 已知:过程平均值为42.76 标准偏差为1.56 USL为45 LSL为40
Z值的计算
• 计算: Zlower , Zupper Zupper=(45-42.76)/1.56=1.44 Zlower=(40-42.76)/1.56=-1.77
• Cpk参数1.0和1.33之间时→使用SPC(涉及安全性能的用 1.67).
• Cpk参数超过1.33时(也可以要求是1.67)→考虑对参数转向 实行首件确认控制,通过首件检测值和抽检数据作统计过 程控制图.
Minitab 使用方法介绍
行动计划
(a) 弱的的过程潜在能力
(b) 弱的过程能力
LSL
过程潜在能力指数-Cp
• 一般Cp的目标值要大于1.33(对涉及安全的特性能力的要求是1.67)
• 如果Cp<1,则过程的变动性比规格范围要大 • Cp≧1.67 能力充分,考虑管理的简单化或者降低成本 • 1.33≦Cp≦1.67 能力满足,产品采用抽样检查即可 • 1.0≦Cp≦1.33 勉强满足能力,产品有发生不良的危险,需注意 • 0.67≦Cp≦1.0 能力不足,不良品发生中,产品需全检,过程必须改善 • Cp≦0.67 能力严重不足,须停产调查找出原因
(b) S-bar Method
ˆ Within
S c4
where c4 is a Shewhart constant = (k)
Minitab教程-过程能力分析

目
CONTENCT
录
• 引言 • Minitab软件简介 • 过程能力分析基本概念 • Minitab软件进行过程能力分析的
步骤 • 案例分析 • 总结与展望
01
引言
目的和背景
02
01
03
过程能力分析是质量管理中的重要工具,用于评估生 产过程中的稳定性和能力。
通过过程能力分析,可以了解生产过程的性能,识别 潜在的问题和改进机会。
根据收集的数据计算规格范围和标准差。
分析结果
根据过程能力指数判断过程能力是否满足要 求。
过程能力分析的注意事项
数据来源要可靠
收集的数据应来自实际生产过程,且数据量要足够 大,以保证结果的准确性。
规格范围要合理
规格范围的设定应符合产品要求和市场需求,不能 过高或过低。
考虑特殊原因的影响
在计算过程能力指数时,应考虑特殊原因对数据的 影响,以避免误判。
本教程将介绍如何使用Minitab软件进行过程能力分 析,帮助用户更好地理解和应用这一工具。
过程能力分析的重要性
过程能力分析有助于确保产品 质量的稳定性和一致性,提高 客户满意度。
通过过程能力分析,可以确定 生产过程的最佳参数和操作条 件,降低生产成本。
过程能力分析还可以帮助企业 识别潜在的风险和问题,及时 采取措施进行改进和预防。
展望
随着科技的不断发展, 质量管理的要求也在不 断提高。
未来,过程能力分析将 更加注重智能化和自动 化,以提高分析效率和 准确性。
Minitab软件将继续发 挥重要作用,为质量管 理提供更加全面和强大 的支持。
未来,我们期望看到更 多关于过程能力分析的 研究和应用,以推动质 量管理领域的进步和发 展。
过程能力分析minitab版

过程能力概述(Process CapabilityOverview)在过程处于统计控制状态之后,即生产比较稳定时,你很可能希望知道过程能力,也即满足规格界限和生产良品的能力。
你可以将过程变差的宽度与规格界限的差距进行对比来片段过程能力。
在评价其能力之前,过程应该处于控制状态,否则,你得出的过程能力的估计是不正确的。
你可以画能力条形图和能力点图来评价过程能力,这些图形可以帮助你评价数据的分布并验证过程是否受控。
你还可以计算过程指数,即规范公差与自然过程变差的比值。
过程指数是评价过程能力的一个简单方法。
因为它们无单位,你可以用能力统计量来比较不同的过程。
一、选择能力命令(Choosing a capability command)Minitab提供了许多不同的能力分析命令,你可以根据数据的属性及其分布来选择适当的命令。
你可以为以下几个方面进行能力分析:⏹正态或Weibull概率模型(适合于测量数据)⏹很可能来源于具有明显组间变差的总体的正态数据⏹二项分布或泊松概率分布模型(适合于属性数据或计数数据)注:如果你的数据倾斜严重,你可以利用Box-Cox转换或使用Weibull 概率模型。
在进行能力分析时,选择正确的分布是必要的。
例如:Minitab提供基于正态和Weibull概率模型的能力分析。
使用正态概率模型的命令提供更完整的一系列的统计量,但是你的数据必须近似服从正态分布以保证统计量适合于这些数据。
举例来说,Analysis (Normal) 利用正态概率模型来估计期望的PPM。
这些统计量的结实依赖于两个假设:数据来自于稳定的过程,且近似服从的正态分布。
类似地,Capability Analysis (Weibull) 利用Weibull 分布模型计算PPM。
在两种情况下,统计的有效性依赖于假设的分布的有效性。
如果数据倾斜严重,基于正态分布的概率会提供对实际的超出规格的概率做比较差的统计。
这种情况下,转化数据使其更近似于正态分布,或为数据选择不同的概率模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过程能力概述
一旦过程处于统计控制状态,并且是连续生产,那么你可能想知道这个过程是否有能力满足规范的限制,生产出好的零件(产品),通过比较过程变差的宽度和规范界限的宽度可以确定过程能力。
在评估过程能力之前,过程必须受控。
如果过程不受控,你将得到不正确的过程能力值。
.你能通过画能力柱状图和能力图来评估过程能力。
这些图形能够帮助你评估数据的分布和检验过程是否受控。
你也可以估计包括规范公差与正常过程变差之间比率的能力指数。
能力指数或统计指数都是评估过程能力的一种方法,因为它们都没有单位,所以,可以用能力统计表来比较不同过程的能力。
选择能力命令
MINITAB提供了一组不同的能力分析命令,你可以根据数据的性质和分布从中选择命令,你可以对以下情况进行能力分析:
——正态或Weibull概率模式(对于测量数据)
——不同子组之间可能有很强变差的正态数据
——二项式或Poisson概率模式(对于计数数据或属性数据)
当进行能力分析时,选择正确的公式是基本要求,例如,MINITAB提供基于正态或Weibull分布模型上的能力分析工具,使用正态概率模型的命令提供了更完全的统计设置,但是,适用的数据必须近似于正态分布.
例如,利用正态概率模型,能力分析(正态)可以估计预期零件的缺陷PPM 数。
这些统计分析建立在两个假设的基础上,1、数据来自于一个稳定的过程,2、数据服从近似的正态分布,类似地,能力分析(Weibull)计算零件的缺陷的PPM值利用的是Weibull分布。
在这两个例子中,统计分析正确性依赖于假设分布模型的正确性。
如果数据是歪斜非常严重,那么用正态分布分析将得出与实际的缺陷率相差很大的结果。
在这种情况下,把这个数据转化比正态分布更适当的模型,或为数据选择不同的概率模式.用MINITAB,你可以使用Box-Cox能力转化或Weibull概率模型,非正态数据比较了这两种方法.
如果怀疑过程中子组之间有很强的变差来源,可以使用能力分析(组间/组内)或SIXpack能力分析(组间/组内)。
除组内数据具有随机误差外,组间还可能有随机变差。
明白了子组变差的来源,可以为你提供过程更真实的潜在能力评估。
能力分析(组间/组内)或SIXpack能力分析(组间/组内)既计算组内标准偏差也计算组间标准偏差,然后,集中它们来计算总的标准偏差。
MINITAB也提供基于二项式和Poisson概率模型属性数据(计数型)的能力分析,例如,产品可与标准比较分为有缺陷和没有缺陷(用能力分析(二项式))。
也可以根据缺陷个数对产品进行分类(用能力分析(Poisson))。
MINITAB的能力分析命令
能力分析(正态)画出单个测量值的能力柱状图,用一条基于过程平均值和标准偏差的正态曲线覆盖在柱状图上,这个图形有助于进行正态假设的视觉评估。
这个报告包括了过程能力统计表,既包括组内也包括整体统计。
能力分析(组间/组内)画出了用正态曲线覆盖的单个测量值的能力柱状图。
这有助于进行正态假设的视觉评估。
用这种分析方法可进行组间\组内有很强变差来源的子组数据的分析,这个报告包括组间/组内和整个过程能力的统计分析
能力分析(Weibull分布)
画出基于过程形状和比例的Weibull曲线覆盖单个测量值的能力柱状图,这有助于进行Weibull分布的视觉评估。
这个报告也包括了整个过程能力的统计分析
SIXPACK能力分析(正态分布)
连同这个能力统计的子集一起,结合下面的图表深入了解单个的显示值的含义:
——单个数据图,R 或S(离差),以及运行图,可用来检验过程是否受控. ——能力柱状图和正态分布图,可用来检验数据是否服从正态分布.
SIXPACK能力分析(组间/组内)适用于组间有很强变差来源的子组数据, SIXPACK能力分析(组间/组内)连同这个能力统计的子集一起,结合下面的图表深入了解单个的显示值的含义:
——单个极差,离差图和极差和离差图,可用于检验过程受控状态.
——柱状图和正态分布图可用于检验数据的正态分布情况
——能力图显示了与规范比较后的过程变异
SIXPACK能力(Weibull) 在一个显示面上显示了下面的多个图形,和各项能力统计数据:
——一个(或单个数据)图、R(或移动极差)图,以及运行图,通常用于检验过程是否受控。