minitab过程能力分析图制作

合集下载

如何编写合格的CPK、PPK数据

如何编写合格的CPK、PPK数据

如何编写合格的CPK、PPK数据如何制作合格的“过程能力分析”PPK数据利用MINITAB软件(Minitab 16)生成假的合适的PPK数据源—25组(每组5个)测量值。

要求计算得到的PPK值≥1.67。

以117.64±0.2为例。

一、打开Minitab软件,选择“计算”-“随机数据”-“正态”(图1)二、在产生的(图2)对话框中填入数据。

“均值”为117.64;PPK为1.67时“标准差”等于单边公差0.2除于5 得到值0.04;“数据行数”填125(25组/每组5个数据);计划在表格中生成9组数据供挑选,表格每列的头部分别标记为1-9;在对话框左边选择全部列号码,点击选择后存入右边的框内。

点击确定后,得到数据如图3三、检验每列数据的PPK是否大于或等于1.67。

选择按钮“改善”-“评估能力”-“变量数据”-“正态能力”,见图4在出现的对话框中分别从左边选择一个列号码,如1;“子组大小”填5;“规格下限”和“规格上限”分别填下公差和上公差的数据。

见图5四、点确定后,出现一个图表(见图6),如果PPK≥1.67,则这组数据可用;如果PPK<1.67,这组数据就放弃。

然后依次用“第三步”的方法检验1-9组数据哪几组可用。

五、在表格第一列前插入一列,循环往下填写1-5数字,一直到125行。

(见图7)六、拆分每列数据为5列。

选“数据”-“拆分列”(图8)在跳出的对话框内选择左边的列号码1到右边,“使用的下标”从左边选择C1列,在新的工作表中生成,点确定。

(图9)在新的工作表中生成5列数据,每列25行。

七、列转置成行。

(图10)选择“数据”-“转置列”,在跳出的对话框选中左边这5列,选择到右边,转置到新的表格中,点确定后生成新表格,5行各行25个数据。

(图11)(图12)。

表格1中,其它可采用的各列数据(2-9列)也可以通过第六、七步骤,产生横置的数据。

八、可以把横置的数据复制,粘贴到各种PPK计算表格中。

过程能力分析minitab版

过程能力分析minitab版

过程能力分析minitab版过程能力概述(Process Capability Overview)在过程处于统计控制状态之后,即生产比较稳定时,你很可能希望知道过程能力,也即满足规格界限和生产良品的能力。

你可以将过程变差的宽度与规格界限的差距进行对比来片段过程能力。

在评价其能力之前,过程应该处于控制状态,否则,你得出的过程能力的估计是不正确的。

你可以画能力条形图和能力点图来评价过程能力,这些图形可以帮助你评价数据的分布并验证过程是否受控。

你还可以计算过程指数,即规范公差与自然过程变差的比值。

过程指数是评价过程能力的一个简单方法。

因为它们无单位,你可以用能力统计量来比较不同的过程。

一、选择能力命令(Choosing a capability command)Minitab提供了许多不同的能力分析命令,你可以根据数据的属性及其分布来选择适当的命令。

你可以为以下几个方面进行能力分析:正态或Weibull概率模型(适合于测量数据)很可能来源于具有明显组间变差的总体的正态数据二项分布或泊松概率分布模型(适合于属性数据或计数数据)注:如果你的数据倾斜严重,你可以利用Box-Cox转换或使用Weibull 概率模型。

在进行能力分析时,选择正确的分布是必要的。

例如:Minitab 提供基于正态和Weibull概率模型的能力分析。

使用正态概率模型的命令提供更完整的一系列的统计量,但是你的数据必须近似服从正态分布以保证统计量适合于这些数据。

举例来说,Analysis (Normal) 利用正态概率模型来估计期望的PPM。

这些统计量的结实依赖于两个假设:数据来自于稳定的过程,且近似服从的正态分布。

类似地,Capability Analysis (Weibull) 利用Weibull 分布模型计算PPM。

在两种情况下,统计的有效性依赖于假设的分布的有效性。

如果数据倾斜严重,基于正态分布的概率会提供对实际的超出规格的概率做比较差的统计。

Minitab教程-过程能力分析

Minitab教程-过程能力分析

解释结果 所有测量值都位于规格限内。过程Cpm 均大于 1.33(这是 遍接受的对应于有能力过程的最小值)。 因此,工程师得出结论,锻造过程满足对 活塞环直径的要求。
正态能力分析 的数据注意事项
• 数据应当是连续的 • 收集足够的数据以获取过程能力的可靠估计值 • 如果可能,应当采用合理子组的形式收集数据 • 过程必须稳定且受控制 • 数据应该服从正态分布
在此直方图中,过程展开宽于规格展开, 这表明能力较差。虽然大部分数据都在 规格限内,但是也一些低于规格下限 (LSL) 或者高于规格上限 (USL) 的不合格 项。
• 步骤 3:评估过程的能力
评估潜在能力
可使用 Cpk 基于过程的位置和展开来评估该过程的潜在能力。潜在能力估计值表示在消除过程偏移 和漂移的情况下可实现的能力。 总体上讲,Cpk 值越高,过程的能力越高。Cpk 值低表明可能需要改进过程。 将 Cpk 与基准值(代表可接受的过程最小值)进行比较。许多行业使用基准值 1.33。如果 Cpk 低于 基准值,则考虑如何改进您的过程,例如减少其变异或改变其位置。 比较 Cp 和 Cpk。如果 Cp 和 Cpk 大致相等,则过程位于两个规格限制之间的中心位置。如果 Cp 和 Cpk 不同,则过程未处于中心位置。
对于这些过程数据,Cpk 为 1.09。因为 Cpk 小于 1.33,所以过程的潜在能力无 法满足要求。过程过于接近规格下限。 过程未处于中心位置,因此 Cpk 值不等 于 Cp (2.76)。
评估整体能力
可使用 Ppk 基于过程位置和过程展开来评估该过程的整体能力。整体能力表示您客户在一段时 间内体验到的实际过程性能。 总体上讲,Ppk 值越高,过程的能力越高。Ppk 值低表明可能需要改进过程。 将 Ppk 与基准值(代表可接受的过程最小值)进行比较。许多行业使用基准值 1.33。如果 Ppk 比基准值低,则考虑如何改进您的过程。 比较 Pp 和 Ppk。如果 Pp 和 Ppk 大致相等,则该过程位于两个规格限之间的中心位置。如果 Pp 和 Ppk 不同,则过程未处于中心位置。 比较 Ppk 和 Cpk。当过程在统计意义上受控制时,Ppk 和 Cpk 大致相等。Ppk 和 Cpk 之间的差异 代表在消除过程偏移和漂移的情况下预期可实现的过程能力提高。

minitab过程能力分析图制作

minitab过程能力分析图制作

2
过程能力分析分类
计量型
-------表现为正态概率和非正态概率分布型,是一组连续性数据
计数型
-------表现为Poisson(泊松)计数型和二次(元)型,依次形成缺 陷数U图为基础的报告和不良数P图为基础的报告,是各自独立的 一组数据
3
过程能力分析------计量型
例题:我们研究一个冲压件孔直径是否符合规定要求(规定值 f10+0.1/0,满足客户Ppk≥1.33要求。
13
过程能力分析------计数型
Step2. 点击“统计”--“质量工具”--“能力分析”--“二项B“。
14
过程能力分析------计数型
Step3. 出现的”能力分析(二项分布)“工具栏内,在”缺陷 数“,双击”C3“,输入“不合格数”;在”实际样本量) “中双击”C2“,输入“数量”;单击”选项“。
10
过程能力分析------计量型
Step7. 报告分析(略)
11
过程能力分析------计数型
例题:我们研究11月份焊接件生产和检查数量。从发现的不合格数 ,来探讨焊接件的过程能力。
12
过程能力分析------计数型
Step1. 我们将一个月1-30日采集的数据输入工作表
连续输入1日-30日的数据
4
过程能力分析------计量型
Step1. 按要求测量得到一组数据后,输入工作表
连续输入60个数据
5
过程能力分析------计量型
Step2. 点击“统计”--“质量工具”--“能力分析”--“”正态“。
6
过程能力分析------计量型
Step3. 出现的”能力分析(正态分布)“工具栏内,在”单列“中双 击”C2“,填入”实测值“;在”子组大小(Z)“中输入”5“ ;在”规格下限“中输入10;在”规格上限“中输入10.1,单击 ”确定“。

MINITAB处理能力的分析与评估(ppt 40页)

MINITAB处理能力的分析与评估(ppt 40页)
Zone of Av erage Technology
Zone of Ty pical Control
World-Class Perf ormance12 Nhomakorabea3
4
5
6
Z.Bench (Short-Term)
L1 工作单 (离散值的 sigma 分值的计算) 目的: 计算在当前的 sigma 值中当前的 CTQ 特征值(离散值)如果定位。 作用:
2) 分析操作
统计
基本统计
相关性...
相关性分析有助于在众多变量中同时了解相关性。 目的: 在多于一种变量间计算相关系数。 作用: 减少主要变量及原因。
相关系数 R^2 是一个表达两变量相关强度的值。 R^2 至 1 强正相关性 0<R^2<<1 弱正相关性 -1<<R^2<0 弱负相关性 R^2 to -1 强负相关性
Report 8A: Product Benchmarks
DMPO 对 Zst
1
2
3
4
5
6
Z.Bench (Short-Term)
Zst
10
———— MINITAB 入门手册 ————
Z.Shift
3.0 2.5 2.0 1.5 1.0 0.5 0.0
0
Zshift 和 Zst
Report 8B: Product Benchmarks
Sigma
(Z.Bench)
1.38
1.55
PPM 83192.3 60454.5
Zlt
Zst
7
———— MINITAB 入门手册 ————
Report 2: Process Capability for C1

过程能力分析minitab版

过程能力分析minitab版

过程能力概述(Process CapabilityOverview)在过程处于统计控制状态之后,即生产比较稳定时,你很可能希望知道过程能力,也即满足规格界限和生产良品的能力。

你可以将过程变差的宽度与规格界限的差距进行对比来片段过程能力。

在评价其能力之前,过程应该处于控制状态,否则,你得出的过程能力的估计是不正确的。

你可以画能力条形图和能力点图来评价过程能力,这些图形可以帮助你评价数据的分布并验证过程是否受控。

你还可以计算过程指数,即规范公差与自然过程变差的比值。

过程指数是评价过程能力的一个简单方法。

因为它们无单位,你可以用能力统计量来比较不同的过程。

一、选择能力命令(Choosing a capability command)Minitab提供了许多不同的能力分析命令,你可以根据数据的属性及其分布来选择适当的命令。

你可以为以下几个方面进行能力分析:⏹正态或Weibull概率模型(适合于测量数据)⏹很可能来源于具有明显组间变差的总体的正态数据⏹二项分布或泊松概率分布模型(适合于属性数据或计数数据)注:如果你的数据倾斜严重,你可以利用Box-Cox转换或使用Weibull 概率模型。

在进行能力分析时,选择正确的分布是必要的。

例如:Minitab提供基于正态和Weibull概率模型的能力分析。

使用正态概率模型的命令提供更完整的一系列的统计量,但是你的数据必须近似服从正态分布以保证统计量适合于这些数据。

举例来说,Analysis (Normal) 利用正态概率模型来估计期望的PPM。

这些统计量的结实依赖于两个假设:数据来自于稳定的过程,且近似服从的正态分布。

类似地,Capability Analysis (Weibull) 利用Weibull 分布模型计算PPM。

在两种情况下,统计的有效性依赖于假设的分布的有效性。

如果数据倾斜严重,基于正态分布的概率会提供对实际的超出规格的概率做比较差的统计。

这种情况下,转化数据使其更近似于正态分布,或为数据选择不同的概率模型。

运用Minitab进行过程能力(Process+Capability)_1

运用Minitab进行过程能力(Process+Capability)_1

过程能力概述(Process CapabilityOverview)在过程处于统计控制状态之后,即生产比较稳定时,你很可能希望知道过程能力,也即满足规格界限和生产良品的能力。

你可以将过程变差的宽度与规格界限的差距进行对比来片段过程能力。

在评价其能力之前,过程应该处于控制状态,否则,你得出的过程能力的估计是不正确的。

你可以画能力条形图和能力点图来评价过程能力,这些图形可以帮助你评价数据的分布并验证过程是否受控。

你还可以计算过程指数,即规范公差与自然过程变差的比值。

过程指数是评价过程能力的一个简单方法。

因为它们无单位,你可以用能力统计量来比较不同的过程。

一、选择能力命令(Choosing a capability command)Minitab提供了许多不同的能力分析命令,你可以根据数据的属性及其分布来选择适当的命令。

你可以为以下几个方面进行能力分析:⏹正态或Weibull概率模型(适合于测量数据)⏹很可能来源于具有明显组间变差的总体的正态数据⏹二项分布或泊松概率分布模型(适合于属性数据或计数数据)注:如果你的数据倾斜严重,你可以利用Box-Cox转换或使用Weibull 概率模型。

在进行能力分析时,选择正确的分布是必要的。

例如:Minitab提供基于正态和Weibull概率模型的能力分析。

使用正态概率模型的命令提供更完整的一系列的统计量,但是你的数据必须近似服从正态分布以保证统计量适合于这些数据。

举例来说,Analysis (Normal) 利用正态概率模型来估计期望的PPM。

这些统计量的结实依赖于两个假设:数据来自于稳定的过程,且近似服从的正态分布。

类似地,Capability Analysis (Weibull) 利用Weibull 分布模型计算PPM。

在两种情况下,统计的有效性依赖于假设的分布的有效性。

如果数据倾斜严重,基于正态分布的概率会提供对实际的超出规格的概率做比较差的统计。

这种情况下,转化数据使其更近似于正态分布,或为数据选择不同的概率模型。

过程能力(minitab教程)

过程能力(minitab教程)
过程能力概述( Process Capability Overview)
在过程处于统计控制状态之后,即生产比较稳定时,你很可能希望知道过程 能力,也即满足规格界限和生产良品的能力。你可以将过程变差的宽度与规格界 限的差距进行对比来片段过程能力。 在评价其能力之前, 过程应该处于控制状态, 否则,你得出的过程能力的估计是不正确的。 你可以画能力条形图和能力点图来评价过程能力, 这些图形可以帮助你评价 数据的分布并验证过程是否受控。你还可以计算过程指数,即规范公差与自然过 程变差的比值。过程指数是评价过程能力的一个简单方法。因为它们无单位, 你 可以用能力统计量来比较不同的过程。 一、选择能力命令( Choosing a capability command ) Minitab 提供了许多不同的能力分析命令,你可以根据数据的属性及其分布 来选择适当的命令。你可以为以下几个方面进行能力分析: � 正态或 Weibull 概率模型( 适合于测量数据) � 很可能来源于具有明显组间变差的总体的正态数据 � 二项分布或泊松概率分布模型 (适合于属性数据或计数数据) 注: 如果你的数据倾斜严重,你可以利用 Box-Cox 转换或使用 Weibull 概率 模型。 在进行能力分析时,选择正确的分布是必要的。例如: Minitab 提供基于正 态和 Weibull 概率模型的能力分析。使用正态概率模型的命令提供更完整的一系 列的统计量,但是你的数据必须近似服从正态分布以保证统计量适合于这些数 据。举例来说, Analysis (Normal) 利用正态概率模型来估计期望的 PPM。这些 统计量的结实依赖于两个假设: 数据来自于稳定的过程, 且近似服从的正态分布。 类似地,Capability Analysis (Weibull) 利用 Weibull 分布模型计算 PPM 。在两种 情况下,统计的有效性依赖于假设的分布的有效性。 如果数据倾斜严重, 基于正态分布的概率会提供对实际的超出规格的概率做 比较差的统计。这种情况下,转化数据使其更近似于正态分布,或为数据选择不 同的概率模型。 在 Minitab 中, 你可以用 “Box-Cox power transformation ” 或 Weibull 概率模型。Non-normal data 对这两个模型进行了比较。 如 果 你 怀 疑 过 程 具 有 较 明 显 的 组 间 变 差 , 使 用 Capability Analysis (Between/Within) 或 Capability Sixpack (Between/Within) 。子组内部的随机误差之 上,子组数据可能还有子组之间的随机变差。对子组变差的两个来源的理解可以 为 过 程 潜 在 能 力 提 供 更 实 际 的 估 计 。 Capability Analysis (Between/Within) 和 Capability Sixpack (Between/Within) 计算了组间和组内标准差,然后再估计长期 的标准差。 Minitab 还为属性数据和计数数据进行能力分析,基于二项分布和泊松概率 模型。例如:产品可以根据标准判定为合格和不合格( 使用 Capability Analysis (Binomial)). 。 你 还 可 以 根 据 缺 陷 的 数 量 进 行 分 类 ( 使 用 Capability Analysis
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MINITAB过程能力分析图制作
过程能力概述
什么是过程能力
----------过程处于统计受控状态下(稳定生产),过程特性满足规 定要求的能力。 ----------过程特性,往往表现为具体的计量型或计数型指标。 ---------规定要求,往往表现为实际尺寸在标准偏差范围的波动,是 否符合要求或通过、不通过,符合不符合,合格与不合格
2
过程能力分析分类
计量型
-------表现为正态概率和非正态概率分布型,是一组连续性数据
计数型
-------表现为Poisson(泊松)计数型和二次(元)型,依次形成缺 陷数U图为基础的报告和不良数P图为基础的报告,是各自独立的 一组数据
3
过程能力分析------计量型
例题:我们研究一个冲压件孔直径是否符合规定要求(规定值 f10+0.1/0,满足客户Ppk≥1.33要求。
13
过程能力分析------计数型
Step2. 点击“统计”--“质量工具”--“能力分析”--“二项B“。
14
过程能力分析------计数型
Step3. 出现的”能力分析(二项分布)“工具栏内,在”缺陷 数“,双击”C3“,输入“不合格数”;在”实际样本量) “中双击”C2“,输入“数量”;单击”选项“。
18
结语
请大家阅读此培训教材同时,查看MINITAB中“帮助”,将 获得有益的帮助。
19
结束语
谢谢!
20
10
过程能力分析------计量型
Step7. 报告分析(略)
11
过程能力分析------计数型
例题:我们研究11月份焊接件生产和检查数量。从发现的不合格数 ,来探讨焊接件的过程能力。
12
过程能力分析------计数型
Step1. 我们将一个月1-30日采集的数据输入工作表
连续输入1日-30日的数据
15
过程能力分析------计数型
Step4. 出现的”能力分析(二项分布)选项“工具栏内,在” 标题“中,输入“2014年11月份焊接过程能力分析报告”; 单击”确定“。
16
过程能力分析------计数型
Step5. 图表报告生成。
17
过程能力分析------计数型
Step6. 报告分析(略)
7
过程能力分析------计量型
Step4. 出现的”能力分析(正态分布)选项“工具栏内,在”目标( 添加Cpm到表格)栏内输入”9.9“单击”确定“。
8
过程能力分析------计量型
Step5. 形成能力报告。
9
过程能力分析------计量型
Step6. 点击菜单栏”文件“,保存项目或将项目另存为。注意保存的 文件名后缀”.MPJ“不得删除。
4
过程能力分பைடு நூலகம்------计量型
Step1. 按要求测量得到一组数据后,输入工作表
连续输入60个数据
5
过程能力分析------计量型
Step2. 点击“统计”--“质量工具”--“能力分析”--“”正态“。
6
过程能力分析------计量型
Step3. 出现的”能力分析(正态分布)“工具栏内,在”单列“中双 击”C2“,填入”实测值“;在”子组大小(Z)“中输入”5“ ;在”规格下限“中输入10;在”规格上限“中输入10.1,单击 ”确定“。
相关文档
最新文档