电伴热带工作原理
伴热带发热原理

伴热带发热原理介绍伴热是一种通过传导、对流或辐射的方式来提供加热的技术。
它主要应用于工业生产过程中需要加热的场合,如管道、容器等。
伴热带是伴热技术的一种常见形式,广泛应用于各个领域。
伴热带的原理伴热带的工作原理是通过传导热量来加热物体。
伴热带通常由两个主要部分组成:发热芯和外保护层。
1.发热芯:发热芯是伴热带的核心部分,其主要功能是发热。
发热芯通常由导电材料制成,例如铜或镍铬合金。
电流通过导线流过发热芯,将电能转化为热能。
发热芯的长度和直径会影响伴热带的加热效果。
2.外保护层:外保护层用于保护发热芯,防止损坏和外部环境的干扰。
外保护层通常由绝缘材料制成,例如聚烯烃或氟塑料。
外保护层具有一定的耐高温能力,以确保伴热带在高温环境下正常工作。
伴热带的工作方式伴热带主要通过对流、辐射或传导的方式将热量传递给被加热物体。
1.对流传热:在对流传热中,伴热带的发热芯通常采用波浪形结构。
当电流通过发热芯时,发热芯表面会产生一定的热量,进而引起周围空气的对流。
通过对流的方式,热量可以较快地传递给被加热物体。
2.辐射传热:在辐射传热中,发热芯会产生热辐射,通过辐射将热量传递给被加热物体。
辐射传热不需要介质来传递热量,因此可以在真空或大气压下进行加热。
3.传导传热:在传导传热中,伴热带直接与被加热物体接触,通过直接的物质接触来传递热量。
通过传导传热,热量可以在物体内部迅速传递。
伴热带的应用领域伴热带广泛应用于各个领域,以下是一些常见的应用领域:1.工业加热:在工业生产中,伴热带常用于管道、容器、储罐等设备的加热。
通过伴热带,可以提高产能、保证生产质量,并且可以进行精确的温度控制。
2.化学工程:在化学反应中,伴热带可用于加热反应槽、反应釜等设备。
通过伴热带,可以提高反应速率和产物质量。
3.冷却装置:在某些需要冷却的场合,伴热带可以通过对流方式将热量从被冷却物体中带走。
这种应用方式可以避免使用冷却剂,降低操作成本。
4.保温设备:伴热带可以用于保温设备,如保温管道、冷冻柜等。
电伴热带工作原理

电伴热带工作原理电伴热带是一种利用电能将热量传递到加热物体表面的设备。
它由耐高温绝缘材料包裹的金属发热丝组成,发热丝通过电流加热,从而将热量传递给加热物体。
电伴热带广泛应用于工业生产中的加热设备,如管道加热、容器加热、防冻保温等领域。
电伴热带的工作原理主要包括以下几个方面:1. 电能转换热能。
电伴热带通过电能转换为热能,实现加热物体的加热目的。
当电流通过金属发热丝时,发热丝会产生热量,从而将热量传递给加热物体表面。
这种方式可以快速、均匀地加热加热物体,提高生产效率。
2. 温度控制。
电伴热带通常配有温度控制装置,可以根据加热物体的需要进行温度调节。
通过控制电流的大小,可以实现对加热物体温度的精确控制,保证加热过程稳定、安全。
3. 耐用性。
电伴热带采用耐高温绝缘材料包裹的金属发热丝,具有良好的耐用性和稳定性。
在恶劣的工作环境下,电伴热带能够长时间稳定地工作,不易受到外界环境的影响。
4. 安全性。
电伴热带在设计上考虑了安全因素,采用了防水、防腐蚀、防爆等措施,确保在工作过程中不会发生安全事故。
同时,电伴热带还可以根据需要进行防护装置的设计,进一步提高安全性。
5. 节能环保。
相比传统加热方式,电伴热带具有节能环保的特点。
它可以根据加热物体的需要进行精确加热,避免能源的浪费,减少对环境的影响。
总的来说,电伴热带通过电能转换热能,实现对加热物体的快速、均匀加热,具有温度控制、耐用性、安全性、节能环保等特点。
在工业生产中,电伴热带发挥着重要的作用,为生产提供了可靠的加热解决方案。
伴热带的工作原理

伴热带的工作原理
伴热带是一种基于热交换的技术,主要用于提供温度控制和调节。
它的工作原理基于热量从热源(通常是电子设备或机械设备)流向冷源(通常是周围环境或冷却器)。
下面是伴热带的工作原理:
1. 导热材料:伴热带通常由导热材料制成,例如铜、金属合金等。
导热材料能够有效地传导热量,以便使热量从热源传递到冷源。
2. 电加热丝:伴热带上通常包裹着电加热丝,用于提供热量。
电加热丝通常是由一种高电阻材料制成,当通过电流时,电加热丝会发热。
3. 温度传感器:伴热带上装有温度传感器,用于检测热源周围的温度。
温度传感器能够感知到温度的变化,并将其传递给控制系统。
4. 控制系统:伴热带通常连接到一个控制系统,用于监测和控制热源周围的温度。
控制系统可以根据温度传感器的反馈信号来自动调节电加热丝的功率,以达到所需的温度。
5. 热交换:当控制系统检测到热源周围的温度低于设定的目标温度时,它会增加电加热丝的功率,从而增加热量的释放。
相反,当温度高于目标温度时,控制系统会减少电加热丝的功率。
通过这种方式,伴热带能够根据需要在热源周围提供恒定的温
度,从而保持设备的正常运行。
这种技术广泛应用于冷却器、管道、储罐等需要保持特定温度的设备和系统中。
电伴热带热效力计算

电伴热带热效力一、电伴热原理简介自控温电热带是由导电聚合物和两条平行金属导线及绝缘层构成。
其特点是导电聚合物具有很高的电阻正温度系数特性,且相互并联;能随被加热体系的温度变化自动调节输出功率,自动限制加热的温度。
电热带接通电源后,电流由一根线芯经过导电材料到另一线芯而形成回路。
电能使导电材料升温,其电阻随即增加,当芯带温度升至某值之后,电阻大到几乎阻断电流的程度,其温度不再升高,与此同时电热带向温度较低的被加热体系传热。
电热带的功率主要受控于传热过程,随被加热体系的温度自动调节输出功率。
二、性能参数:1.温度范围:最高维持温度65℃,最高承受温度105℃2.施工温度:最低-60℃3.热稳定性:由10℃至99℃间来回循环300次后,热线发热量维持在90%以上。
4.工作电压:220V三、名词解释:1.PTC效应及PTC材料:PTC效应即电阻正温度系数效应(Positive Temperature coefficienT),特指材料电阻随温度升高而增大,并在某一温区急剧增大的特性。
具有PTC效应的材料称为PTC材料。
2.标称功率:额定电压下,在一定保温层内以电缆伴热的管道温度为10℃时,每米温控伴热电缆输出的稳态电功率。
3.温控指数:温度每升高1℃时,电缆输出功率的下降值或温度每下降1℃时,电缆输出功率的增加值。
4.温控伴热电缆(自控温电热带)维持温度:它分为三种温度区范围:低温、中温、高温系列最高维持温度分别为70±5℃,105±5℃,135±5℃。
5.最高维持温度:用一定型号的电缆伴热某一体系时,能使体系维持到的最高温度。
它是一个相对参数,与体系的热损失大小有关,与伴热电缆的最高表面温度有关。
若设计得当,可使体系维持在从最高维持温度到环境温度之间的任度。
若单位时间内温控伴热电缆向体系传递的热量等于体系向环境传递的热量,体系的温度便得以维持不变。
四、管线伴热工艺参数:1.介质:2.维持温度℃3.环境最低温度℃4.最高操作温度:a.连续操作温度 b.扫线操作温度5.管材6.管径mm7.管道长度m8.保温材料9.保温层厚度mm10.环境:a.室内或室外b.地面或埋地c.防爆或非防爆d.防腐或非防腐11.电压五、散热量计算已知;管径分别是2″、3″、4″、6″,管材为碳钢,介质为水,维持温度5℃,环境最低温度-20℃,保温材料岩棉,保温层厚度50mm,分别计算每米管道热损失。
伴热带知识

第四章伴热带电伴热带是为解决北方天气温度低,管道冻堵的问题而诞生的,目前大多数伴热带都带有自控温功能,一般情况下,伴热带的温度达到70度时,伴热带就会自动减少加热电流,使伴热带自动恒温。
一、工作原理:伴热带主要材料是半导电的高分子复合PTC,在其外面包裹一层绝缘材料作为护套。
当通电时,电流由一根线芯经过导电的PTC材料到另一根线芯形成回路,导电材料升温,电阻随之增加。
当温度升到一定程度,阻值大到几乎可以将电流阻断,伴热带便停止加热,向管道散热。
自限温伴热带每米功率大约25瓦(宽度不同功率也不同),随着温度升高,功率会随之降低,安装时可随意剪断,取其不同长度。
二、伴热带安装注意事项:(一)、伴热带安装时遵循四原则:1、长度足够:按照需要保温的管道,取足够的长度,中间不得接头。
2、线头错开:接头和盲头的两根线芯错开至少2cm ,不得平行。
3、注意防水:用防水胶布和防水密封胶按要求密封接头。
4、放在中间:将伴热带的接线端和盲端放在两层保温的中间。
(二)、伴热带五注意事项:1、电伴热带的功率要同主控制器的功率相匹配,尽量最长敷设不超过50m 。
2、电伴热带敷设时必须紧贴管道,以减少热量丢失。
3、防冻感温探头不得与伴热带直接接触,感温探头应和伴热带分别放在管道两侧,以免造成感温不准确。
4、施工过程中,伴热带表层不得划伤,破皮或有裂痕等。
一旦发现,立即更换。
5、不得过度弯曲或折弯伴热带,其最小弯曲半径应大于五倍带宽。
三、故障检修:故障迹象可能原因校正方法线路断路器跳闸1)断路器选型太小2)线路需电量超过断路器所能提供3)断路器在低于设计起动温度下起动4)断路器故障5)接线盒或其他配件有短路6)电热带收到机械损坏7)尾端处误将电热带两导线连接8)电热带首尾端绝缘层热收缩,导电体与管线或屏蔽层短路;123)重新计算核对电路所需电量,再选配合用的断路器(供电电缆亦应选配);4)对断路器进行检查;5、6)确定故障所在,进行重装或更换。
电伴热带工作原理

电伴热带工作原理 1、 概述 自控温电伴热带(或称自限温电热带)。
它是一种电热功率随系统温度自调的带状限温伴热器。
即电缆本身具有自动限温,并随着被加热体系的温度变化能自动调整发热功率的功能,以保证工作体系始终稳定在设定的最佳操作温区正常运行。
1.1 工作优点 —加热时能够自动限定电缆的工作温度; —能随被加热体系的温度变化自动调整输出功率而无需外加设备; —电缆可以任意裁短或在一定范围内接长使用,而上述性能不变。
—允许交叉重叠缠绕敷设而无过热及烧毁之忧。
1.2 工作优点 自控温电伴热带在用于防冻和保温时,具有如下优点: —伴热管线温度均匀,不会过热,安全可靠; —节约电能,稳态时,功率较小; —间歇操作时,升温启动快速; —安装及运行费用低; —安装使用维护简便; —便于自动化管理。
2、 PTC工作原理 2.1 PTC效应及PTC材料 PTC效应即正温度系数效应,是特指材料电阻率随着温度升高而增大,并在一定温度区间电阻率急剧增大的特性。
具有PTC效应的材料称为PTC材料,本电缆的高分子PTC材料是半晶离聚物与炭黑的共混物。
2.2 工作原理 自控温电伴热带的电热元件,是在两根平行金属母线之间均匀的挤包一层PTC 材料制成的芯带。
PTC材料经熔融挤出、冷却定型之后,分散其中的炭微粒形成无数纤细的导电炭网络。
当它们跨接在两根平行母线上时,就构成芯带的PTC并联回路。
电缆一端的两根母线与电源接通时,电流从一根母线横向流过PTC材料层到达另一根母线形成并联回路。
PTC层就是连续并联在母线之间的电阻发热体,将电能转化成热能,对操作系统进行伴热保温。
当芯带温度升到相应的高阻区时,电阻大到几乎阻断电流的程度,芯带的温度将达到高限不再升高(即自动限温)。
与此同时,芯带通过护套向温度较低的被加热体系传热,达到稳态时单位时间传递的热量等于电缆的电功率。
电缆的输出功率主要受控于传热过程以及被加热体系的温度。
2.3工作性能 2.3.1功率自调性能 自控温电伴热带的电热功率是随温度升高而自动减少,或随温度降低自动增大,同时电阻达到极大时,电热功率就趋于极小,温度便升到了高限,这就是电缆的自限温特性。
伴热带工作原理

伴热带工作原理
伴热带是一种常用于工业生产中的加热设备,它能够在低温环境下对管道、容器等设备进行加热,保持流体的温度,确保生产过程的正常进行。
那么,伴热带是如何工作的呢?接下来,我们将详细介绍伴热带的工作原理。
首先,伴热带由加热元件、绝缘层和外护套组成。
加热元件通常采用导热性能好的金属或合金制成,能够将电能转化为热能,实现加热的目的。
绝缘层的作用是防止加热元件与外部环境产生热量交换,从而提高加热效率。
外护套则能够保护加热元件和绝缘层不受外部环境的损坏,延长伴热带的使用寿命。
其次,伴热带的工作原理是利用加热元件产生的热量,通过导热传递的方式将热量传输给被加热的对象。
当伴热带通电工作时,加热元件会产生热量,然后通过绝缘层传导到外护套,最终传输给被加热的管道、容器等设备,使其保持一定的温度。
这样就能够避免流体在低温环境下结冰或凝固,确保生产过程的正常进行。
此外,伴热带还可以根据被加热对象的形状和尺寸进行定制,保证加热效果的均匀性和稳定性。
通过合理的设计和安装,可以使伴热带完全贴合被加热对象的表面,确保热量能够均匀传输,避免局部温度过高或过低的情况发生。
总的来说,伴热带的工作原理是利用加热元件产生的热量,通过绝缘层和外护套传导给被加热的对象,从而保持其温度。
合理的设计和安装能够确保伴热带的加热效果达到最佳状态,为工业生产提供稳定可靠的加热保障。
在实际应用中,我们需要根据具体的工艺要求和环境条件选择合适的伴热带,并严格按照要求进行安装和维护,以确保其正常工作。
希望本文对您了解伴热带的工作原理有所帮助,谢谢阅读!。
伴热带工作原理

伴热带工作原理
伴热带是由一些特殊的发电机组成的装置,用于产生热量,以满足建筑物或工厂设备的需要。
它们能够把动力从机械能转化为热量,从而对设备进行供热。
伴热带的主要作用是将冷空气或冷水带入设备中,并在设备内部产生热空气或热水,以满足热量需求。
伴热带的运行原理主要有三个方面:
1.发电机的原理。
伴热带使用了电动机的特性,把电动机的机械能转换为热量。
电动机的转子绕着磁极转动,导致磁场的改变,产生交流电和热量。
因此,当电动机运转时,伴热带就能生成热量。
2.热量传输原理。
伴热带的热量传输原理主要是利用了通用热传输原理,即热量是在物体之间从高温向低温传输的。
当物体1中的热量向物体2传输时,会出现反向流动,即低温物体向高温物体的流动,使得物体2的温度上升,因此,热量可以从发电机中传输到设备中。
3.冷却原理。
伴热带还具有冷却作用。
当设备内部的热量过高时,伴热带会通过冷却装置将热量转移出去,以维持设备内部热量的稳定。
以上就是伴热带的基本原理。
伴热带在工业和建筑中的应用十分广泛,它们可以提供热能,使房屋、设备以及工厂设备得以正常运行。
作为一种重要的热量源,伴热带的性能必须符合相关标准,以保证其质量和安全。
此外,为了降低工厂的能耗,应当选择合适的伴热带,采用优化的运行方案。
这样才能在节能减排的同时,有效提高伴热带的热量利用率。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电伴热带工作原理
电伴热带电缆由导电高分子复合材料(塑料)和两根平行金属导线及绝缘护套构成的扁形带状电缆。
其特性是导电高分子复合材料具有正温度系数”PTC”特性,且相互并联,能随被加热体系的温度变化自动调节输出功率,自动限制加热的温度。
“PTC”特性即正温度系数效应,是指材料电阻率随着温度升高而增大,并在一定温度区间电阻率急剧增大的特性。
温控伴热电缆可以任意截短或在一定范围内接长使用,并允许多次交叉重叠而无高温热点及烧毁之虑。
因此温控伴热电缆优点是:
温控电伴热带电缆相应被伴热体系具有自动调节输出功率,因此不会因自身发热而烧毁,却因实际需要热量进行补偿,因此为新一代节能型恒温加热器。
低温状态快速启动,温度均匀,每一局部皆可因其被伴热处的温度变化自动调节。
安装简便,维护简单,自动化水平高,运行及维护费用低。
安全可靠,用途广,不污染环境,寿命长。
用电热器件加热,得到合适的温度,就叫电伴热.
比如,冬天化工厂的某项露天管道,为了保持温度,通常会在管壁绕上电热线,通电加热,保持温度.
在比如某些电气控制柜内为了防止受潮或防止雾结水,会安装一个电加热器提高柜内温度,这也是电伴热.
通常电伴热都是有温度控制单元的,以保持温度在设定的范围内.。