线性代数第一章课件,数学
合集下载
线性代数课件 第一章

0 0 0 0 0 0 ≠ ( 0 0 0 0) . 0 0 0
1 0 (5)单位矩阵 单位矩阵 0 1 E = En = L L O 0 0
称为单位矩阵( 单位阵) 称为单位矩阵(或单位阵). 单位矩阵
L 0 O L 0 L L L 1
a11 a 21 A= L a m1
简记为
a12 a 22 L am1
L a1 n L a2n L L L a mn
矩阵A的 (m, n)元
A = Am×n = (aij )m×n = (aij ).
这m × n个数称为 A的元素 ,简称为元 . 简称为元
a11 x1 + a12 x2 + L + a1n xn = b1 a x + a x +L + a x = b 21 1 22 2 2n n 2 LLLLLLLLLLLL am1 x1 + am 2 x2 + L + amn xn = bm
, , 系数 aij ( i =1,2,L m, j =1,2,L n) , 常数项 bi (i = 1,2,L,n)
全为1 全为
(6)方阵 方阵 主对角线
a11 a12 a21 a22 A= L L 副对角线 an1 an1
简记为
L a1n L a2 n L L L ann
n× n
矩 A 阵 的
( n, n) 元
A = An× n = ( aij )
.
矩阵的转置
a11 a 21 A= L a m1
定义3 如果矩阵A经过有限次的初等变换变成B 定义3 如果矩阵A经过有限次的初等变换变成B, 就称矩阵A与矩阵B等价, 就称矩阵A与矩阵B等价,记作 A ~ B . 矩阵之间的等价具有自反性、对称性和传递性. 矩阵之间的等价具有自反性、对称性和传递性. 例如 用矩阵的初等行变换 解线性方程组
1 0 (5)单位矩阵 单位矩阵 0 1 E = En = L L O 0 0
称为单位矩阵( 单位阵) 称为单位矩阵(或单位阵). 单位矩阵
L 0 O L 0 L L L 1
a11 a 21 A= L a m1
简记为
a12 a 22 L am1
L a1 n L a2n L L L a mn
矩阵A的 (m, n)元
A = Am×n = (aij )m×n = (aij ).
这m × n个数称为 A的元素 ,简称为元 . 简称为元
a11 x1 + a12 x2 + L + a1n xn = b1 a x + a x +L + a x = b 21 1 22 2 2n n 2 LLLLLLLLLLLL am1 x1 + am 2 x2 + L + amn xn = bm
, , 系数 aij ( i =1,2,L m, j =1,2,L n) , 常数项 bi (i = 1,2,L,n)
全为1 全为
(6)方阵 方阵 主对角线
a11 a12 a21 a22 A= L L 副对角线 an1 an1
简记为
L a1n L a2 n L L L ann
n× n
矩 A 阵 的
( n, n) 元
A = An× n = ( aij )
.
矩阵的转置
a11 a 21 A= L a m1
定义3 如果矩阵A经过有限次的初等变换变成B 定义3 如果矩阵A经过有限次的初等变换变成B, 就称矩阵A与矩阵B等价, 就称矩阵A与矩阵B等价,记作 A ~ B . 矩阵之间的等价具有自反性、对称性和传递性. 矩阵之间的等价具有自反性、对称性和传递性. 例如 用矩阵的初等行变换 解线性方程组
线性代数第一章1-3PPT课件

1234
例3
0421
D
?
0056
0008
12340421Fra bibliotekD 0
0
5
6 a a a a 11 22 33 44 1 4 5 8 160.
0008
同理可得下三角行列式
a11
0 00
a21 a22 0 0
an1
an2
an3 ann
a11a22 ann .
例4 证明对角行列式
1 2
12 n;
t132 1 0 1, 奇排列 负号,
a11 a12 a13
a21 a22 a23 (1)t a1 p1a2 p2 a3 p3 .
a31 a32 a33
二、n阶行列式的定义
定义 设有n2 个数,排成 n 行n列的数表
a11 a12
a1n
a21 a22
a2n
an1 an2
ann
作出表中位于不同行不同列的 n 个元素的乘积,
对应于
1 1 2x 1
1 t a11a22a33a44 1 t1234a11a22a34a43
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
17
结束语
当你尽了自己的最大努力时,失败 也是伟大的,所以不要放弃,坚持 就是正确的。
n
2
1
nn1
1 2 12 n .
n
证明 第一式是显然的,下面证第二式.
若记 i ai,ni1, 则依行列式定义
2
1
a1n
a2,n1
n
an1
1 tnn121a1na2,n1 an1
线性代数课件第一章第一节PPT课件

第7页/共51页
应用三、电网 工程师利用仿真软件设计电路以及包含 百万晶体管的微芯片.这类软件离不开线性 代数方法和线性代数方程.
第8页/共51页
应用四、经济学和工程学中的线性模型
列昂惕夫 美籍俄裔著名经济学家,1906 年8月日生于俄国彼得堡,1925年毕业于列 宁格勒大学经济系。1928年获德国柏林大 学哲学博士学位。
第9页/共51页
但是,当时MarkⅡ还不能处理500个未知量、 500个方程组的方程组.所以他把这个问题提炼成 42个未知量、42个方程的方程组.
最后,经过56小时的持续运转, MarkⅡ终于求出了一个解.
列昂惕夫开启了通往经济学数学 模型一个新时代的大门,并于1973年 荣获诺贝尔奖.从那时起,其他领域 的研究者也开始使用计算机分析数学 模型. 常用的数学软件有Matlab、Maple、 Mathematica、SAS、Mathcad.
1 2 3
D 0 1 1 2 3 3 2
13 0
4 2 3
D1 3 1 1 8 27 12 12 11
4 3 0
第37页/共51页
14 3
D2 0 3 1 4 9 4 1
1 4 0
1 2 4
D3 0 1 3 4 6 4 9 7
1 3 4
于是,方程组的解为:
11 22 44
例2 计算三阶行列式 D 2 2 1
解二: 利用展开法
3 4 2
D 1 2 1 2 2 1 (4) 2 2
4 2 3 2
3 4
8 27 4(2)
8 14 8
14
第29页/共51页
例3 求解方程
解 方程左端
11 23 49
1 x 0 x2
应用三、电网 工程师利用仿真软件设计电路以及包含 百万晶体管的微芯片.这类软件离不开线性 代数方法和线性代数方程.
第8页/共51页
应用四、经济学和工程学中的线性模型
列昂惕夫 美籍俄裔著名经济学家,1906 年8月日生于俄国彼得堡,1925年毕业于列 宁格勒大学经济系。1928年获德国柏林大 学哲学博士学位。
第9页/共51页
但是,当时MarkⅡ还不能处理500个未知量、 500个方程组的方程组.所以他把这个问题提炼成 42个未知量、42个方程的方程组.
最后,经过56小时的持续运转, MarkⅡ终于求出了一个解.
列昂惕夫开启了通往经济学数学 模型一个新时代的大门,并于1973年 荣获诺贝尔奖.从那时起,其他领域 的研究者也开始使用计算机分析数学 模型. 常用的数学软件有Matlab、Maple、 Mathematica、SAS、Mathcad.
1 2 3
D 0 1 1 2 3 3 2
13 0
4 2 3
D1 3 1 1 8 27 12 12 11
4 3 0
第37页/共51页
14 3
D2 0 3 1 4 9 4 1
1 4 0
1 2 4
D3 0 1 3 4 6 4 9 7
1 3 4
于是,方程组的解为:
11 22 44
例2 计算三阶行列式 D 2 2 1
解二: 利用展开法
3 4 2
D 1 2 1 2 2 1 (4) 2 2
4 2 3 2
3 4
8 27 4(2)
8 14 8
14
第29页/共51页
例3 求解方程
解 方程左端
11 23 49
1 x 0 x2
线性代数第一章行列式课件

a11
a12
a1n
a11 a12
a1n a11 a12
a1n
ai1 bi1 ai2 bi2
ain bin ai1 ai2
ain bi1 bi2
bin
an1
an2
ann
an1 an2
ann an1 an2
ann
性质5 将行列式的某一行(列)的所有元素同乘以 一个数 k 加到另外一行(列)上,行列式不变,即
a1,n1 a2,n1
a1n a2n
a11 a21
a12 a22
a1,n1 a2,n1
an1,1 0
an1,2 0
an1,n1 0
an1,n 1
a a n1,1
n1,2
an1,n1
其中等号左端的行列式是一个 n 阶行列式;等号右端
的行列式是左端 n 阶行列式的前 n-1 行前 n-1 列的元
素所组成的 n-1 阶行列式,即左端行列式第 n 行第 n
j 1, 2, , n
ann
a1n
(1)i j aij
ai 1,1 ai1,1
ai1, j1 ai1, j1
ai1, j1 ai1, j1
ai1,n ai1,n
an1
an, j1
an, j1
ann
定理4 设
a11 a12
a1n
D a21 a22
a2n
an1 an2
ann
是一个 n 阶行列式, Aij 为 D 的第 i 行第 j 列元素 aij 的代数余子式,则有
1
2
n ( n 1)
(1) 2 12 n
n
二、行列式的基本性质
定义6 设
线性代数第一章ppt

线性代数第一章
目录
CONTENTS
• 绪论 • 线性方程组 • 向量与向量空间 • 矩阵 • 特征值与特征向量
01
绪论
线性代数的定义与重要性
线性代数是数学的一个重要分支,主要研究线性方程组、向量空间、矩阵 等线性结构。它在科学、工程、技术等领域有着广泛的应用。
线性代数的重要性在于其提供了一种有效的数学工具,用于解决各种实际 问题中的线性关系问题,如物理、化学、生物、经济等。
向量空间中的零向量是唯一确定的,且对于任意 向量a,存在唯一的负向量-a。
向量空间的运算与性质
向量空间中的加法满足交换律和结合 律,即对于任意向量a和b,存在唯一 的和向量a+b;且对于任意三个向量a、 b和c,(a+b)+c=a+(b+c)。
向量空间中的数乘满足结合律和分配 律,即对于任意标量k和l,任意向量a 和b,存在唯一的结果k*(l*a)=(kl)*a 和(k+l)*a=k*a+l*a。
圆等。
经济学问题
线性方程组可以用来描述经济现象和 规律,例如供需关系、生产成本、利
润最大化等。
物理问题
线性方程组可以用来描述物理现象和 规律,例如力学、电磁学、热力学等。
计算机科学
线性方程组在计算机科学中有广泛的 应用,例如机器学习、图像处理、数 据挖掘等。
03
向量与向量空间
向量的定义与性质
01 向量是具有大小和方向的量,通常用有向线 段表示。 02 向量具有模长,即从起点到终点的距离。
特征值与特征向量的计算方法
定义法
幂法
谱分解法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特征 值和特征向量。这种方法适用于 较小的矩阵,但对于大规模矩阵 来说效率较低。
目录
CONTENTS
• 绪论 • 线性方程组 • 向量与向量空间 • 矩阵 • 特征值与特征向量
01
绪论
线性代数的定义与重要性
线性代数是数学的一个重要分支,主要研究线性方程组、向量空间、矩阵 等线性结构。它在科学、工程、技术等领域有着广泛的应用。
线性代数的重要性在于其提供了一种有效的数学工具,用于解决各种实际 问题中的线性关系问题,如物理、化学、生物、经济等。
向量空间中的零向量是唯一确定的,且对于任意 向量a,存在唯一的负向量-a。
向量空间的运算与性质
向量空间中的加法满足交换律和结合 律,即对于任意向量a和b,存在唯一 的和向量a+b;且对于任意三个向量a、 b和c,(a+b)+c=a+(b+c)。
向量空间中的数乘满足结合律和分配 律,即对于任意标量k和l,任意向量a 和b,存在唯一的结果k*(l*a)=(kl)*a 和(k+l)*a=k*a+l*a。
圆等。
经济学问题
线性方程组可以用来描述经济现象和 规律,例如供需关系、生产成本、利
润最大化等。
物理问题
线性方程组可以用来描述物理现象和 规律,例如力学、电磁学、热力学等。
计算机科学
线性方程组在计算机科学中有广泛的 应用,例如机器学习、图像处理、数 据挖掘等。
03
向量与向量空间
向量的定义与性质
01 向量是具有大小和方向的量,通常用有向线 段表示。 02 向量具有模长,即从起点到终点的距离。
特征值与特征向量的计算方法
定义法
幂法
谱分解法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特征 值和特征向量。这种方法适用于 较小的矩阵,但对于大规模矩阵 来说效率较低。
线性代数第-章1.4PPT课件

向量空间的性质
总结词
向量空间具有一些重要的性质,如加法的结合律、交换律和分配律,数乘的结合律和分配律等。
详细描述
向量空间的加法满足结合律和交换律,即对任意向量u、v、w∈V,有u+(v+w)=(u+v)+w和u+v=v+u;数乘也 满足结合律和分配律,即对任意标量k、l∈F和任意向量u∈V,有k(l(u))=(kl)(u)和k(u+v)=ku+kv。
线性组合的应用
向量表示
线性组合可以用来表示向量,使得向量的运算更加简洁明了。
线性方程组
线性组合可以用来求解线性方程组,通过将方程组中的未知数表示 为已知向量的线性组合,简化方程组的求解过程。
向量空间
线性组合是向量空间中向量运算的基本形式之一,可以用来研究向 量空间的性质和结构。
04
向量的线性相关性
中任意向量可以由这组基线性表示。
基的个数
02 一个向量空间的一组基的个数是有限的,且等于该向
量空间的维数。
基的特性
03
基中的向量是线性无关的,且可以作为该向量空间的
坐标系。
基的性质
唯一性
一个向量空间的一组基是唯一的,即如果存在另一组基也可 以表示向量空间中的任意向量,则这两组基之间存在一一对 应的关系。
05
向量组的秩
秩的定义
01
秩的定义
向量组的秩是指该向量组构成的 矩阵的秩,即该矩阵的最高阶非 零子式的阶数。
02
03
秩的符号表示
秩的性质
用符号“秩”表示,常用大写英 文字母表示,如A的秩记作r(A) 。
向量组的秩是该向量组线性无关 的向量的个数,与向量组的维数 有关。
高等数学线性代数课件-第一章

2020/9/18
11
§2 全排列与逆序数
定义1:把 n 个不同的元素排成的一列, 称为这 n 个元素的一个全排列, 简称排列。
把 n 个不同的元素排成一列, 共有 Pn个排列。 P3 = 3×2×1 = 6
2020/9/18
12
例如:1, 2, 3 的全排列 123,231,312,132,213,321 共有3×2×1 = 6种,即 P3 = 3×2×1 = 6
26
§5 行列式的性质
a11 a12 a1n
a11 a21 an1
设
D
a21
a22
a2n
则
DT
a12
a22
an2
an1 an2 ann
所确定。
2020/9/18
18
定义1: n! 项(1)t a1 p1 a2 p2 anpn的和
(1)t a1 p1 a2 p2 anpn
称为 n 阶行列式 (n≥1),记作
a11 a12 a1n a21 a22 a2n
an1 an2 ann
2020/9/18
19
例1:写出四阶行列式中含有因子 a11a23 的项。
a 1n
D
a2,n1
n( n1)
(1)
2
a a a 1n 2,n1
n1
an1
2020/9/18
25
行列式的等价定义
a11 a12 a1n
a21 a22 a2n
(1)t a1 j1 a2 j2 anj n
an1 an2 ann
(1)t a a i11 i2 2 ainn
2020/9/18
D2 2
21 1
线性代数第一章、矩阵PPT课件

矩阵的秩的计算方法
可以通过初等行变换或初等列变换将矩阵转化为行阶梯形或列阶梯形,然后数非零行的个数即为矩阵的秩。
矩阵的秩的定义
矩阵的秩是其行向量组或列向量组的一个极大线性无关组中向量的个数。
矩阵的秩
通过初等行变换将增广矩阵化为行阶梯形,然后回代求解。
高斯消元法
克拉默法则
迭代法
适用于线性方程组系数行列式不为0的情况,通过解方程组求出方程的解。
n阶方阵A的行列式记为det(A),是一个n阶的方阵,其值是一个实数。
行列式与转置矩阵的行列式相等,即det(A^T) = det(A);行列式的乘法性质,即det(kA) = k^n * det(A);行列式的初等变换性质,即行列式在初等变换下保持不变。
行列式的定义与性质
行列式的性质
行列式的定义
线性代数第一章、矩阵ppt课件
目录
CONTENTS
矩阵的定义与性质 矩阵的逆与行列式 矩阵的秩与线性方程组 矩阵的特征值与特征向量 矩阵的分解与正交矩阵 矩阵在实际问题中的应用
01
矩阵的定义与性质
CHAPTER
矩阵的定义与性质
about the subject matter here refers to the subject matter here.
相似法
如果存在可逆矩阵P,使得P^(-1)AP=B,则矩阵A的特征值和特征向量可以通过矩阵B的特征值和特征向量来求解。
特征值与特征向量的计算方法
如果矩阵A的所有特征值都是实数且没有重复,则矩阵A可以对角化。
判断矩阵是否可对角化
求解线性方程组
判断矩阵是否相似
优化问题
通过将线性方程组Ax=b转化为特征值问题,可以求解线性方程组。
可以通过初等行变换或初等列变换将矩阵转化为行阶梯形或列阶梯形,然后数非零行的个数即为矩阵的秩。
矩阵的秩的定义
矩阵的秩是其行向量组或列向量组的一个极大线性无关组中向量的个数。
矩阵的秩
通过初等行变换将增广矩阵化为行阶梯形,然后回代求解。
高斯消元法
克拉默法则
迭代法
适用于线性方程组系数行列式不为0的情况,通过解方程组求出方程的解。
n阶方阵A的行列式记为det(A),是一个n阶的方阵,其值是一个实数。
行列式与转置矩阵的行列式相等,即det(A^T) = det(A);行列式的乘法性质,即det(kA) = k^n * det(A);行列式的初等变换性质,即行列式在初等变换下保持不变。
行列式的定义与性质
行列式的性质
行列式的定义
线性代数第一章、矩阵ppt课件
目录
CONTENTS
矩阵的定义与性质 矩阵的逆与行列式 矩阵的秩与线性方程组 矩阵的特征值与特征向量 矩阵的分解与正交矩阵 矩阵在实际问题中的应用
01
矩阵的定义与性质
CHAPTER
矩阵的定义与性质
about the subject matter here refers to the subject matter here.
相似法
如果存在可逆矩阵P,使得P^(-1)AP=B,则矩阵A的特征值和特征向量可以通过矩阵B的特征值和特征向量来求解。
特征值与特征向量的计算方法
如果矩阵A的所有特征值都是实数且没有重复,则矩阵A可以对角化。
判断矩阵是否可对角化
求解线性方程组
判断矩阵是否相似
优化问题
通过将线性方程组Ax=b转化为特征值问题,可以求解线性方程组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n(n − 1) = 2
新的排列,这种变换称为排列的一个对换. 如果将排列32514中的2与4对调,则 得到的新排列34512,它的逆序数 τ( 34512 )=2+2+2+0=6,为偶排列.这说明, 奇排列32514经过一次对换得到偶排列 34512。一般地,有以下定理。 定理1.1.1 一次对换改变排列奇偶性. 证 分两种情况考虑.
定义1.1.2 在一个排列中,若一个较 大的数排在一个较小的数的前面,则称这 两个数构成一个逆序. 一个排列中所有逆 序的总数称为这个排列的逆序数.用
τ(j1,j2,…,jn)表示排列j1,j2,…,jn的逆序数.
逆序数是偶数的排列称为偶排列,逆序数 是奇数的排列称为奇排列. 对一个n阶排列 j1,j2,…,jn ,如何求它 的逆序数呢?
τ (n(n − 1) L321)
= ( n − 1) + ( n − 2) + L + 2 + 1 + 0
排列32514为奇排列;排列n(n-1) …321, 当n=4k,4k+1时为偶排列;当n=4k+2,4k+3时 为奇排列. 定义1.1.3 把一个排列中某两个数的 位置互换,而其余的数不动,就得到一个
1.1.2 二阶与三阶行列式 本段的目的是叙述行列式这个概念的 形成,这需要从解线性方程组谈起. 设二元一次线性方程组 a11 x1 + a12 x 2 = b1 , a 21 x1 + a 22 x 2 = b2 .
(1.1.6)
用消元法去解此方程组.先分别用a22和-a12 去乘(1.1.6)式的一式和二式的两端,然 后再将得到的两式相加,得
D2 =
a11
b1
a 21 b2
= a11b2 − b1a21
于是,当D≠0时,二元一次线性方程组 (1.1.6)的解可用二阶行列式表示成
D1 D2 x1 = x2 = D D 同理,考虑三元一次线性方程组
a11 x1 + a12 x 2 + a13 x3 = b1 , a 21 x1 + a 22 x 2 + a 23 x3 = b2 , a x + a x + a x = b 32 2 33 3 3. 31 1
(a11a22-a12a21)x1=a22b1-a12b2, 用类似方法,从(1.1.6)中消去x1 (a11a22-a12a21)x2=a11b2-b1a21, 当a11a22-a12a21≠0时,方程组(1.1.6)有 唯一解
b1 a 22 − a12 b2 x1 = a a − a a , 11 22 12 21 a11b 2 −b1 a 21 x2 = . a11 a 22 − a12 a 21
1 2 n 1 2
பைடு நூலகம்
LLLLLLL
(1.1.11)
L a njn
(− 1)τ ( j j L j ) a1 j a 2 j ∑
其中
j1 j2 L jn
∑ 表示对 1,2,…,n这n个数组成的所
有排列 j1,j2,…,jn取和. 当n=1时, 即为一阶行列式,我们规定 |a|=a;n=2,3时,即为前面定义的二阶、三阶 行列式. 为了书写方便,n阶行列式也可记为 Dn=|aij|n. 例1.1.2 计算n阶下三角形 下三角形行列式 下三角形
设这个排列中排在j1后面比j1小的数的个 数为τ (j1) ,排在j2后面比 j2小的数的个数 为τ (j2) , …,排在jn-1后面比 jn-1小的数的 个数为τ (jn-1) ,则排列 j1,j2,…,jn的逆序数 为 τ ( j1,j2,…,jn ) =τ (j1) +τ (j2) + …+τ (jn-1) 例1.1.1 求排列32514与n(n-1) …321的 逆序数. 解 τ ( 32514 ) = 2+1+2+0+0=5;
1 2 n
j1,j2,…,jn是数字1,2,…,n的某一个排列,故 共有n!项。每项前的符号按下列规定:当 j1,j2,…,jn为偶排列时取正号,当 j1,j2,…,jn为 奇排列时取负号,即
a11 D= a 21 a n1 =
j1 j2 L jn
a12 L a1n a 22 L a 2 n a n 2 L a nn
a11 a 22 L a nn
由于该项的列指标的排列是标准排列, 其逆序数为零,所以取正号,故
a11 a 21 M a n1 0 L 0 a 22 L 0 M M a n 2 L a nn
= a11a22 L ann
即下三角形行列式的值等于主对角线 上元素的乘积. 同理,对于上三角形行列式,有
a11 0 M 0
D1 x1 = D D2 x2 = D D3 x3 = D
其中Dj(j=1,2,3)分别是在D中把第 j列的元 素换成方程组(1.1.9)右端的常数项b1,b2,b3 得到. 三阶行列式是六项的代数和,其中每一 项都是 D中不同行不同列的三个元素的乘 积冠以正负号.为了便于记忆,可写成
a11 a 21 a31 a12 a 22 a32 a13 a 23 a33
1.相邻两个数对换的情况. 设排列为
Lij L
经过i与j的对换变成
(1.1.1)
(1.1.2) 这里“…”表示对换前后排列中不变的数. 由于这两个排列只交换i,j两个数的位置, 其余的数的位置没有改变,所以各数的逆 序数中只有τ (i) 和τ (j)可能有变化,其余 各
L ji L
数的逆序数不变.当i<j时,排列(1.1.2)的 逆序数比排列(1.1.1)增加1;如果 i>j , 排列(1.1.2)的逆序数比排列(1.1.1)减 少1.因此排列(1.1.1)与(1.1.2)的奇偶 . 性相反. 2.一般情况. 设某个排列
解 用类似于例1.1.2的方法,该行列 式的展开式中,只有下列一项不为零,
a1n a 2, n −1 L a n −1, 2 a n1
这一项列指标排列的逆序数为
n(n − 1) τ (n(n − 1) L 321) = 2
故
Dn = (−1)
n ( n −1) 2
a1n a 2,n −1 L a n −1, 2 a n1
a11 a 21 a31
a12 a 22 a32
a13 a 23 = a33
∑ ( −1 )
j1 j2 j3
τ ( j1 j2 j3 )
a1 j1 a2 j2 a3 j3
这里
∑ 表示对1,2这两个数的所有
j1 j2
排列取和, 排列取和.
∑ 表示对1,2,3这三个数的所有
j1 j2 j3
推而广之,我们可以定义n阶行列式.
在行列式的定义中,我们规定n个元素 相乘时,元素的行指标按标准排列,由列指 标排列的逆序数决定各项前的正负号.那么 能否在定义中 n个元素的相乘项里把元素
把x1的系数记为
a11 D = a 21 a31 a12 a 22 a32 a13 a 23 a33
= a11a22 a33 + a12 a23a31 + a13 a 21 a32
− a11a23a32 − a12 a 21 a33 − a13 a 22 a31 . (1.1.10)
由于D中共有三行三列,我们把它称为 三阶行列式.因为它由方程组(1.1.9)中变元 的系数组成,又称其为方程组(1.1.9)的系数 行列式.如果 D≠0,容易算出方程组(1.1.9)有 唯一解:
(1.1.7)
为了便于记忆,引入记号
a11 D= a 21 a12 = a11a 22 − a12 a 21 a 22
(1.1.8)
我们把(1.1.8)式称为二阶行列式.D中横写 的称为行,竖写的称为列.D中共有两行两 列,其中数aij称为行列式的元素,它的第一个 下标i表示这个元素所在的行,称为行指标, 第二个下标 j表示这个元素所在的列,称 为列指标.例如 a21就是位D中第二行,第一 列上的元素.
图中实线上三个元素的乘积的项取正 号,虚线上三个元素的乘积的项取负号.这种 方法称为三阶行列式的对角线法则. 由上面的讨论,自然会想到如何把二阶、 三阶行列式推广到一般的 n阶行列式,并用 它来表达由 n个未知量 n个方程所组成的 线性方程组的解.通过观察二阶、三阶行列 式,发现它们有以下特点: (1) 二阶、三阶行列式的每一项都是取 自不同行不同列的元素的乘积,其代数和即
(1.1.9)
应用消元法先后消去x2和x3,得到
(a11 a 22 a33+ a12 a23a31 + a13a21a32 − a11 a 23 a32 − a12 a 21 a33 − a13 a 22 a 31 ) x1
= b1a22 a33 + a12 a23b3 + a13b2 a32 − a13 a 22 b3 − a12 b2 a33 − b1 a 23 b2 a32
a12 M 0
L a1n M L a nn = a11 a 22 L a nn .
a 22 L a 2 n
特别地,对于对角形行列式,有
d1 0 M 0 0 L d2 O 0 M
O O 0 L 0 dn
=
d1 d 2 L d n
例1.1.3 计算n阶行列式
0 L 0 a1n 0 L a2 ,n −1 a2 n Dn = . M M M an1 L an ,n −1 ann
L i k1 k2 Lks jL
(1.1.3)
经过i与j的对换变成
L j k1 k 2 L k s i L (1.1.4) 由排列(1.1.3)变为排列(1.1.4)可以通 过一系列两两相邻的对换来实现.先将i依次 与 k1,k2,…,ks,j经过 s+1次相邻对换后将 (1.1.3)变为