梯度散度旋度表达式的推导
梯度、散度、旋度的关系

梯度散度散度(divergence)的概念:在矢量场F中的任一点M处作一个包围该点的任意闭合曲面S,当S 所限定的体积ΔV以任何方式趋近于0时,则比值∮F·d S/ΔV的极限称为矢量场F在点M处的散度,并记作div F由散度的定义可知,div F表示在点M处的单位体积内散发出来的矢量F的通量,所以div F描述了通量源的密度。
div F =▽·F气象学:散度指流体运动时单位体积的改变率。
简单地说,流体在运动中集中的区域为辐合,运动中发散的区域为辐散。
用以表示的量称为散度,值为负时为辐合,此时有利于天气系统的的发展和增强,为正时表示辐散,有利于天气系统的消散。
表示辐合、辐散的物理量为散度。
微积分学→多元微积分→多元函数积分: 设某量场由 A (x,y,z) = P(x,y,z)i + Q(x.y,z)j + R(x,y,z)k 给出,其中 P 、Q 、R 具有一阶连续偏导数,Σ 是场内一有向曲面,n 是 Σ 在点 (x,y,z) 处的单位法向量,则 ∫∫A ·n dS 叫做向量场 A 通过曲面 Σ 向着指定侧的通量,而 δP/δx + δQ/δy + δR/δz 叫做向量场 A 的散度,记作 div A ,即 div A = δP/δx + δQ/δy + δR/δz 。
上述式子中的 δ 为偏微分(partial derivative )符号。
散度(divergence )的运算法则:div (α A + β B ) = α div A+ β div B (α,β为常数)div (u A ) =u div A+ A grad u (u 为数性函数)旋度设有向量场A(x,y,z)=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k在坐标轴上的投影分别为δR/δy - δQ/δz , δP/δz - δR/δx ,δQ/δx - δP/δy的向量叫做向量场A 的旋度,记作 rot A 或curl A ,即rot A=(δR/δy - δQ/δz )i+(δP/δz - δR/δx )j+(δQ/δx - δP/δy)k式中的 δ 为偏微分(partial derivative )符号。
哈密顿算子与梯度、散度、旋度

哈密顿算子的定义与性质
• 定义向量微分算子
∂ ∂ ∇ = ∂x i + ∂∂y j + ∂z k
• 称为▽( Nabla ,奈 称为▽ 布拉)算子, 布拉)算子, 或哈密 顿( Hamilton ) 算子
• • •
矢量性 微分算子 只对于算子▽ 只对于算子▽ 右边的量发生 右边的量发生 微分作用
∂Dx ∂Dy ∂Dz + + =ρ ∂x ∂y ∂z ∂Bx ∂By ∂BZ + + =0 ∂x ∂y ∂z
哈密顿算子与梯度、散度、 哈密顿算子与梯度、散度、旋度
• 英汉对对碰 • • • • Operator▽ Operator▽ Gradient Divergence Curl • • • • 哈密顿算子 梯度(grad) 梯度(grad) 散度(div) 散度(div) 旋度(rot) 旋度(rot)
∂u ∂u ∇u = ∂x i + ∂ y ∂u j + ∂z k
= gradu
(2) A = P(x, y, z)i + Q(x, y, z) j + R(x, y, z) k, 则
∇⋅ A
∂P ∂Q ∂R = ∂x + ∂ y + ∂z = div A
i
∂ = ∂x ∇× A P
j
∂ ∂y
k
∂ ∂z
对速度矢量场, 对速度矢量场 , 流体微团运动分析证明 速度散度的物理意义是标定流体微团运 动过程中相对体积的时间变化率。 动过程中相对体积的时间变化率。
矢量场的旋度(curl) 矢量场的旋度(curl)
对矢量场, 对矢量场 , 在笛卡尔坐标系下其旋度定 义为: 义为: ir rj kr
【引用】梯度、散度和旋度的定义及公式表达

【引用】梯度、散度和旋度的定义及公式表达梯度、散度和旋度的定义及公式表达梯度是个向量或表示为散度是个标量设有一个向量场通量可写为则散度并有运算关系式旋度是个向量rotA或curlA或可以写成例如求F沿路径r做的功矢量的环流:矢量沿闭合回路的线积分称为环流说明:哈密顿算符? ,只是个符号,直接作用函数表示梯度,?dotA点乘函数(矢量)表示散度,?XA叉乘函数(矢量)表旋度。
散度指流体运动时单位体积的改变率。
简单地说,流体在运动中集中的区域为辐合,运动中发散的区域为辐散。
其计算也就是我们常说的“点乘”。
散度是标量,物理意义为通量源密度。
散度物理意义:对流体来说,就是流体的形状虽然改变,但是由于散度为0,则其面积或体积不变。
如下式梯度物理意义:最大方向导数(速度)散度物理意义:对流体来说,散度指流体运动时单位体积的改变率。
就是流体的形状虽然改变,但是由于散度为0,则其面积或体积不变。
旋度物理意义:旋度是曲线,向量场旋转的程度。
矢量的旋度是环流面密度的最大值,与面元的取向有关。
附:散度为零,说明是无源场;散度不为零时,则说明是有源场(有正源或负源)若你的场是一个流速场,则该场的散度是该流体在某一点单位时间流出单位体积的净流量. 如果在某点,某场的散度不为零,表示该场在该点有源,例如若电场在某点散度不为零,表示该点有电荷,若流速场不为零,表是在该点有流体源源不绝地产生或消失(若散度为负).一个场在某处,沿着一无穷小的平面边界做环积分,平面法向量即由旋度向量给定,旋度向量的长度则是单位面积的环积分值.基本上旋度要衡量的是一向量场在某点是否有转弯.欧拉定理在数学历史上有很多公式都是欧拉(Leonhard Euler 公元1707-1783年)发现的,它们都叫做欧拉公式,它们分散在各个数学分支之中。
(1)分式里的欧拉公式:a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)当r=0,1时式子的值为0当r=2时值为1当r=3时值为a+b+c(2)复变函数论里的欧拉公式:e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。
散度 旋度 梯度 运算

散度旋度梯度运算散度、旋度和梯度是数学中常用的运算符号,用来描述矢量场的性质和变化规律。
它们在物理学、工程学和计算机图形学等领域有着广泛的应用。
本文将分别介绍散度、旋度和梯度的定义、性质和应用。
一、散度(Divergence)散度是描述矢量场发散或收敛性质的一个概念。
它表示矢量场在某一点上的流出或流入程度。
具体地说,对于一个三维矢量场F(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z)),其散度定义为 D = ∇·F = ∂P/∂x + ∂Q/∂y + ∂R/∂z。
散度可以理解为该点上各个方向的流量之和。
若散度为正,则表示该点上的流量向外;若散度为负,则表示该点上的流量向内;若散度为零,则表示该点上的流量无净流出或流入。
散度在物理学中有着重要的应用,例如在流体力学中,根据散度定理,流体的质量守恒可以用散度来描述。
此外,在电场和磁场中,散度也可以用来描述电荷和磁荷的分布情况。
二、旋度(Curl)旋度是描述矢量场的旋转性质的一个概念。
它表示矢量场在某一点上的旋转程度。
具体地说,对于一个三维矢量场F(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z)),其旋度定义为 C =∇×F = (∂R/∂y - ∂Q/∂z, ∂P/∂z - ∂R/∂x, ∂Q/∂x - ∂P/∂y)。
旋度可以理解为该点上绕着某一轴旋转的程度。
若旋度为正,则表示该点上的旋转方向符合右手定则;若旋度为负,则表示旋转方向符合左手定则;若旋度为零,则表示该点上没有旋转。
旋度在物理学中有着重要的应用,例如在流体力学中,旋度可以用来描述流体的旋转和涡旋的生成。
此外,在电场和磁场中,旋度也可以用来描述电流和磁场的旋转情况。
三、梯度(Gradient)梯度是描述标量场变化率和方向的一个概念。
它表示标量场在某一点上变化最快的方向和速率。
具体地说,对于一个标量场f(x, y, z),其梯度定义为∇f = (∂f/∂x, ∂f/∂y, ∂f/∂z)。
梯度、散度、旋度的关系

梯度散度散度(divergence)的概念:在矢量场F中的任一点M处作一个包围该点的任意闭合曲面S,当S 所限定的体积ΔV以任何方式趋近于0时,则比值∮F·d S/ΔV的极限称为矢量场F在点M处的散度,并记作div F由散度的定义可知,div F表示在点M处的单位体积内散发出来的矢量F的通量,所以div F描述了通量源的密度。
div F =▽·F气象学:散度指流体运动时单位体积的改变率。
简单地说,流体在运动中集中的区域为辐合,运动中发散的区域为辐散。
用以表示的量称为散度,值为负时为辐合,此时有利于天气系统的的发展和增强,为正时表示辐散,有利于天气系统的消散。
表示辐合、辐散的物理量为散度。
微积分学→多元微积分→多元函数积分: 设某量场由 A (x,y,z) = P(x,y,z)i + Q(x.y,z)j + R(x,y,z)k 给出,其中 P 、Q 、R 具有一阶连续偏导数,Σ 是场内一有向曲面,n 是 Σ 在点 (x,y,z) 处的单位法向量,则 ∫∫A ·n dS 叫做向量场 A 通过曲面 Σ 向着指定侧的通量,而 δP/δx + δQ/δy + δR/δz 叫做向量场 A 的散度,记作 div A ,即 div A = δP/δx + δQ/δy + δR/δz 。
上述式子中的 δ 为偏微分(partial derivative )符号。
散度(divergence )的运算法则:div (α A + β B ) = α div A+ β div B (α,β为常数)div (u A ) =u div A+ A grad u (u 为数性函数)旋度设有向量场A(x,y,z)=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k在坐标轴上的投影分别为δR/δy - δQ/δz , δP/δz - δR/δx ,δQ/δx - δP/δy的向量叫做向量场A 的旋度,记作 rot A 或curl A ,即rot A=(δR/δy - δQ/δz )i+(δP/δz - δR/δx )j+(δQ/δx - δP/δy)k式中的 δ 为偏微分(partial derivative )符号。
梯度、散度和旋度

梯度、散度和旋度(2011-09-12 20:36:08)转载▼标签:分类:电子技术旋度散度梯度矢量场拉普拉斯算子波动方程梯度、散度和旋度是矢量分析里的重要概念。
之所以是“分析”,因为三者是三种偏导数计算形式。
这里假设读者已经了解了三者的定义。
它们的符号分别记作如下:从符号中可以获得这样的信息:①求梯度是针对一个标量函数,求梯度的结果是得到一个矢量函数。
这里φ称为势函数;②求散度则是针对一个矢量函数,得到的结果是一个标量函数,跟求梯度是反一下的;③求旋度是针对一个矢量函数,得到的还是一个矢量函数。
这三种关系可以从定义式很直观地看出,因此可以求“梯度的散度”、“散度的梯度”、“梯度的旋度”、“旋度的散度”和“旋度的旋度”,只有旋度可以连续作用两次,而一维波动方程具有如下的形式(1)其中a为一实数,于是可以设想,对于一个矢量函数来说,要求得它的波动方程,只有求它的“旋度的旋度”才能得到。
下面先给出梯度、散度和旋度的计算式:(2)(3)(4)旋度公式略显复杂。
这里结合麦克斯韦电磁场理论,来讨论前面几个“X度的X度”。
I.梯度的散度:根据麦克斯韦方程有:而(5)则电势的梯度的散度为这是一个三维空间上的标量函数,常记作(6)称为泊松方程,而算符▽2称为拉普拉斯算符。
事实上因为定义所以有当然,这只是一种记忆方式。
当空间内无电荷分布时,即ρ=0,则称为拉普拉斯方程当我们仅需要考虑一维情况时,比如电荷均匀分布的无限大平行板电容器之间(不包含极板)的电场,我们知道该电场只有一个指向,场强处处相等,于是该电场满足一维拉普拉斯方程,即这就是说如果那边平行板电容器的负极板接地,则板间一点处的电压与该点距负极板的距离呈线性关系。
II.散度的梯度:散度的梯度,从上面的公式中可以看到结果会比较复杂,但是它的物理意义却是很明确的,因为从麦克斯韦方程可以看出空间某点处电场的散度是该点处的电荷密度,那么再求梯度就是空间中电荷密度的梯度。
如何推导梯度,散度,旋度,拉普拉斯算子的傅里叶对应

如何推导梯度、散度、旋度、拉普拉斯算子的傅里叶对应梯度、散度、旋度、拉普拉斯算子是数学和物理学中常见的概念,它们在向量分析、场论、泛函分析等领域中具有重要的地位和作用。
在实际应用中,这些概念通常与傅里叶变换相结合,为问题的分析和求解提供了便利。
本文将重点探讨梯度、散度、旋度、拉普拉斯算子的傅里叶对应关系,并介绍如何推导这些对应关系。
1. 梯度的傅里叶对应梯度是一个向量算子,用来描述标量函数在空间中变化最快的方向和变化率。
对于二维空间中的标量函数f(x, y),其梯度可以表示为:∇f = ( ∂f/∂x, ∂f/∂y )其中,∂f/∂x和∂f/∂y分别表示f对x和y的偏导数。
现在我们来推导梯度的傅里叶对应关系。
根据傅里叶变换的定义,二维空间中的函数f(x, y)的傅里叶变换可以表示为:F(kx, ky) = ∬ f(x, y) * exp(-i(kx*x + ky*y)) dx dy其中,exp(-i(kx*x + ky*y))是傅里叶核,kx和ky分别表示频域中的横向和纵向频率。
我们对上式进行偏导数运算:∂F(kx, ky)/∂kx = -i ∬ x * f(x, y) * exp(-i(kx*x + ky*y)) dx dy∂F(kx, ky)/∂ky = -i ∬ y * f(x, y) * exp(-i(kx*x + ky*y)) dx dy这样,我们得到了梯度的傅里叶对应关系:∇f = (i∂/∂kx, i∂/∂ky) F(kx, ky)也就是说,原函数f(x, y)的梯度与其在频域中的傅里叶变换的偏导数存在对应关系,这为在频域中对梯度的分析提供了便利。
2. 散度的傅里叶对应散度是一个向量算子,描述了向量场在某一点的流出量与流入量的差异。
对于二维空间中的向量场V(x, y) = (u(x, y), v(x, y)),其散度可以表示为:div(V) = ∂u/∂x + ∂v/∂y现在我们来推导散度的傅里叶对应关系。
关于梯度、散度和旋度在正交曲线坐标系下表达式的推导及剖析

价
J
而
a
’
A
x
a
A
0 y
x
,
i 十 A
x
j
刁
_
净
J
,
而
9
.
八
,
户
J =
户旦
J
A
a y
j
z
+
A
y
j
。 A Qy
,
叶
J g y
A
z
k
=
了 9 Ay
k
0
矿十
.
A
乙
二
0
户 长
a
一
`
又一 d 2
.
八
丫
份 1
=
茎 户旦 业
a
Z
+
A
x
矿
9
Z
72
户 令
版
代二
一 甘
.
.
j
+
A
,
矿
k
`
立立
, 分 9T z 一
碑
0
。 矿刁
影 最
, 今
(
4
)
冲岛
下面
峥 a
,
为 了推 出散度 和 旋度的表达 式
9
。
我 们 把算 式
`
寸
+ f ;
且 p
哥
记 为
, 二 - 一~
.
.
I
户 D 鑫
;
一介
。
甘
q
注
最
.
几+
孔
a
潞
`
记为 ;