三种常见坐标系中梯度散度旋度的计算公式
圆柱坐标系的梯度散度旋度公式

圆柱坐标系的梯度散度旋度公式在数学和物理学中,圆柱坐标系是一种常用的坐标系,特别适用于具有圆柱对称性的问题。
在三维空间中,圆柱坐标系由径向、方位角和高度三个坐标轴组成。
在圆柱坐标系下,梯度、散度和旋度是描述矢量场性质的重要概念。
下面我们将探讨在圆柱坐标系下梯度、散度和旋度的计算公式。
圆柱坐标系下的梯度在圆柱坐标系下,一个标量函数$$ f(\\rho, \\phi, z) $$的梯度可以用下式表示:$$ \ abla f = \\frac{\\partial f}{\\partial \\rho} \\hat{\\rho} + \\frac{1}{\\rho} \\frac{\\partial f}{\\partial \\phi} \\hat{\\phi} + \\frac{\\partial f}{\\partial z}\\hat{z} $$其中$$ \\hat{\\rho} $$、$$ \\hat{\\phi} $$和$$ \\hat{z} $$分别是径向、方位角和高度方向的单位矢量。
圆柱坐标系下的散度对于一个矢量场$$ \\mathbf{F}(\\rho, \\phi, z) = F_\\rho \\hat{\\rho} + F_\\phi \\hat{\\phi} + F_z \\hat{z} $$,在圆柱坐标系下的散度计算公式为:$$ \ abla \\cdot \\mathbf{F} = \\frac{1}{\\rho} \\frac{\\partial}{\\partial\\rho}(\\rho F_\\rho) + \\frac{1}{\\rho} \\frac{\\partial F_\\phi}{\\partial \\phi} + \\frac{\\partial F_z}{\\partial z} $$圆柱坐标系下的旋度对于一个矢量场$$ \\mathbf{F}(\\rho, \\phi, z) $$,在圆柱坐标系下的旋度计算公式为:$$ \ abla \\times \\mathbf{F} = \\left( \\frac{1}{\\rho} \\frac{\\partialF_z}{\\partial \\phi} - \\frac{\\partial F_\\phi}{\\partial z} \\right) \\hat{\\rho} + \\left( \\frac{\\partial F_\\rho}{\\partial z} - \\frac{\\partial F_z}{\\partial \\rho} \\right) \\hat{\\phi} + \\frac{1}{\\rho} \\left( \\frac{\\partial}{\\partial\\rho}(\\rho F_\\phi) - \\frac{\\partial F_\\rho}{\\partial \\phi} \\right) \\hat{z} $$这三个公式是描述在圆柱坐标系下梯度、散度和旋度的基本公式,它们在解决圆柱对称性问题时具有重要的应用价值。
梯度散度和旋度——定义及公式

梯度散度和旋度——定义及公式梯度、散度和旋度是矢量场的重要属性,它们帮助我们理解和描述矢量场的变化特征。
梯度表示了矢量场的变化率和方向,散度表示了矢量场的流出或流入程度,旋度表示了矢量场的循环或旋转程度。
在物理学、工程学和应用数学等领域,梯度、散度和旋度被广泛应用于描述流体力学、电磁场和温度分布等问题。
首先,让我们来看看梯度的定义和公式。
梯度表示了矢量场在一个点上的最大变化率和该变化的方向。
对于一个标量场(只有大小没有方向的场),梯度是一个矢量场。
设f(x,y,z)是一个三维空间中的标量场,梯度∇f(x,y,z)可以表示为:∇f(x,y,z)=(∂f/∂x,∂f/∂y,∂f/∂z)其中,∂f/∂x、∂f/∂y和∂f/∂z分别表示f对x、y和z的偏导数。
梯度的大小表示了函数在该点上变化最快的方向。
接下来,我们来看看散度的定义和公式。
散度表示了矢量场的流出或流入程度。
对于一个三维矢量场F(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z)),它的散度∇·F可以表示为:∇·F=∂P/∂x+∂Q/∂y+∂R/∂z其中,∂P/∂x、∂Q/∂y和∂R/∂z分别表示F的各个分量对x、y和z的偏导数。
散度的值正表示流出,负表示流入。
最后,我们来看看旋度的定义和公式。
旋度表示了矢量场的循环或旋转程度。
对于一个三维矢量场F(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z)),它的旋度∇×F可以表示为:∇×F=(∂R/∂y-∂Q/∂z,∂P/∂z-∂R/∂x,∂Q/∂x-∂P/∂y)其中,∂R/∂y-∂Q/∂z、∂P/∂z-∂R/∂x、∂Q/∂x-∂P/∂y分别表示F的各个分量对x、y和z的偏导数之差。
旋度的大小表示了场的循环或旋转的强度。
梯度、散度和旋度提供了一种描述矢量场的数学工具,帮助我们分析矢量场的性质和行为。
通过计算这些属性,我们可以得到关于矢量场的重要信息,如流体的速度分布、电磁场的演化和温度场的变化。
1-3梯度-散度-旋度

例题 例题
已知: V = V (r , θ ) = V0 ⋅ r ⋅ cosθ 令: 求:
答案 1 答案 1
r ^ cosθ − a ^ sinθ )V E = −∇V = − (a r θ 0
r E = −∇V r E=?
法一:直接法 — — 求坐标系梯度公式!
r E = −∇ V = ?
^r ∇=a
引申出去:
梯度是表示 是表示标量 标量最大空间增长率 最大空间增长率
的大小和方向的矢量 的大小和方向的 矢量。 。
∆l
等值面
r dU = (∇ U ) • dl
∇
Hamiltonian
^ ∇U = gradU = a n
dU dn
引入算符 — — 哈密顿算符:
Gradient— — grad
不同坐标系下的表示
v v ∫ A ⋅ dS
s
v r dS = a ndS
S
C
散度
定义:单位体积的 定义: 单位体积的净流散 净流散通量 通量
r divA = r r ∫ A • ds lim S ∆V → 0 ∆V
不同坐标系下的表示
笛卡儿坐标系中: ∇ • A =
r
∂Ax ∂Ay ∂Az + + ∂x ∂y ∂z
r ∂ r 1 ∂ r ∂ ∇ = ar + a y + az ∂r r ∂ϕ ∂z
r ^ ( r ⋅ dθ ) + a ^ dr + a ^ϕ ( r ⋅ sinθ ⋅ d ϕ ) dl = a r θ
r ∂ r 1 ∂ r 1 ∂ ∇ = ar + aθ + aϕ ∂r r ∂θ r ⋅ sin θ ∂ϕ
梯度、散度、旋度表达式推导

r r a • dr ∫
所以
lim
s →0
L
S
i r ∂ = ∇× a = ∂x ax
i r ∂ = ∇×a = ∂x ax
j ∂ ∂y ay
j ∂ ∂y ay
k ∂ ∂z az
k ∂ ∂z az
即
rotn a = lim
s →0
r r a • dr ∫
L
S
4. 曲线坐标系
a. 曲线坐标的引进,柱坐标系球坐标系 曲线坐标的引进, 空间中任一点 M 在直角坐标系中是由 (x, y, z) 三个数唯一决定的。此时矢经 r 的表达式是:
H 1 , H 2 , H 3 称为拉梅系数
4. 曲线坐标系
b .拉梅系数以及弧元素在曲线坐标坐标系中的表达式 拉梅系数以及弧元素在曲线坐标坐标系中的表达式
∂r 考虑到 ∂qi 的大小和方向后,可得下式:
r r r dr = H 1dq1e1 + H 2 dq2 e2 + H 3 dq3e3
这就是弧元素矢量在曲线坐标系中的表达式,它们 在坐标轴上的投影分别是:
L
S
i r ∂ = ∇×a = ∂x ax
j ∂ ∂y ay
k ∂ ∂z az
证明如下: 因为: L
r r ∫ a • dr =
∫ (a dx + a dy + a dz)
x y z L
3.旋度 .
b. 旋度 2) 表示形式 再由线积分转化为面积分可得: 上式=
∫ [(
L
∂a y ∂ax ∂a ∂a ∂az ∂a y − ) nx + ( x − z ) n y + ( − )n y ]dS ∂y ∂z ∂z ∂x ∂x ∂y
梯度、散度、旋度的关系

梯度散度散度(divergence)的概念:在矢量场F中的任一点M处作一个包围该点的任意闭合曲面S,当S 所限定的体积ΔV以任何方式趋近于0时,则比值∮F·d S/ΔV的极限称为矢量场F在点M处的散度,并记作div F由散度的定义可知,div F表示在点M处的单位体积内散发出来的矢量F的通量,所以div F描述了通量源的密度。
div F =▽·F气象学:散度指流体运动时单位体积的改变率。
简单地说,流体在运动中集中的区域为辐合,运动中发散的区域为辐散。
用以表示的量称为散度,值为负时为辐合,此时有利于天气系统的的发展和增强,为正时表示辐散,有利于天气系统的消散。
表示辐合、辐散的物理量为散度。
微积分学→多元微积分→多元函数积分: 设某量场由 A (x,y,z) = P(x,y,z)i + Q(x.y,z)j + R(x,y,z)k 给出,其中 P 、Q 、R 具有一阶连续偏导数,Σ 是场内一有向曲面,n 是 Σ 在点 (x,y,z) 处的单位法向量,则 ∫∫A ·n dS 叫做向量场 A 通过曲面 Σ 向着指定侧的通量,而 δP/δx + δQ/δy + δR/δz 叫做向量场 A 的散度,记作 div A ,即 div A = δP/δx + δQ/δy + δR/δz 。
上述式子中的 δ 为偏微分(partial derivative )符号。
散度(divergence )的运算法则:div (α A + β B ) = α div A+ β div B (α,β为常数)div (u A ) =u div A+ A grad u (u 为数性函数)旋度设有向量场A(x,y,z)=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k在坐标轴上的投影分别为δR/δy - δQ/δz , δP/δz - δR/δx ,δQ/δx - δP/δy的向量叫做向量场A 的旋度,记作 rot A 或curl A ,即rot A=(δR/δy - δQ/δz )i+(δP/δz - δR/δx )j+(δQ/δx - δP/δy)k式中的 δ 为偏微分(partial derivative )符号。
大学物理:坐标散度旋度梯度

矢量方向和大小
A的单位矢量 Unit vector
Aˆ A xˆ Ax yˆ Ay zˆ Az AA AA
xˆ cosa yˆ cos zˆ cos
矢量的模 Magnitude of vector
A Ax2 Ay2 Az2
矢量加减
和或差: Vector addition or subtraction
u 0
❖任一标量场 的梯度的旋度一定等于零。
❖任一无旋场一定可以表示为一个标量场的梯度 ❖任何梯度场一定是无旋场。
A 0 A u
通量与散度, 散度定理
Flux, divergence of a vector field, divergence theorem
矢量场的空间变化规律通常用散度和旋度描述
ˆ xˆ sin yˆ cos ˆ xˆ cos cos yˆ cos sin zˆ sin
xˆ rˆ sin cos yˆ rˆ sin sin zˆ rˆ cos
矢量表示及相关物理量的表示
矢量表示: 直角坐标系: 柱坐标系: 球坐标系:
A xˆAx yˆAy zˆAz
在直角坐标系中,通量可以写成
ψ AdS Axdydz Aydzdx Azdxdy
S
S
散度 Divergence of a vector field
1、定义:当闭合面 S 向某点无限收缩时,矢量 A 通过该闭合面S 的 通量与该闭合面包围的体积之比的极限称为矢量场 A 在该 点的散度,以 div A 表示,即
divA lim S AdS ΔV 0 ΔV
divA A
2、散度的物理意义 1) 矢量场的散度代表矢量场的通量源的分布特性; 2) 矢量场的散度是一个标量; 3) 矢量场的散度是空间坐标的函数;
梯度、发散和旋度——定义及公式

梯度、发散和旋度——定义及公式梯度、发散和旋度是矢量场分析中常用的概念,它们用于描述矢量场的特性和变化。
以下是它们的定义及相关公式:1. 梯度(Gradient)梯度表示矢量场在给定点上最大变化的方向和速率。
我们可以将一个标量场(Scalar field)与一个矢量场(Vector field)的梯度进行计算。
梯度的定义:$$\nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partialf}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k}$$其中,$\nabla$ 表示梯度算子,$f$ 表示标量场,$\mathbf{i}$,$\mathbf{j}$,$\mathbf{k}$ 表示坐标轴的单位向量。
2. 发散(Divergence)发散用于描述矢量场的流出和流入情况,它表示在给定点的矢量场流量的变化率。
发散的定义:$$\nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} +\frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$其中,$\nabla$ 表示梯度算子,$\cdot$ 表示点乘,$\mathbf{F}$ 表示矢量场。
3. 旋度(Curl)旋度用于描述矢量场的旋转和循环性质,它表示在给定点的矢量场环量的变化率。
旋度的定义:$$\nabla \times \mathbf{F} = \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}\right)\mathbf{i} + \left(\frac{\partialF_x}{\partial z} - \frac{\partial F_z}{\partial x}\right)\mathbf{j} +\left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partialy}\right)\mathbf{k}$$其中,$\nabla$ 表示梯度算子,$\times$ 表示叉乘,$\mathbf{F}$ 表示矢量场。
圆柱坐标系的梯度散度旋度公式

圆柱坐标系的梯度散度旋度公式引言在数学和物理学中,坐标系是十分重要的工具之一,它们用来描述和解决各种问题。
圆柱坐标系是一种常见的三维坐标系,它由径向、圆周角和高度三个坐标参数构成。
在圆柱坐标系中,不同于直角坐标系的梯度、散度和旋度公式,有其独特的表达方式和计算方法。
本文将介绍圆柱坐标系下的梯度、散度和旋度公式及其推导过程。
圆柱坐标系的基本概念和坐标变换在圆柱坐标系下,一个点可以由其径向距离r、圆周角 $\\phi$ 和高度z来描述。
与直角坐标系(x,y,z)的关系可以通过下面的公式得到:$$x = r\\cos(\\phi)$$$$y = r\\sin(\\phi)$$z=z圆柱坐标系中的单位基矢量可以用以下公式表示:$$\\mathbf{e}_r = \\cos(\\phi)\\mathbf{i} + \\sin(\\phi)\\mathbf{j}$$$$\\mathbf{e}_\\phi = -\\sin(\\phi)\\mathbf{i} + \\cos(\\phi)\\mathbf{j}$$ $$\\mathbf{e}_z = \\mathbf{k}$$其中,$\\mathbf{i}$、$\\mathbf{j}$ 和 $\\mathbf{k}$ 是直角坐标系中的单位基矢量。
圆柱坐标系下梯度的计算在圆柱坐标系下,标量函数 $f(r, \\phi, z)$ 的梯度可以由以下公式计算得到:$$\ abla f = \\frac{\\partial f}{\\partial r}\\mathbf{e}_r +\\frac{1}{r}\\frac{\\partial f}{\\partial \\phi}\\mathbf{e}_\\phi + \\frac{\\partial f}{\\partial z}\\mathbf{e}_z$$这里的ablaf是梯度算子。
圆柱坐标系下散度的计算在圆柱坐标系下,一个向量场 $\\mathbf{F}(r, \\phi, z)$ 的散度可以由以下公式计算得到:$$\ abla \\cdot \\mathbf{F} = \\frac{1}{r}\\frac{\\partial}{\\partial r}(rF_r) + \\frac{1}{r}\\frac{\\partial F_\\phi}{\\partial \\phi} + \\frac{\\partialF_z}{\\partial z}$$这里的 $\ abla \\cdot$ 是散度算子。