(精编资料推荐)三种常见坐标系中梯度散度旋度的计算公式

合集下载

圆柱坐标系的梯度散度旋度公式

圆柱坐标系的梯度散度旋度公式

圆柱坐标系的梯度散度旋度公式在数学和物理学中,圆柱坐标系是一种常用的坐标系,特别适用于具有圆柱对称性的问题。

在三维空间中,圆柱坐标系由径向、方位角和高度三个坐标轴组成。

在圆柱坐标系下,梯度、散度和旋度是描述矢量场性质的重要概念。

下面我们将探讨在圆柱坐标系下梯度、散度和旋度的计算公式。

圆柱坐标系下的梯度在圆柱坐标系下,一个标量函数$$ f(\\rho, \\phi, z) $$的梯度可以用下式表示:$$ \ abla f = \\frac{\\partial f}{\\partial \\rho} \\hat{\\rho} + \\frac{1}{\\rho} \\frac{\\partial f}{\\partial \\phi} \\hat{\\phi} + \\frac{\\partial f}{\\partial z}\\hat{z} $$其中$$ \\hat{\\rho} $$、$$ \\hat{\\phi} $$和$$ \\hat{z} $$分别是径向、方位角和高度方向的单位矢量。

圆柱坐标系下的散度对于一个矢量场$$ \\mathbf{F}(\\rho, \\phi, z) = F_\\rho \\hat{\\rho} + F_\\phi \\hat{\\phi} + F_z \\hat{z} $$,在圆柱坐标系下的散度计算公式为:$$ \ abla \\cdot \\mathbf{F} = \\frac{1}{\\rho} \\frac{\\partial}{\\partial\\rho}(\\rho F_\\rho) + \\frac{1}{\\rho} \\frac{\\partial F_\\phi}{\\partial \\phi} + \\frac{\\partial F_z}{\\partial z} $$圆柱坐标系下的旋度对于一个矢量场$$ \\mathbf{F}(\\rho, \\phi, z) $$,在圆柱坐标系下的旋度计算公式为:$$ \ abla \\times \\mathbf{F} = \\left( \\frac{1}{\\rho} \\frac{\\partialF_z}{\\partial \\phi} - \\frac{\\partial F_\\phi}{\\partial z} \\right) \\hat{\\rho} + \\left( \\frac{\\partial F_\\rho}{\\partial z} - \\frac{\\partial F_z}{\\partial \\rho} \\right) \\hat{\\phi} + \\frac{1}{\\rho} \\left( \\frac{\\partial}{\\partial\\rho}(\\rho F_\\phi) - \\frac{\\partial F_\\rho}{\\partial \\phi} \\right) \\hat{z} $$这三个公式是描述在圆柱坐标系下梯度、散度和旋度的基本公式,它们在解决圆柱对称性问题时具有重要的应用价值。

梯度散度和旋度——定义及公式

梯度散度和旋度——定义及公式

梯度散度和旋度——定义及公式梯度、散度和旋度是矢量场的重要属性,它们帮助我们理解和描述矢量场的变化特征。

梯度表示了矢量场的变化率和方向,散度表示了矢量场的流出或流入程度,旋度表示了矢量场的循环或旋转程度。

在物理学、工程学和应用数学等领域,梯度、散度和旋度被广泛应用于描述流体力学、电磁场和温度分布等问题。

首先,让我们来看看梯度的定义和公式。

梯度表示了矢量场在一个点上的最大变化率和该变化的方向。

对于一个标量场(只有大小没有方向的场),梯度是一个矢量场。

设f(x,y,z)是一个三维空间中的标量场,梯度∇f(x,y,z)可以表示为:∇f(x,y,z)=(∂f/∂x,∂f/∂y,∂f/∂z)其中,∂f/∂x、∂f/∂y和∂f/∂z分别表示f对x、y和z的偏导数。

梯度的大小表示了函数在该点上变化最快的方向。

接下来,我们来看看散度的定义和公式。

散度表示了矢量场的流出或流入程度。

对于一个三维矢量场F(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z)),它的散度∇·F可以表示为:∇·F=∂P/∂x+∂Q/∂y+∂R/∂z其中,∂P/∂x、∂Q/∂y和∂R/∂z分别表示F的各个分量对x、y和z的偏导数。

散度的值正表示流出,负表示流入。

最后,我们来看看旋度的定义和公式。

旋度表示了矢量场的循环或旋转程度。

对于一个三维矢量场F(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z)),它的旋度∇×F可以表示为:∇×F=(∂R/∂y-∂Q/∂z,∂P/∂z-∂R/∂x,∂Q/∂x-∂P/∂y)其中,∂R/∂y-∂Q/∂z、∂P/∂z-∂R/∂x、∂Q/∂x-∂P/∂y分别表示F的各个分量对x、y和z的偏导数之差。

旋度的大小表示了场的循环或旋转的强度。

梯度、散度和旋度提供了一种描述矢量场的数学工具,帮助我们分析矢量场的性质和行为。

通过计算这些属性,我们可以得到关于矢量场的重要信息,如流体的速度分布、电磁场的演化和温度场的变化。

散度和梯度的计算公式

散度和梯度的计算公式

散度和梯度的计算公式散度和梯度是微积分中的重要概念,它们在物理、工程和计算机图像处理等领域中有着广泛的应用。

本文将为您介绍散度和梯度的计算公式及其应用。

一、散度散度是一个向量场的量化描述,表示了向量场在某一点上的发散程度。

它可以理解为向量场的源和汇的总和。

在三维空间中,散度的计算公式为:div(F) = ∂Fx/∂x + ∂Fy/∂y + ∂Fz/∂z其中,F = (Fx, Fy, Fz) 是一个向量场,∂Fx/∂x、∂Fy/∂y 和∂Fz/∂z 分别表示 F 关于 x、y 和 z 的偏导数。

散度可以用来描述物质的流动情况。

当散度为正时,表示物质从该点流出;当散度为负时,表示物质流向该点;当散度为零时,表示物质在该点没有流动。

例如,在流体力学中,散度可以用来描述流体的流量分布情况。

二、梯度梯度是一个标量场的变化率,表示了标量场在某一点上的最大变化方向。

它可以理解为标量场的斜率或者是变化速度最快的方向。

在三维空间中,梯度的计算公式为:grad(f) = (∂f/∂x, ∂f/∂y, ∂f/∂z)其中,f 是一个标量场,∂f/∂x、∂f/∂y 和∂f/∂z 分别表示 f 关于 x、y 和 z 的偏导数。

梯度可以用来描述标量场的变化情况。

在物理学和工程学中,梯度可以用来描述电场、温度场、压力场等的变化情况。

例如,在地理学中,梯度可以用来描述地形的陡峭程度。

三、散度和梯度的应用散度和梯度在物理、工程和计算机图像处理等领域中有着广泛的应用。

在物理学中,散度可以用来描述电场的散发和电荷的分布情况。

梯度可以用来描述温度场的变化和热量的传导情况。

在工程学中,散度可以用来描述流体力学中的流速分布情况和质量守恒定律。

梯度可以用来描述压力场的变化和力的分布情况。

在计算机图像处理中,散度可以用来描述图像的纹理和边缘信息。

梯度可以用来进行图像的边缘检测和特征提取。

总结:散度和梯度是微积分中的重要概念,它们在物理、工程和计算机图像处理等领域中有着广泛的应用。

梯度、发散和旋度——定义及公式

梯度、发散和旋度——定义及公式

梯度、发散和旋度——定义及公式梯度、发散和旋度是矢量场分析中常用的概念,它们用于描述矢量场的特性和变化。

以下是它们的定义及相关公式:1. 梯度(Gradient)梯度表示矢量场在给定点上最大变化的方向和速率。

我们可以将一个标量场(Scalar field)与一个矢量场(Vector field)的梯度进行计算。

梯度的定义:$$\nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partialf}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k}$$其中,$\nabla$ 表示梯度算子,$f$ 表示标量场,$\mathbf{i}$,$\mathbf{j}$,$\mathbf{k}$ 表示坐标轴的单位向量。

2. 发散(Divergence)发散用于描述矢量场的流出和流入情况,它表示在给定点的矢量场流量的变化率。

发散的定义:$$\nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} +\frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$其中,$\nabla$ 表示梯度算子,$\cdot$ 表示点乘,$\mathbf{F}$ 表示矢量场。

3. 旋度(Curl)旋度用于描述矢量场的旋转和循环性质,它表示在给定点的矢量场环量的变化率。

旋度的定义:$$\nabla \times \mathbf{F} = \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}\right)\mathbf{i} + \left(\frac{\partialF_x}{\partial z} - \frac{\partial F_z}{\partial x}\right)\mathbf{j} +\left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partialy}\right)\mathbf{k}$$其中,$\nabla$ 表示梯度算子,$\times$ 表示叉乘,$\mathbf{F}$ 表示矢量场。

矢量运算(梯度、散度、旋度)与拉普拉斯算符公式整理

矢量运算(梯度、散度、旋度)与拉普拉斯算符公式整理

向量算子 (nabla )表示向量微分算子。

】拉普拉斯算符梯度(标量化为矢量)散度(矢量化为标量)旋度(矢量化为矢量)数学解释在向量微积分中,标量场的梯度是一个向量场。

标量场中某一点上的梯度指向标量场增长最快的方向,梯度的长度是这个最大的变化率。

同时也可以求出变化不是最快的那个方向上的倒数,梯度点积该方向上的向量即可。

散度是向量分析中的一个向量算子,将向量空间上的一个向量场(矢量场)对应到一个标量场上。

散度描述的是向量场里一个点是汇聚点还是发源 点,形象地说,就是这包含这一点的一个微小体元中 的向量是“向外”居多还是“向内”居多。

旋度是向量分析中的一个向量算子,可以表示三维向量场对 某一点附近的微元造成的旋转程度。

这个向量提供了向量场在 这一点的旋转性质。

旋度向量的方向表示向量场在这一点附近旋转度最大的环量的旋转轴,它和向量旋转的方向满足右手定则。

拉普拉斯算子有许多用途,此外也是椭圆型算子中的 一个重要例子。

在物理中,常用于波方程的数学模型、热传导方程以 及亥姆霍兹方程。

在静电学中,拉普拉斯方程和泊松方程的应用随处可见。

在量子力学中,其代表薛定谔方程式中的动能项。

在数学中,经拉普拉斯算子运算为零的函数称为调和函 数;拉普拉斯算子是霍奇理论的核心,并且是德拉姆 上同调的结果。

物理解释考虑一座高度 点 的ft 。

这一 点的梯度是在该点坡度(或者说斜度)最陡的方向。

梯度的大小告诉我们坡度到底有多陡。

散度是通量的体密度物理上,散度的意义是场的有源性。

某一点或某个区域的散度大于零,表示向量场在这一点或这一区域有新的通量产生,小于零则表示向量场在这一点或区域有通量湮灭。

散度等于零的区域称为无源场或管形场。

就 的环量面密度(或称为环量强度)。

旋度是向量场的一种强度性质,就如同密度、浓度、温度一 样,它对应的广延性质是向量场沿一个闭合曲线的环量。

如果一个向量场中处处的旋度都是零,则称这个场为无旋场或保守场相关概念通环量记法=或三维直角坐标系柱坐标球坐标线性法则乘积法则商法则高斯散度定理:对某一个体积内的散度进行积分, 就应该得到这个体积内的总通量。

1-3梯度-散度-旋度

1-3梯度-散度-旋度

∂ ∂φ
如何记忆?
d ⇒∇ dl
笛卡儿坐标系中微分长度 G G
G
G
dl = axdx + aydy + azdz

=
G ax
∂ ∂x
+
G ay
∂ ∂y
+
G az
∂ ∂z
dU ⇒ ∇ dl
柱面坐标系中微分长度
G dl
=
G ar
dr
+
G aφ
(
r


)
+
G az
dz

=
G ar
∂ ∂r
+
G aφ
1 r
v∫
GG A • dS
=
∫ (∇ •
AG) dV
=
∫ 源dV
S
V
V
Example: Net positive flux
v∫
G A

G dS
>
0
S
Streamlines are directed away from the origin
4
矢量的“环量”
矢量的环量:该矢量沿闭合路径的标量线积分
G
GG
∫ 矢量 A沿G闭合路径 C的环量= A •dl
G ∇×B
=
G∂ ax(∂y
Bz

∂ ∂z
By)
G +ay
∂ ( ∂z
Bx
−?Bz
)
+aGz(∂∂x
By
−?Bx)

=
G ax
∂ ∂x
+
G ay

梯度旋度散度

梯度旋度散度

梯度、散度和旋度梯度、散度和旋度是矢量分析里的重要概念。

之所以是“分析”,因为三者是三种偏导数计算形式。

这里假设读者已经了解了三者的定义。

它们的符号分别记作如下:从符号中可以获得这样的信息:①求梯度是针对一个标量函数,求梯度的结果是得到一个矢量函数。

这里φ称为势函数;②求散度则是针对一个矢量函数,得到的结果是一个标量函数,跟求梯度是反一下的;③求旋度是针对一个矢量函数,得到的还是一个矢量函数。

这三种关系可以从定义式很直观地看出,因此可以求“梯度的散度”、“散度的梯度”、“梯度的旋度”、“旋度的散度”和“旋度的旋度”,只有旋度可以连续作用两次,而一维波动方程具有如下的形式(1)其中a为一实数,于是可以设想,对于一个矢量函数来说,要求得它的波动方程,只有求它的“旋度的旋度”才能得到。

下面先给出梯度、散度和旋度的计算式:(2)(3)(4)旋度公式略显复杂。

这里结合麦克斯韦电磁场理论,来讨论前面几个“X度的X 度”。

I.梯度的散度:根据麦克斯韦方程有:而(5)则电势的梯度的散度为这是一个三维空间上的标量函数,常记作(6)称为泊松方程,而算符▽2称为拉普拉斯算符。

事实上因为定义所以有当然,这只是一种记忆方式。

当空间内无电荷分布时,即ρ=0,则称为拉普拉斯方程当我们仅需要考虑一维情况时,比如电荷均匀分布的无限大平行板电容器之间(不包含极板)的电场,我们知道该电场只有一个指向,场强处处相等,于是该电场满足一维拉普拉斯方程,即这就是说如果那边平行板电容器的负极板接地,则板间一点处的电压与该点距负极板的距离呈线性关系。

II.散度的梯度:散度的梯度,从上面的公式中可以看到结果会比较复杂,但是它的物理意义却是很明确的,因为从麦克斯韦方程可以看出空间某点处电场的散度是该点处的电荷密度,那么再求梯度就是空间中电荷密度的梯度。

这就好比说清水中滴入一滴红墨水,起初水面红色浓度最高,杯底浓度最低,这样水面与杯底形成一个浓度梯度,红墨水由水面向杯底扩散,最后均匀。

梯度、散度和旋度——定义及公式

梯度、散度和旋度——定义及公式

梯度、散度和旋度——定义及公式1 哈密顿算子(Hamiltion Operator )哈密顿算子本身没有含义,只有作用于后面的量才有实际意义;它是一个微分算子,符号为∇。

三维坐标系下,有=i j k x y z∂∂∂∇++∂∂∂ 或者 (,,)x y z ∂∂∂∇=∂∂∂ 其中,,i j k 分别为xyz 方向上的单位矢量。

2 梯度(Gradient ) 2.1 梯度的定义梯度是哈密顿算子直接作用于函数f 的结果(f 可以是标量和向量)。

(,,)f f f f f f grad f f i j k x y z x y z ∂∂∂∂∂∂=∇=++=∂∂∂∂∂∂ 标量场的梯度是向量,标量场中某一点的梯度指向标量场增长最快的地方,梯度的长度是最大变化率。

2.2 梯度的性质∇c=0∇(RS)= ∇R+∇S21()(),0R S R R S S S S∇=∇-∇≠ [()]()f S f S S '∇=∇其中,C 为常数,R 、S 为两个标量场,f 为一连续可微函数。

3 散度(Divergence )散度是哈密顿算子与矢量函数f 点积的结果,是一个标量。

设矢量函数=(,,)x y z x y z f f i f j f k f f f =++则散度表示为: (,,)(,,)y x z x y z f f f div f f f f f x y z x y z∂∂∂∂∂∂=∇==++∂∂∂∂∂∂ 散度是描述空气从周围汇合到某一处或从某一处散开来程度的量。

它可用于表征空间各点矢量场发散的强弱程度,物理上,散度的意义是场的有源性。

当0div f >,该点有散发通量的正源(发散源);当0div f <,该点有吸收通量的负源(洞或汇); 当=0div f ,该点无源。

4 旋度(Curl, Rotation )旋度是哈密顿算子与矢量函数f 叉积的结果,是一个矢量,设矢量函数=(,,)x y z x y z f f i f j f k f f f =++则旋度:=rot ()()()y y x x z z x y zij k f f f f f f curl f f f i j k xy z y zz x x y f f f ∂∂∂∂∂∂∂∂∂=∇⨯==-+-+-∂∂∂∂∂∂∂∂∂ 旋度是矢量分析中的一个矢量算子,可以表示三维矢量场对某一点附近的微元造成的旋转程度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档