体积压裂与缝网压裂技术.

合集下载

体积压裂与缝网压裂技术解析

体积压裂与缝网压裂技术解析
MI Energy Corporation
以水力压裂技术手段实施对油气储集岩
层的三维立体改造,形成人工裂缝立体网络,
实现储层内压裂裂缝波及体积的最大化,从 而极大地提高储层有效渗透率,提高采油采 气井的产量。
MI Energy Corporation
体积压裂一般应用分段多簇射孔技术和裂缝转向
技术,压裂材料一般采用低黏度压裂液和裂缝转向控制 材料,并尽可能采用较大液体用量和较高的施工排量, 在主裂缝侧向强制形成次生裂缝,并实现次生裂缝继续 分枝,形成二级乃至多级次生裂缝,最终使主裂缝与多 级次生裂缝相互交织,形成立体的裂缝网络系统,实现 储层内天然裂缝、岩石层理的大范围有效沟通。
开钻日期 完钻日期 完钻井深 m 水泥返深 m
固井质量 套管规范mm 射孔枪型 孔 密
人工井底 2373.56 m
套管头至补心 距m
套管 接箍 m
MI Energy Corporation
射孔层段数据
射孔井段(m) 序号 层号 自 2208.7 2192.7 2190.1 2181.9 2156.1 5 61 2154.1 2152.7 0.3 1.4 1.4 16 22 22 至 2204.3 2191.7 2189.1 2180.7 2154.4 11.6 1.6 7.2 24.6 夹层 厚 度(m) 射开 4.4 1.0 1.0 1.2 1.7 有效 4.4 1.0 1.0 1.2 1.7 孔 密(孔 /m) 16 16 16 16 16 孔 数 应射 70 16 16 19 27 实射 70 16 16 19 27
10.0%。
MI Energy Corporation
压裂液体系以滑溜水为主,滑溜水可以 采用阴离子聚合物,也可以用低浓度瓜胶。 水平井为了压裂形成网状裂缝、提高改 造体积,采用分簇射孔技术,每级分4~6 簇射孔,每簇长度0.46~0.77m ,簇间距 20~30m ,孔密16~20 孔/m ,孔径 13mm ,相位角60°或者180° 。

压裂裂缝监测技术

压裂裂缝监测技术
压裂监测——IntelliFrac技术集成了世界领先的压裂增产技术和微震 监测技术,可以使作业公司在实施增产措施的过程中监测裂缝面积,实时 对压裂作业进行控制。
压裂定位控制——Frac-Hook多分支套管压裂技术,可以更好地定位 压裂位置,更精确地控制分支井筒,提供有选择性的高压压裂能力。
多级压裂能力——FracPoint EX技术,使用投球或滑套一次起下封隔 完井,在Williston油田成功完成24级裸眼封隔压裂。
IntelliFrac技术
This new service combines advanced microseismic services from Baker Hughes with pumping services from fracturing technology leader BJ Services.
导流 缝长 缝高 缝宽 方位 倾角 体积
能力 ◆◆◆○○◆◆ ◆○◆○○○◆ ◆○◆○○○◆ ○◆◆◆◆○○ ○◆○○○○○ ○○○◆◆○○ ○◆○○○○○ ○○○◆○○○ ★◆○★◆○○ ★★◆◆◆◆○ ◆◆○★★★○ ◆★★○○○○
★—可信 ◆—比裂缝监测技术
压裂裂缝监测技术
水力压裂技术是目前世界上老油田增产和非常规油气田 开发所应用最为广泛且最为有效的技术措施。油气储层裂缝 分布规律的研究分析是贯穿油田勘探开发各阶段的基础工作。
压裂裂缝监测技术
压裂监测的 主要目的是通过 采集压裂施工过 程中的一些参数 资料来分析地下 压裂的施工进展 情况和所压开裂 缝的几何参数。
要求:放射性同位素应不 发生自然扩散。
近井地带监测技术
放射性示踪剂技术
操作可参照“中华人民共和国石油天然气行业标准 SY/T 5327-2008”----《放射性核素载体法示踪测井技术规 范》执行。

体积压裂)

体积压裂)

压裂液用量(m3) 阶段 累积 2 1 3 4 4 8 5 13 6 19 7 26 24 50 5 55 2 57
MI Energy Corporation
DB22-3井q412号层主压裂施工工序表 表2-1
步 骤 1 2 3 8 9 施工时间 阶段 min 108.3 120.0 110.0 2.7 2.8 累积 min 108.3 228.3 338.3 341.0 343.8 工 序 I型液 II型液 I型液 I型液 I型液 排量 m3/min 6.0 5.0 5.0 6.0 6.0 100目粉 砂 100目粉 砂 20-40陶 粒 20-40陶 粒 20-40陶 粒 20-40陶 粒 20-40陶 粒 支 撑 剂 类型 kg/m3 砂比 % 用量 m3 累积 m3 压裂液 用量 m3 650.0 600.0 550.0 16.0 16.7 累积 m3 650.0 1250.0 1800.0 1816.0 1832.7
开钻日期 完钻日期 完钻井深 m 水泥返深 m
固井质量 套管规范mm 射孔枪型 孔 密
人工井底 2373.56 m
套管头至补心 距m
套管 接箍 m
MI Energy Corporation
射孔层段数据
射孔井段(m) 序号 层号 自 2208.7 2192.7 2190.1 2181.9 2156.1 5 61 2154.1 2152.7 0.3 1.4 1.4 16 22 22 至 2204.3 2191.7 2189.1 2180.7 2154.4 11.6 1.6 7.2 24.6 夹层 厚 度(m) 射开 4.4 1.0 1.0 1.2 1.7 有效 4.4 1.0 1.0 1.2 1.7 孔 密(孔 /m) 16 16 16 16 16 孔 数 应射 70 16 16 19 27 实射 70 16 16 19 27

非常规油气藏新一代体积压裂技术的几个关键问题探讨

非常规油气藏新一代体积压裂技术的几个关键问题探讨

第 51 卷 第 4 期石 油 钻 探 技 术Vol. 51 No.4 2023 年 7 月PETROLEUM DRILLING TECHNIQUES Jul., 2023doi:10.11911/syztjs.2023023引用格式:蒋廷学. 非常规油气藏新一代体积压裂技术的几个关键问题探讨[J]. 石油钻探技术,2023, 51(4):184-191.JIANG Tingxue. Discussion on several key issues of the new-generation network fracturing technologies for unconventional reservoirs [J].Petroleum Drilling Techniques,2023, 51(4):184-191.非常规油气藏新一代体积压裂技术的几个关键问题探讨蒋廷学1,2,3(1. 页岩油气富集机理与有效开发国家重点实验室, 北京 102206;2. 中国石化页岩油气钻完井及压裂重点实验室, 北京 102206;3. 中石化石油工程技术研究院有限公司, 北京 102206)摘 要: 体积压裂技术是实现非常规油气藏高效开发的关键,围绕有效改造体积及单井控制EUR最大化的目标,密切割程度、加砂强度、暂堵级数及工艺参数不断强化,导致压裂作业综合成本越来越高。

为此,开展了新一代体积压裂技术(立体缝网压裂技术)的研究与试验,压裂工艺逐渐发展到“适度密切割、多尺度裂缝强加砂、多级双暂堵和全程穿层”模式。

为促进立体缝网压裂技术的发展与推广应用,对立体缝网的表征、压裂模式及参数界限的确定、“压裂–渗吸–增能–驱油”协同提高采收率的机制、一体化变黏度多功能压裂液的研制、石英砂替代陶粒的经济性分析及“设计–实施–后评估”循环迭代升级的闭环体系构建等关键问题进行了探讨,厘清了立体缝网压裂技术的概念、关键技术及提高采收率机理,对于非常规油气藏新一代压裂技术的快速发展、更好地满足非常规油气藏高效勘探开发需求,具有重要的借鉴和指导意义。

体积压裂

体积压裂

提出及概念
作用机理
滑溜水压裂
应用
改造对象
数值模拟研究表明,储层改造的体积越大(以页岩气为例), 压后增产效果越明显,储层改造体积与增产效果具有显著的正相 关性。
SRV=106ft3
1ft3=0.028m3 1ft=30.48cm=12in
提出及概念
作用机理
滑溜水压裂
应用
作用机理 • 体积压裂具体作用方式为: 通过压裂的方式对储层实施改造,在形成一条或者多条主 裂缝的同时,通过分段多簇射孔、高排量、大液量、低粘 液体、以及转向材料及技术的应用,使天然裂缝不断扩张 和脆性岩石产生剪切滑移,实现对天然裂缝、岩石层理的 沟通,以及在主裂缝的侧向强制形成次生裂缝,并在次生 裂缝上继续分支形成二级次生裂缝,以此类推。让主裂缝 与多级次生裂缝交织形成裂缝网络系统,将可以进行渗流 的有效储层打碎,使裂缝壁面与储层基质的接触面积最大, 使得油气从任意方向的基质向裂缝的渗流距离最短,极大 的提高储层的整体渗透率,实现对储层在长、宽、高三维 方向的全面改造,提高初始产量和最终采收率。
提出及概念
作用机理
滑溜水压裂
应用
几种压裂概念
体积压裂stimulated reservoir volume 缝网压裂Fracture network 同步压裂synchronous fracturing 整体压裂integral fracturing
提出及概念
作用机理
滑溜水压裂
应用
同步压裂
– “分段多簇”射孔技术 – 快速可钻式桥塞工具 – 大型滑溜水压裂技术

提出及概念 作用机理 滑溜水压裂
应 用
SRV的应用
分段多簇射孔的特点是:一次装弹+电缆传输+液体输送+桥 塞脱离+分级引爆,每级分4~6 簇射孔,每簇长度0.46~ 0.77m,簇间距20~30m,孔密16~20孔/m,孔径13mm,相 位角60°或者180°

体积压裂

体积压裂

体积压裂1体积压裂体积压裂是指在水力压裂过程中,使天然裂缝不断扩张和脆性岩石产生剪切滑移,形成天然裂缝与人工裂缝相互交错的裂缝网络,从而增加改造体积,提高初始产量和最终采收率。

1.1体积压裂机理体积压裂的作用机理:通过水力压裂对储层实施改造,在形成一条或者多条主裂缝的同时,使天然裂缝不断扩张和脆性岩石产生剪切滑移,实现对天然裂缝、岩石层理的沟通,以及在主裂缝的侧向强制形成次生裂缝,并在次生裂缝上继续分支形成二级次生裂缝,以此类推,形成天然裂缝与人工裂缝相互交错的裂缝网络。

从而将可以进行渗流的有效储层打碎,实现长、宽、高三维方向的全面改造,增大渗流面积及导流能力,提高初始产量和最终采收率。

1.2体积压裂的地层条件1)天然裂缝发育,且天然裂缝方位与最小主地应力方位一致。

在此情况下,压裂裂缝方位与天然裂缝方位垂直,容易形成相互交错的网络裂缝。

天然裂缝的开启所需要的净压力较岩石基质破裂压力低50%。

同样,有模型研究复杂天然裂缝与人工裂缝的关系,以及天然裂缝开启的应力变化等,建立了天然裂缝发育与扩展模型,研究表明,在体积改造中,天然裂缝系统会更容易先于基岩开启,原生和次生裂缝的存在能够增加复杂裂缝的可能性,从而极大地增大改造体积。

2)岩石硅质含量高(大于35%),脆性系数高。

岩石硅质(石英和长石)含量高,使得岩石在压裂过程中产生剪切破坏,不是形成单一裂缝,而是有利于形成复杂的网状缝,从而大幅度提高了裂缝体积。

3)敏感性不强,适合大型滑溜水压裂。

弱水敏地层,有利于提高压裂液用液规模,同时使用滑溜水压裂,滑溜水黏度低,可以进入天然裂缝中,迫使天然裂缝扩展到更大范围,大大扩大改造体积。

2太沙基有效应力原理太沙基(K. Terzaghi)早在1923年就提出了有效应力原理的基本概念,阐明了粒材料与连续固体材料在应力--应变关系上的重大区别,从而使土力学成为一门独立学科的重要标志。

σσ+μ=’式中σ为平面上法向总应力, kPa; σ′为平面上有效法向应力, kPa; μ为孔隙水压力, kPa。

体积压裂技术在石油开发中的应用

体积压裂技术在石油开发中的应用

根据相关统计,发现我国低渗低压油气藏占量非常多,实现对其的开采和利用,能够有效缓解我国目前石油资源的紧张局面,该类石油开发存在一定难度,可以在开发当中积极应用体积压裂技术,全面提高石油开发效率。

一、体积压裂技术概述常规压裂增产理念主要是在压裂时抑制次生裂缝的扩展,主要形成一条主裂缝,产能源自裂缝的高渗流能力;体积压裂与常规压裂改造理念相反,压裂时通过各种工艺形成更多的裂缝,沟通更大的渗流区域,充分发挥主裂缝和天然裂缝增产优势。

当水力压裂时人工裂缝中产生的裂缝延伸净压力大于储层本身存在的最大最小应力差值,以及储层天然裂缝或者胶结面张开需要的临界压力时,人工裂缝就有极大机会在储层中出现多个分支缝,人工主裂缝和分支缝相互穿过,扭曲,交叉,形成初步的缝网结构。

这种结构类似与多裂缝形态,但比多裂缝稍显复杂,缝网仍然以主裂缝为主体,分支缝分布在主裂缝周围。

当主裂缝延伸一定长度以后,其缝内净压力小于应力差时,其分支裂缝会闭合,或者张开一些与主裂缝成一定角度的分支缝,裂缝形态会回归到主裂缝形态。

形成的这种主裂缝与分支缝不断交错分布的裂缝形态就叫做缝网,实现这种裂缝形态的压裂技术被称作体积压裂技术。

二、体积压裂技术在石油开发中的应用1.裂缝封堵压裂技术裂缝封堵技术包括缝内封堵以及缝口封堵。

缝内封堵与“端部脱砂”压裂技术核心机理类似,均是通过一定的裂缝封堵来增加裂缝中的净压力。

缝内封堵相对更加注重微观,天然裂缝发育储层,压裂时一般会开启多条裂缝并同时延伸,裂缝之间相互作用,裂缝狭窄,不利于加砂压裂提高砂比,对支撑剂颗粒大小要求较高,同时还增加了液体的滤失作用。

其一般采用粉砂或者缝内暂堵剂对主裂缝进行封堵,缝内净压力逐渐升高,达到一定程度便可改变原有裂缝走向,产生分支裂缝。

采用缝内暂堵进行缝网压裂时,缝网系统由人工主裂缝与天然裂缝或弱面形成的次生网络组成。

缝口封堵,常常也叫缝口暂堵压裂,其技术伴随着多簇射孔压裂而发展,通过北美页岩气生产测井分析,大约50%的射孔簇无效,29%的射孔簇低效,而21%的射孔簇贡献了70%的产量。

体积压裂形成复杂网络裂缝的影响因素

体积压裂形成复杂网络裂缝的影响因素

体积压裂体积压裂是在水力压裂的过程中,通过在主裂缝上形成多条分支缝或者沟通天然裂缝,最终形成不同于常规压裂的复杂裂缝网络,增加井筒与储集层接触体积,改善储集层的渗流特征及整体渗流能力,从而提高压裂增产效果和增产有效期。

其主要特点有以下几点。

(1) 复杂网络裂缝扩展形态常规压裂以形成双翼对称裂缝为目的,在致密油藏中垂直于裂缝面方向的基质渗流能力并未得到改善。

体积压裂的裂缝是在三维方向卜形成相互交错的网状裂缝或者树状裂缝,在缝网区域形成一定的改造体积,增大了泄油体积。

(2) 复杂渗流机理油气在复杂缝网中的渗流机理至今仍没有理想的研究成果。

文献[7」研究了页岩基质向复杂缝网中的渗流,考虑裂缝中达西流和基质中扩散流的双机理渗流以及压敏性对渗透率的影响,建立了天然裂缝发育的双重孔隙度模型,但求解用拟压力的方法进行了标准简化。

目前比较主流的观点是采用分形理论来精确刻画缝网内的渗流特性,利用缝网中主裂缝与次裂缝的自相似性,建v.油气在复杂缝网中的渗流模型。

(3) 裂缝发生错断、滑移、剪切破坏剪切缝是岩石在外力作用下破裂并产生滑动位移,在岩层表面形成不规则或凹凸不平的几何形状,具有自我支撑特性的裂缝。

体积压裂过程中裂缝的扩展形式不是单一的张开型裂缝,当压力低于最小水平主应力时,产生剪切断裂。

(4) 诱导应力和多缝应力干扰裂缝发生转向当裂缝延伸净压力大于2个水平主应力的差值与岩石的抗张强度之和时,容易在主裂缝卜产生分叉缝,分叉缝延伸到一定距离后又恢复到原来的裂缝方位,最终多个分叉缝便形成复杂的裂缝网络。

体积压裂能否形成复杂网络裂缝,取决于储集层地质和压裂施工工艺两方面因素。

1.1地质因素(1)储集层岩石的矿物成分储集层岩石的矿物成分会影响岩石的力学性质,从而影响裂缝的起裂方式和延伸路径。

研究证明,硅质含量较高、且钙质填充天然裂缝发育的页岩最易形成复杂缝网,增产效果好。

黍占土矿物含量较高的页岩或者缺少硅质和碳酸盐岩夹层的储集层实现体积压裂非常困难‘2’。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
kg/m3 斜坡递增浓度。
MI Energy Corporation
MI Energy Corporation
MI Energy Corporation
油井基础数据
地理位置 2006.6. 10 2006.6. 16 2386.0 1678.0 吉林省大安市联合乡刘围子屯西约0.4千 米 合格 不同壁 P110*7.72 2117.23厚mm 2119.97; 下深m P110*7.72 139.7 2118.840 2121.56; 套 管 鞋 2385.51; 102 16 4.8
开钻日期 完钻日期 完钻井深 m 水泥返深 m
固井质量 套管规范mm 射孔枪型 孔 密
人工井底 2373.56 m
套管头至补心 距m
套管 接箍 m
MI Energy Corporation
射孔层段数据
射孔井段(m) 序号 层号 自 2208.7 2192.7 2190.1 2181.9 2156.1 5 61 2154.1 2152.7 0.3 1.4 1.4 16 22 22 至 2204.3 2191.7 2189.1 2180.7 2154.4 11.6 1.6 7.2 24.6 夹层 厚 度(m) 射开 4.4 1.0 1.0 1.2 1.7 有效 4.4 1.0 1.0 1.2 1.7 孔 密(孔 /m) 16 16 16 16 16 孔 数 应射 70 16 16 19 27 实射 70 16 16 19 27
1 2 3 4
123-2 102 92 82
MI Energy Corporation
压裂层段 下隔层厚 度 (~2204. 3
砂岩厚度 (m)
有效厚度 (m)
上隔层厚度 (m)
1
q412
8.4
4.4
11.6
-
以往生产简况 2006年9月压裂投产,初期产液3.9吨/天,产油2.1吨/天 ,产量较高。截至到2012年4月份,提捞产液量0.2吨/天,产 油0.2吨/天,稳定产量基本不变。生产情况见下图1。
MI Energy Corporation
a value added oil & gas partner
2012年11月
MI Energy Corporation
目录
一、体积压裂 二、缝网压裂 三、压裂工艺 四、DB22-3缝网压裂设计要点 五、DB22-3缝网压裂实施要点 六、初步评价 七、下步建议
10.0%。
MI Energy Corporation
压裂液体系以滑溜水为主,滑溜水可以 采用阴离子聚合物,也可以用低浓度瓜胶。 水平井为了压裂形成网状裂缝、提高改 造体积,采用分簇射孔技术,每级分4~6 簇射孔,每簇长度0.46~0.77m ,簇间距 20~30m ,孔密16~20 孔/m ,孔径 13mm ,相位角60°或者180° 。
MI Energy Corporation
实施手段方面:一是采用变参数射孔、二是 压裂时变排量变粒径加砂、三是适时停泵。 这种技术目前的描述主要还停留在理论层面, 因为缺乏有效的地下形态监测技术,现有的大地 电位法、微地震法、井温测试法都无法有效的监 测这种技术形成的裂缝形态,至少是精度很难达 到实际的需求。

原理是利用储层两个水平主应力差值
与裂缝延伸净压力的关系,一旦实现裂缝
延伸净压力大于两个水平主应力的差值,
就会产生分支缝,分支缝沿着天然裂缝继
续延伸,最终可形成以主裂缝为主干的纵
横交错的“网状缝”系统。
MI Energy Corporation
对于期望形成的人工裂缝和天然裂缝共同作 用的形态,如果在直井实施称为缝网压裂,在水 平井实施称为体积压裂。 这种技术的实施对地应力的状况有一定的要 求,最大主应力和最小主应力差不能过大,转向 压裂一般不超过10兆帕,缝网压裂要求的应力差 就要更小些。同时与储层厚度、砂泥层之间的应 力差也有一定的关系。
MI Energy Corporation
MI Energy Corporation
地质状况 该井位于吉林省大安市联合乡刘围子屯西约0.4千米处,是松辽盆 地南部中央坳陷区红岗阶地大安构造的一口开发生产井。改造的目的
层为泉头组12-6号层,测井解释储层平均有效孔隙度6.8%,渗透率
MI Energy Corporation
体积压裂可以使垂直井纵向动用更多的层,
水平井横向动用更多的段。目前体积压裂改造水
平井段长一般可达到1000—2000米,分段10
段—20段,直井压裂5层—10层。该技术在国外
油气田得到了有效应用。在国内还处于试验应用
阶段
MI Energy Corporation
MI Energy Corporation
以水力压裂技术手段实施对油气储集岩
层的三维立体改造,形成人工裂缝立体网络,
实现储层内压裂裂缝波及体积的最大化,从 而极大地提高储层有效渗透率,提高采油采 气井的产量。
MI Energy Corporation
体积压裂一般应用分段多簇射孔技术和裂缝转向
技术,压裂材料一般采用低黏度压裂液和裂缝转向控制 材料,并尽可能采用较大液体用量和较高的施工排量, 在主裂缝侧向强制形成次生裂缝,并实现次生裂缝继续 分枝,形成二级乃至多级次生裂缝,最终使主裂缝与多 级次生裂缝相互交织,形成立体的裂缝网络系统,实现 储层内天然裂缝、岩石层理的大范围有效沟通。
MI Energy Corporation
压裂工艺体现了“两大、两小”特征,“两大”
是指:①大排量,施工排量10m3/min 以上; ② 大液量,单井用液量2 000~5000m3 。 “两小”是指:① 小粒径支撑剂,支撑剂一般采 用70/100目和40/70目陶粒,② 小砂比,
平均砂液比为3%~5%,最高砂液比不超过
MI Energy Corporation
分段压裂技术施工参数:
施工排量为
12.7~19.0m3/min 每段用量2 000~5 000m3 ; 支撑剂单井用量为60~190m3 ,100 目(0.15 毫米)支撑剂30~360 kg/m3 斜坡递增浓度,
40/70 目(0.45/0.25毫米)支撑剂30~600
相关文档
最新文档