应用抽样技术答案
抽样技术课后习题答案

12
160
1700
3
170
2000
13
180
2000
4
150
1500
14
130
1400
5
160
1700
15
150
1600
6
130
1400
16
100
1200
7
140
1500
17
180
1900
8
100
1200
18
100
1100
9
110
1200
19
170
1800
10
140
1500
20
120
1300
20
试估计平均每户家庭订报份数及总的订报份数,以及估计量的方差。
解:由题意得到 , , ,
故 (份)
(份)
(份)
于是由以上的计算结果得到平均每户的订报份数为1.875,估计量方差为0.00391875。该辖区总的订阅份数为7500,估计量方差为62700。
4.2
某工业系统准备实行一项改革措施。该系统共有87个单位,现采用整群抽样,用简单随机抽样抽取15个单位做样本,征求入选单位中每个工人对政策改革措施的意见,结果如下:
1
42
6.2
11
60
6.3
2
51
5.8
12
52
6.7
3
49
6.7
13
61
5.9
4
55
4.9
14
49
6.1
5
47
5.2
15
57
6.0
应用抽样技术课后习题答案

=(0.0907,0.4433)
N1的95%的置信区间为: (159,776) 95%的置信区间为 (159, 的置信区间为:
(3)N=1750,n=30, (3)N=1750,n=30,n1=8, t=1.96, p=0.267, q=1q=1-0.267=0.733 由此可计算得: t 2q 1.962 × 0.733 n0 = 2 = =1054.64 r p 0.01× 0.267 n = n0/[1+(n0—1)/N] = 1054.64/[1+1053.64/1750]=658.2942 = 659 计算结果说明,至少应抽取一个样本量为659的简单随机 样本,才能满足95%置信度条件下相对误差不超过10%的精度 要求。
t=1.96 (2)易知,N=1750,n=30, n = 8 1 n 8 N − n 1750 − 30 1− f p= 1 = = 0.267 = = = 0.03389 n −1 (n −1)N 29 ×1750 n 30
pq = p(1 − p) = 0.267 × 0.733 = 0.1957
5.5 证明:由(5.6)得:
V ( yR ) ≈ 1− f n (Yi − RX i )2 ∑
i =1 N
N −n 2 令 Sd = V , Nn
2 d
N −1
=
N −n 2 Sd Nn
则n(NV + S ) = NS ,
2 d
S 2 NSd 从而n = = V 2 2 NV + Sd Sd 1+ NV
第五章 比率估计与回归估计
5.2 N=2000, n=36, 1-α=0.95, t=1.96, ˆ f = n/N=0.018, v(R) = 0.000015359, ˆ se(R) =0.00392 置信区间为[40.93%,42.47%]。 置信区间为[40.93%,42.47%]。
应用抽样技术练习题答案

应用抽样技术练习题答案一、选择题1. 抽样技术在统计分析中的主要作用是什么?A. 预测未来趋势B. 代表总体特征C. 描述个体差异D. 计算平均值答案:B2. 以下哪项不是抽样误差的来源?A. 抽样方法B. 抽样框的不完整性C. 抽样过程中的随机性D. 样本量的大小答案:D3. 简单随机抽样的特点是什么?A. 每个个体被抽中的概率相同B. 样本量必须很大C. 需要分层抽样D. 只能用于总体较小的情况答案:A4. 分层抽样的优点是什么?A. 可以减少抽样误差B. 可以增加样本量C. 可以提高总体的代表性D. 可以降低抽样成本答案:A5. 系统抽样的特点是什么?A. 抽样间隔是固定的B. 抽样间隔是随机的C. 需要分层D. 需要配额答案:A二、判断题1. 抽样调查总是比全面调查更经济。
(错误)2. 抽样调查的目的是估计总体参数。
(正确)3. 抽样调查中,样本量越大,抽样误差就越小。
(错误)4. 抽样框是抽样调查中用来记录所有个体的列表。
(正确)5. 抽样技术只能用于定量研究。
(错误)三、简答题1. 请简述分层抽样的步骤。
答案:分层抽样的步骤包括:(1)确定总体并将其分为互不重叠的子群体,即层;(2)在每个层中独立地进行抽样;(3)将各层的样本合并,形成总体的代表性样本。
2. 为什么在抽样调查中需要考虑样本的代表性?答案:样本的代表性意味着样本能够反映总体的特征。
如果样本具有代表性,那么从样本中得到的统计推断将更接近总体的真实情况,从而提高研究的准确性和可靠性。
四、计算题1. 假设一个总体有1000个个体,我们使用简单随机抽样方法抽取了50个个体作为样本。
计算样本比例的抽样误差。
答案:抽样误差可以通过以下公式计算:\( \text{抽样误差} = Z\times \sqrt{\frac{p(1-p)}{n}} \),其中\( Z \)是标准正态分布的置信水平对应的Z值(例如,95%置信水平对应的Z值为1.96),\( p \)是总体比例(由于我们不知道总体比例,这里假设为0.5,此时抽样误差最大),\( n \)是样本量。
抽样技术第二章参考答案

抽样技术第⼆章参考答案第⼆章习题判断下列抽样⽅法是否是等概的:(1)总体编号1~64,在0~99中产⽣随机数r ,若r=0或r>64则舍弃重抽。
(2)总体编号1~64,在0~99中产⽣随机数r ,r 处以64的余数作为抽中的数,若余数为0则抽中64.(3)总体20000~21000,从1~1000中产⽣随机数r 。
然后⽤r+19999作为被抽选的数。
解析:等概抽样属于概率抽样,概率抽样具有⼀些⼏个特点:第⼀,按照⼀定的概率以随机原则抽取样本。
第⼆,每个单元被抽中的概率是已知的,或者是可以计算的。
第三,当⽤样本对总体⽬标进⾏估计时,要考虑到该样本被抽中的概率。
因此(1)中只有1~64是可能被抽中的,故不是等概的。
(2)不是等概的【原因】(3)是等概的。
抽样理论和数理统计中关于样本均值y 的定义和性质有哪些不同解析:抽样理论和数理统计中关于样本均值的定义和性质的不同为了合理调配电⼒资源,某市欲了解50000户居民的⽇⽤电量,从中简单随机抽取了300户进⾏,现得到其⽇⽤电平均值=y (千⽡时),=2s 206.试估计该市居民⽤电量的95%置信区间。
如果希望相对误差限不超过10%,则样本量⾄少应为多少解:由已知可得,N=50000,n=300,5.9y =,2062=s1706366666206*300500003001500001)()?(222=-=-==s nf N y N v YV19.413081706366666(==)y v该市居民⽤电量的95%置信区间为[])(y [2y V z N α±=[475000±*]即为(,)由相对误差公式y)(v u 2y α≤10%可得%10*5.9206*n50000n 1*96.1≤-即n ≥862欲使相对误差限不超过10%,则样本量⾄少应为862某⼤学10000名本科⽣,现欲估计爱暑假期间参加了各类英语培训的学⽣所占的⽐例。
抽样技术第四习题答案

第2章2.1 解:()1 这种抽样方法是等概率的。
在每次抽取样本单元时,尚未被抽中的编号为1~64的这些单元中每一个单元被抽到的概率都是1100。
()2这种抽样方法不是等概率的。
利用这种方法,在每次抽取样本单元时,尚未被抽中的编号为1~35以及编号为64的这36个单元中每个单元的入样概率都是2100,而尚未被抽中的编号为36~63的每个单元的入样概率都是1100。
()3这种抽样方法是等概率的。
在每次抽取样本单元时,尚未被抽中的编号为20 000~21 000中的每个单元的入样概率都是11000,所以这种抽样是等概率的。
2.3 解:首先估计该市居民日用电量的95%的置信区间。
根据中心极限定理可知,在大_y E y y -=近似服从标准正态分布, _Y 的195%α-=的置信区间为y z y z y y αα⎡⎡-+=-+⎣⎣。
而()21f V y S n-=中总体的方差2S 是未知的,用样本方差2s 来代替,置信区间为,y y ⎡⎤-+⎢⎥⎣⎦。
由题意知道,_29.5,206y s ==,而且样本量为300,50000n N ==,代入可以求得 _21130050000()2060.6825300f v y s n --==⨯=。
将它们代入上面的式子可得该市居民日用电量的95%置信区间为7.8808,11.1192⎡⎤⎣⎦。
下一步计算样本量。
绝对误差限d 和相对误差限r 的关系为_d rY =。
根据置信区间的求解方法可知____11P y Y r Y P αα⎫⎪⎧⎫-≤≥-⇒≤≥-⎨⎬⎩⎭根据正态分布的分位数可以知道1P Z αα⎫⎪⎪≤≥-⎬⎪⎪⎭,所以()2_2r Y V y z α⎛⎫⎪= ⎪⎝⎭。
也就是2_2_222/221111r Y r Y S n N z S n N z αα⎡⎤⎛⎫⎢⎥⎛⎫⎪⎛⎫⎝⎭⎪⎢⎥-=⇒=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥⎣⎦。
把_29.5,206,10%,50000y s r N ====代入上式可得,861.75862n =≈。
《抽样技术》习题答案(答案参考)

第2章项目相同之处不同之处定义都是根据从一个总体中抽样得到的样本,然后定义样本均值为_11ni i y y n ==∑。
抽样理论中样本是从有限总体中按放回的抽样方法得到的,样本中的样本点不会重复;而数理统计中的样本是从无限总体中利用有放回的抽样方法得到的,样本点有可能是重复的。
性质(1) 样本均值的期望都等于总体均值,也就是抽样理论和数理统计中的样本均值都是无偏估计。
(2) 不论总体原来是何种分布,在样本量足够大的条件下,样本均值近似服从正态分布。
(1) 抽样理论中,各个样本之间是不独立的;而数理统计中的各个样本之间是相互独立的。
(2) 抽样理论中的样本均值的方差为()21f V y S n -=,其中2_211i S Y Y N ⎛⎫=- ⎪-⎝⎭∑。
在数理统计中,()21V y nσ=,其中2σ为总体的方差。
2.3 解:首先估计该市居民日用电量的95%的置信区间。
根据中心极限定理可知,在大样本的条件下,()()_y E y y V y V y -=近似服从标准正态分布, _Y 的195%α-=的置信区间为()()()(), 1.96, 1.96y z V y y z V y y V y y V y αα⎡⎡-+=-+⎣⎣。
而()21f V y S n-=中总体的方差2S 是未知的,用样本方差2s 来代替,置信区间为111.96, 1.96f fy s y s n n ⎡⎤---+⎢⎥⎣⎦由题意知道,_29.5,206y s ==,而且样本量为300,50000n N ==,代入可以求得_21130050000()2060.6825300f v y s n --==⨯=。
将它们代入上面的式子可得该市居民日用电量的95%置信区间为7.8808,11.1192⎡⎤⎣⎦。
下一步计算样本量。
绝对误差限d 和相对误差限r 的关系为_d rY =。
根据置信区间的求解方法可知()()______11y Y P y Y r Y P V y V y αα⎧⎫-⎪⎪⎧⎫⎪-≤≥-⇒≤≥-⎨⎬⎨⎩⎭⎪⎪根据正态分布的分位数可以知道()__1y Y P Z V y αα⎫-⎪⎪≤≥-⎬⎪⎪⎭,所以()2_2r Y V y z α⎛⎫⎪= ⎪⎝⎭。
《抽样技术》练习题及标准答案

《抽样技术》练习题及答案————————————————————————————————作者:————————————————————————————————日期:习题一1.请列举一些你所了解的以及被接受的抽样调查。
2.抽样调查基础理论及其意义;3.抽样调查的特点。
4.样本可能数目及其意义;5.影响抽样误差的因素;6.某个总体抽取一个n=50的独立同分布样本,样本数据如下:567 601 665 732 366 937 462 619 279 287690 520 502 312 452 562 557 574 350 875834 203 593 980 172 287 753 259 276 876692 371 887 641 399 442 927 442 918 11178 416 405 210 58 797 746 153 644 4761)计算样本均值y与样本方差s2;2)若用y估计总体均值,按数理统计结果,y是否无偏,并写出它的方差表达式;3)根据上述样本数据,如何估计v(y)?4)假定y的分布是近似正态的,试分别给出总体均值μ的置信度为80%,90%,95%,99%的(近似)置信区间。
习题二一判断题1 普查是对总体的所有单元进行调查,而抽样调查仅对总体的部分单元进行调查。
2 概率抽样就是随机抽样,即要求按一定的概率以随机原则抽取样本,同时每个单元被抽中的概率是可以计算出来的。
3 抽样单元与总体单元是一致的。
4 偏倚是由于系统性因素产生的。
5 在没有偏倚的情况下,用样本统计量对目标量进行估计,要求估计量的方差越小越好。
6 偏倚与抽样误差一样都是由于抽样的随机性产生的。
7 偏倚与抽样误差一样都随样本量的增大而减小。
8 抽样单元是构成抽样框的基本要素,抽样单元只包含一个个体。
9 抽样单元可以分级,但在抽样调查中却没有与之相对应的不同级的抽样框。
10 总体目标量与样本统计量有不同的意义,但样本统计量它是样本的函数,是随机变量。
抽样技术课后习题_参考答案_金勇进

第二章习题2.1判断下列抽样方法是否是等概的:(1)总体编号1~64,在0~99中产生随机数r ,若r=0或r>64则舍弃重抽。
(2)总体编号1~64,在0~99中产生随机数r ,r 处以64的余数作为抽中的数,若余数为0则抽中64.(3)总体20000~21000,从1~1000中产生随机数r 。
然后用r+19999作为被抽选的数。
解析:等概抽样属于概率抽样,概率抽样具有一些几个特点:第一,按照一定的概率以随机原则抽取样本。
第二,每个单元被抽中的概率是已知的,或者是可以计算的。
第三,当用样本对总体目标进行估计时,要考虑到该样本被抽中的概率。
因此(1)中只有1~64是可能被抽中的,故不是等概的。
(2)不是等概的【原因】(3)是等概的。
2.2抽样理论和数理统计中关于样本均值y 的定义和性质有哪些不同?300户进行,现得到其日用电平均值=y 9.5(千瓦时),=2s 206.试估计该市居民用电量的95%置信区间。
如果希望相对误差限不超过10%,则样本量至少应为多少?解:由已知可得,N=50000,n=300,5.9y =,2062=s 该市居民用电量的95%置信区间为[])(y [2y V z N α±=[475000±1.96*41308.19]即为(394035.95,555964.05) 由相对误差公式y)(v u 2y α≤10%可得%10*5.9206*n50000n 1*96.1≤- 即n ≥862欲使相对误差限不超过10%,则样本量至少应为8622.4某大学10000名本科生,现欲估计爱暑假期间参加了各类英语培训的学生所占的比例。
随机抽取了两百名学生进行调查,得到P=0.35,是估计该大学所有本科生中暑假参加培训班的比例的95%置信区间。
解析:由已知得:10000=N 200=n 35.0=p 02.0==Nnf 又有:35.0)()(===∧p p E p E 0012.0)1(11)(=---=∧p p n fp V该大学所有本科学生中暑假参加培训班的比例95%的置信区间为:])()([2∧∧±P V Z P E α代入数据计算得:该区间为[0.2843,0.4157]2.5研究某小区家庭用于文化方面(报刊、电视、网络、书籍等)的支出,N=200,现抽取一个容量为20的样本,调查结果列于下表:编号 文化支出 编号 文化支出 1 200 11 150 2 150 12 160 3 170 13 180 4 150 14 130 5 160 15 100 6 130 16 180 7 140 17 100 8 100 18 180 9 110 19 170 1024020120估计该小区平均的文化支出Y ,并给出置信水平95%的置信区间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N
1750
3.4
(1) N 200000
n 70
n1 6
1 f 1 1 0.01449 n 1 n 1 70 1
该地区拥有私人汽车的比例估计: p n1 6 0.086 n 70
q 1 p 1 0.086 0.914 pq 0.0860.914 0.0786
4.5 依题意,可算得样本量 n = 200,并有如下表数据
1
2
3
4
5
6
7
8
9
10
Total
Wh yh 7.298 3.64 13.974 4.256 11.446 9.164 14.11 5.096 3.168 3.64 75.792
Whsh2 904.05 355.94 4739.65 526.90 1325.85 918.84 2132.48 522.24 170.37 295.75 11892.07 故可得
2658
������ℎ = ������������ℎ
������1 ≈ 478 ������2 ≈ 558 ������3 ≈ 373 按尼曼分配时
n
=
������
������ℎ +
������ℎ ������ℎ 2 ������ℎ ������ℎ ������ℎ
������
≈
2561
������4 ≈ 239 ������5 ≈ 425
1750(0.0907, 0.4433) (159, 776)
(3)
n0
t2q 2p
1.962 (1 0.267) 0.12 0.267
1054.64
可得最少的样本量: n n0 1054.64 658.2948 659 。
1 n0 1 1 1054.64 1
因而比例估计的标准差: se( p) (1 f ) pq 0.01449 0.086 0.914 0.0338 n 1
(2) t=1.96 5%
n0
t 2 pq 2
1.962 0.0786 0.052
120.79
121
由于
N
很大,最少的样本量
n
1
n0 n0
n0
Wh PhQh 0.018 0.048 0.12 0.186 92.26
V
0.002016
0.002016
n n0 93
4.6 另解 已知 W1=0.2,W2=0.3,W3=0.5, P1=0.1,P2=0.2,P3=0.4
P=ΣhWhPh=0.28,Q=1—P=0.72 n=100 的简单随机抽样估计方差:
19
3
要得到相同的变异系数
0.05,则所需的样本量由 n0
CV
Q 2 (P)P
得:
n01
0.92 0.052 0.08
4600
n0 2
0.95 0.052 0.05
7600 。
第四章
4.3 (1) 根据题中所给的数据,可以得到以下相关结果
h
nh
Nh
Wh
fh
1 2 3 合计
10
第三章
3.1 判断题是否为等概率抽样: (1)是;(2)否;(3)是;(4)否。
3.2
(1)Y
1 N
Yi
5.5
1
2 1
N
(Yi Y )2 6.25
S 2 1
N 1
(Yi Y )2 8.33
(2)样本:(2, 5) (2, 6) (2, 9) (5, 6) (5, 9) (6, 9)
256 0.3033 0.0391
10
420 0.4976 0.0238
10
168 0.1991 0.0595
30
844 1.0000
3
购买彩票的平均支出: yst Wh yh 21.2621(元) h1
方差估计量: v( yst )
3
Wh2 (1
h1
f
h
)
sh2 nh
11.3104
h1
V
348.1395 1.1768
295.84
所需样本量为 n n0 295.84 219.05 220
1 n0 1 295.84
N
844
yh
Wh yh
sh 2
11.2
3.3972 94.4000
25.5
12.6896 302.5000
26.0
5.1754 848.8889
W2s2 0.4976 302.5000 8.6550
W3s3 0.1991 848.8889 5.7995
3
Whsh 2.9470 8.6550 5.7995 17.4016
h1
所需样本量为 n ( Whsh )2
17.40162
190.54 191
n3 n
W3s3 191 5.7995 63.5010 64
Wh sh
17.4016
4.4
h
Wh
nh
1
0.18 30
2
0.21 30
3
0.14 30
4
0.09 30
5
0.16 30
6
0.22 30
合计
在家人数 nhi ph
27
0.9
28
0.933333
27
0.9
26
0.866667
4.6 W1 0.2, W2 0.3, W3 0.5
P1 0.1, P2 0.2, P3 0.4
P WhPh 0.28
6
样本量为 100 的简单随机抽样估计方差:
V 1 f S 2 1 N PQ 1 PQ 0.002016
n
n N 1
n
按比例分配分层抽样的样本量为:
标准差: se( yst ) v( yst ) 11.3104 3.3631
(2) t=1.96 10%
V
Y t
2
0.1 21.26212 1.96
1.1768
3
Whsh2 348.1395
h1
按比例分配时:
3
n0
Wh sh2
28
0.933333
29
0.966667
qh
0.1 0.066667 0.1 0.133333 0.066667 0.033333
Wh*ph
0.162 0.196 0.126 0.078 0.149333 0.212667 0.924
wh2
ph qh nh − 1
0.000101
9.46E-05
6.08E-05
t se(y) 1.965.203 10.198
95%置信度下置信区间为(56.067-10.198, 56.067+10.198)=(45.869, 66.265). 因此,对该校学生某月的人均购书支出额的估计为 56.07(元),由于置信度 95% 对应的 t 1.96 ,所以,可以以 95%的把握说该学生该月的人均购书支出额大约 在 45.87~66.27 元之间。
(3)抽样标准误 = 4/3 = 1.155
(4)抽样极限误差 = 1.96*1.155 = 2.263 (5)置信区间 = (5.67-2.263, 5.67+2.263) =(3.407, 7.933)。 若区间两端只考虑抽样分布的可能性取值,则可得该抽样分布作为离散分布的置 信区间为[3, 7]
第二章
2.1 判断题: (1)错;(2)错;(3)对;(4)错;(5)错;(6)错;(7)错;(8) 错;(9)对;(10)对;(11)错;(12)错;(13)错。 2.3 选择题: (1)b;(2)b;(3)d;(4)c;(5)c。 2.7 (1)抽样分布:
������������ 3 3.67 4.33 5 5.67 6.33 7 Pr������ 1/10 1/10 2/10 2/10 2/10 1/10 1/10 (2)期望为 5,方差为 4/3
������ℎ = ������
������ℎ ������ℎ
������ℎ ������ℎ ������ℎ ������ℎ
������1 ≈ 536 ������2 ≈ 519 ������3 ≈ 416 ������4 ≈ 303 ������5 ≈ 396
������6 ≈ 585 ������6 ≈ 391
s2
1 n 1
n i1
( yi
y)2
1 n 1
n i1
yi 2
ny 2
118266 3050.067^2 30 1
826.271
vy 1 f s2 0.03276826.271 27.07
n
se( y) vy 5.203
平均支出的分层估计: y Wh yh 75.79
其方差估计: v( y) 1
n
Wh sh2
11892.07 200
59.46
标准差: se( y) v( y) 59.4604 7.71
95%的置信区间为: (75.79 1.967.71) (60.68, 90.91) 。
3.23E-05
5.49E-05
5.38E-05