2020年江苏专转本考试高等数学真题(含解析)

合集下载

2020年江苏专转本高等数学真题

2020年江苏专转本高等数学真题

C.2
D.4
3.设函数 在点
处连续,且 ul
,则
A.
B.
C.3
4.已知 A.
的一个原函数是 9
,则 B.
C. 9
D. 9
5.下列反常积分中收敛的是
A.
d
B.
d
C.
d
D.6 D.
() ()
() d
6.设 A. t
t
,则
B. t
C. t
D. t
()
7.二次积分
在极坐标系中可化为
()
A.
t
B.
t
C.
u
D.
江苏省 2020 年普通高校专转本选拔考试
高等数学 试题卷
一、单项选择题(本大题共 8 小题,每小题 4 分,共 32 分。在下列每小题中选出一个正
确答案,请在答题卡上将所选项的字母标号涂黑)
1.极限 ul u
u
的值为
()
A.1
B.2
C.3
D.4
2.设函数

内连续, 为常数,则 −
()
A.-2
B.0

D
,ቤተ መጻሕፍቲ ባይዱ
围成的平面区域。
四、证明题(本大题 10 分)
23.证明:当
时,
4
五、综合题(本大题共 2 小题,每小题 10 分,共 20 分)
24.设平面图形 由曲线
与其曲线在 处的法线及直线
(1)平面图形 的面积;
(2)平面图形 绕 轴旋转一周所形成的旋转体的体积。
围成,试求:
25.设函数
,已知曲线
试求: (1) 常数 (2)函数
u

江苏省专转本(高等数学)模拟试卷44(题后含答案及解析)

江苏省专转本(高等数学)模拟试卷44(题后含答案及解析)

江苏省专转本(高等数学)模拟试卷44(题后含答案及解析) 题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.已知连续函数f(x)满足f(x)=x2+x∫01f(x)dx,则f(x)=( ).A.f(x)=x2+xB.f(x)=x2一xC.D.正确答案:C解析:用代入法可得出正确答案为C2.函数在x=0处( ).A.连续但不可导B.连续且可导C.不连续也不可导D.可导但不连续正确答案:B解析:3.关于的间断点说法正确的是( ).A.为可去间断点B.x=0为可去间断点C.x=kπ为第二类无穷间断点D.以上说法都正确正确答案:D解析:的间断点为为可去间断点.对于x=kx,当k=0,即x=0时,x=0为可去间断点.当k≠0时,为第二类无穷间断点.4.设D:x2+y2≤R2,则=( ).A.B.∫0 2πdθ∫0Rrdr=πR2C.D.∫02πdθ∫0RR2dr=2πR正确答案:C解析:在极坐标中,0≤r≤,R,0≤θ≤2π,5.抛物面在点M0(1,2,3)处的切平面是( ).A.6x+3y一2z一18=0B.6x+3y+2z一18=0C.6x+3y+2z+18=0D.6x一3y+2z一18=0正确答案:B解析:6.幂级数的收敛半径是( ).A.0B.1C.2D.+∞正确答案:B解析:填空题7.则a=________,b=________.正确答案:一4;3解析:并且x2+ax+b=0,所以a=一4,b=3.8.u=f(xy,x2+2y2),其中f为可微函数,则=________。

正确答案:yf1+2xf’2解析:令w=xy,v=x2+y2,则u=f(w,v),9.已知函数f(x)=alnx+bx2+x在x=1与x=2处有极值,则a=____________,b=_______________.正确答案:解析:由题意可知:10.a,b为两个非零矢量,λ为非零常数,若向量a+λb垂直于向量b,则λ等于___________.正确答案:解析:a+λb垂直于向量b→(a+λb).b=0.11.已知f(cosx)=sin2x,则∫f(x一1)dx=___________.正确答案:解析:12.已知f(x)=ex2,f[φ(x)]=1一x,且φ(x)≥0,则φ(x)的定义域为_____________.正确答案:x≤0解析:解答题解答时应写出推理、演算步骤。

2020年江苏专转本高等数学真题

2020年江苏专转本高等数学真题

t
,则
B. t
C. t
D. t
()
7.二次积分
在极坐标系中可化为
()
A.
t
B.
t
C.
u
D.
u
8.设函数 A.
h
在区间
h
h h 内可展开成幂级数 an xn , 则
n0
B.−
h
C.
h
D.
h
二、填空题(本大题共 6 小题,每小题 4 分,共 24 分)
()
_____.
u
的值为
()
A.1
B.2
C.3
D.4
2.设函数

内连续, 为常数,则 −
()
A.-2
B.0
C.2
D.4
3.设函数 在点
处连续,且 ul
,则
A.
B.
C.3
4.已知 A.
的一个原函数是 9
,则 B.
C. 9
D. 9
5.下列反常积分中收敛的是
A.
d
B.
d
C.
d
D.6 D.
() ()
() d
6.设 A. t
(1)平面图形 的面积;
(2)平面图形 绕 轴旋转一周所形成的旋转体的体积。
围成,试求:
25.设函数
,已知曲线
试求: (1) 常数 (2)函数
的值; ⺁的单调区间与极值。
⺁具有水平渐近线
,且有拐
添加小学士微信(xueshi005) 获得高数答案解析
5
的收敛半径为______________.
三、计算题(本大题共 8 小题,每小题 8 分,共 64 分)

(完整版)江苏专转本高等数学真题(附答案)

(完整版)江苏专转本高等数学真题(附答案)

2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。

解析2020年普通高等学校招生全国统一考试(江苏卷)数学

解析2020年普通高等学校招生全国统一考试(江苏卷)数学

机密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。

4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。

参考公式:,其中S是柱体的底面积,h是柱体的高.柱体的体积V Sh一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上..1.已知集合A={-1,0,1,2},B={0,2,3},则A∩B=.【命题意图】本题考查集合中的简单的交集计算.【解析】由集合A={-1,0,1,2},B={0,2,3},所以A∩B={0,2}.答案:{0,2}2.已知i是虚数单位,则复数z=(1+i)(2−i)的实部是.【命题意图】本题主要考查复数的四则运算.【解析】z=(1+i)(2−i)=3+i,则实部为3.答案:33.已知一组数据4,2a,3-a,5,6的平均数为4,则a的值是.【命题意图】本题主要考查数据特征中的平均数的计算.=4可知a=2.【解析】由4+2a+(3-a)+5+65答案:24.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是.【命题意图】本题主要考查古典概型.【解析】总事件数为6×6=36,满足条件的事件有(1,4),(2,3),(3,2),(4,1)共4种,则点数和为5的概率为436=19.答案:195.如图是一个算法流程图,若输出y 的值为-2,则输入x 的值为 .【命题意图】本题主要考查流程图选择问题,注意选择条件. 【解析】由题可知y ={2x ,x>1,x+1,x≤1,当y =-2时,得x +1=-2,则x =-3. 答案:-36.在平面直角坐标系xOy 中,若双曲线x 2a 2 -y 25=1(a >0)的一条渐近线方程为y =√52x ,则该双曲线的离心率是 .【命题意图】本题主要考查双曲线的性质,渐近线问题. 【解析】由x 2a2−y 25=0得渐近线方程为y =±√5ax , 又a >0,则a =2,由c 2=a 2+5=9,c =3,得离心率e =c a =32. 答案:32【光速解题】e =√1+(√52)2=32.答案:327.已知y =f (x )是奇函数,当x ≥0时,f (x )=x 23,则f (-8)的值是 . 【命题意图】本题主要考查函数性质,利用奇偶性求函数值. 【解析】y =f (x )是奇函数,当x ≥0时,f (x )=x 23, 则f (-8)=-f (8)=-823=-4.答案:-48.已知sin 2(π4+α)=23,则sin 2α的值是 .【命题意图】本题主要考查三角函数恒等变换,利用整体思想求值. 【解析】方法一:因为sin 2(π4+α)=23, 由sin 2(π4+α)=12[1−cos (π2+2α)] =12(1+sin 2α)=23,解得sin 2α=13. 方法二:sin 2α=-cos (π2+2α) =2sin 2(π4+α)-1=13.答案:139.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的,已知螺帽的底面正六边形边长为2 cm,高为2 cm,内孔半径为0.5 cm,则此六角螺帽毛坯的体积是 cm 3.【命题意图】本题主要考查正棱柱、圆柱的体积计算,要求学生要熟记公式.【解析】记此六角螺帽毛坯的体积为V ,正六棱柱的体积为V 1,圆柱的体积为V 2,则V 1=6×12×2×2×sin 60°×2=12√3(cm 3),V 2=π×(0.5)2×2=π2(cm 3), 所以V =V 1-V 2=12√3-π2(cm 3).答案:12√3-π210.将函数y =3sin (2x +π4)的图象向右平移π6个单位长度,则平移后的图象与y 轴最近的对称轴方程是 .【命题意图】本题主要考查三角函数的图象的平移变换和性质.重点考查直观想象的数学核心素养. 【解析】设f (x )=y =3sin (2x +π4),将函数f (x )=3sin (2x +π4)的图象向右平移π6个单位长度得g (x )=f (x -π6)= 3sin (2x -π3+π4)=3sin (2x -π12),则y =g (x )的图象的对称轴为2x - π12=π2+k π,k ∈Z,即x =7π24+kπ2,k ∈Z,k =0时,x =7π24,k =-1时,x =-5π24,所以平移后的图象与y 轴最近的对称轴的方程是x =-5π24. 答案:x =-5π24【误区警示】解决本题时一定要看清要求的对称轴方程是平移后的图象与y 轴最近的对称轴方程.求出平移后的图象的对称轴方程为x =7π24+kπ2(k ∈Z),不要误认为k =0时,x =7π24就是本题的答案,还应验证k =-1时,x =-5π24,两者进行比较,才能得出答案.11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列,已知数列{a n +b n }的前n 项和S n =n 2-n +2n -1(n ∈N *),则d +q 的值是 .【命题意图】本题主要考查根据前n 项和求数列的通项公式,多写一项,进行作差运算,根据结构得到数列通项.重点考查学生数学运算的核心素养.【解析】设数列{a n },{b n }的首项分别为a 1,b 1,前n 项和分别为A n ,B n ,则A n =d2n 2+(a 1-d2)n ,B n =b1q -1q n +b11−q ,结合S n =n 2-n +2n -1,得{d2=1,q =2,解得{d =2,q =2,所以d +q =4.答案:412.已知5x 2y 2+y 4=1(x ,y ∈R),则x 2+y 2的最小值是 .【命题意图】本题主要考查不等式,利用消元法结合基本不等式求最值. 【解析】因为5x 2y 2+y 4=1(x ,y ∈R),所以y ≠0, 所以x 2=1−y 45y 2,则x 2+y 2=15y 2+45y 2≥2√425=45, 当且仅当15y 2=45y 2时,即y 2=12, x 2=310时,x 2+y 2的最小值是45.答案:45【光速解题】4=(5x 2+y 2)·4y 2≤[(5x 2+y 2)+4y 22]2=254(x 2+y 2)2,故x 2+y 2≥45,当且仅当5x 2+y 2=4y 2=2,即x 2=310,y 2=12时,取等号.所以(x 2+y 2)min =45. 答案:4513.在△ABC中,AB=4,AC=3,∠BAC=90°,D在边BC上,延长AD到P,使得AP=9,若=m+(32-m)(m 为常数),则CD的长度是.【命题意图】本题主要考查平面向量共线的应用.重点考查直观想象及数学运算的核心素养.【解析】作AE⊥BC,交BC于点E.设=λ=λm+λ(32-m),因为C,D,B三点共线,所以λm+λ(32-m)=1,解得λ=23,所以AD=3=AC,所以CD=2·AC·cos C=185.答案:18514.在平面直角坐标系xOy中,已知P(√32,0),A,B是圆C:x2+(y-12)2=36上的两个动点,满足P A=PB,则△P AB面积的最大值是.【命题意图】本题主要考查直线与圆相交问题,通过设圆心角表示面积,利用导数求最值.突出考查数学运算的核心素养.【解析】方法一:如图,作PC所在直径EF,交AB于点D,因为P A=PB,CA=CB=R=6,所以PC⊥AB.要使面积S△P AB最大,则P,D位于C的两侧,并设CD=x,计算可知PC=1,故PD=1+x,AB=2BD=2√36−x2,故S△P AB=12AB·PD=(1+x)√36−x2,设∠BCD=θ,则x=6cos θ,S△P AB=(1+x)√36−x2=(1+6cos θ)·6sin θ=6sin θ+18sin 2θ,0<θ<π2, 记函数f (θ)=6sin θ+18sin 2θ,则f'(θ)=6cos θ+36cos 2θ=6(12cos 2θ+cos θ-6), 令f'(θ)=6(12cos 2θ+cos θ-6)=0, 解得cos θ=23(cos θ=-34<0舍去),显然,当0<cos θ<23时,f'(θ)<0,f (θ)单调递减;当23<cos θ<1时,f'(θ)>0,f (θ)单调递增; 结合cos θ在(0,π2)上单调递减,故cos θ=23时,f (θ)最大,此时sin θ=√1−cos 2θ=√53, 故f (θ)max =6×√53+36×√53×23=10√5,即△P AB 面积的最大值是10√5.方法二:由已知PC =1,设12∠ACB =α(α∈(0,π2)),则△P AB 的面积S =12·(6cosα+1)·12sin α=6sin α(6cos α+1), 令S'=6(12cos 2α+cos α-6) =6(4cos α+3)(3cos α-2)=0,解得cos α0=23(负值舍去),所以S 在(0,α0)上单调递增,在(α0,π2)上单调递减,所以S max =6×√53×5=10√5. 答案:10√5二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点. (1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.【命题意图】本题主要考查立体几何线面平行、面面垂直的证明,考查学生空间想象能力和推理能力.【证明】(1)因为E,F分别是AC,B1C的中点,所以EF∥AB1,因为EF⊄平面AB1C1,AB1⊂平面AB1C1,所以EF∥平面AB1C1.(2)因为B1C⊥平面ABC,AB⊂平面ABC,所以B1C⊥AB,又因为AB⊥AC,AC∩B1C=C,AC⊂平面AB1C,B1C⊂平面AB1C,所以AB⊥平面AB1C,因为AB⊂平面ABB1,所以平面AB1C⊥平面ABB1.16.(本小题满分14分)在△ABC中,角A,B,C的对边分别为a,b,c,已知a=3,c=√2,B=45°.(1)求sin C的值;(2)在边BC上取一点D,使得cos∠ADC=-45,求tan∠DAC的值.【命题意图】本题主要考查正余弦定理及两角和差公式的应用,考查学生解题的严谨性.【解析】(1)由余弦定理,得cos B=cos 45°=a 2+c2-b22ac=26√2=√22,因此b2=5,即b=√5,由正弦定理csinC =bsinB,得√2sinC=√5√22,因此sin C=√55.(2)因为cos∠ADC=-45,所以sin∠ADC=√1−cos2∠ADC=35,因为∠ADC∈(π2,π),所以C∈(0,π2),所以cos C=√1−sin2C=2√55,所以sin∠DAC=sin(π-∠DAC)=sin(∠ADC+∠C)=sin∠ADC cos C+cos∠ADC sin C=2√525,因为∠DAC ∈(0,π2),所以cos ∠DAC =√1−sin 2∠DAC =11√525, 故tan ∠DAC =sin∠DACcos∠DAC =211. 17.(本小题满分14分)某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,OO'为铅垂线(O'在AB 上),经测量,左侧曲线AO 上任一点D 到MN 的距离h 1(米)与D 到OO'的距离a (米)之间满足关系式h 1=140a 2;右侧曲线BO 上任一点F 到MN 的距离h 2(米)与F 到OO'的距离b (米)之间满足关系式h 2=-1800b 3+6b.已知点B 到OO'的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO'的桥墩CD 和EF .且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元),桥墩CD 每米造价32k (万元)(k >0),问O'E 为多少米时,桥墩CD 与EF 的总造价最低?【命题意图】本题主要考查实际生活问题中的模型建立及导数的实际应用.重点考查数学建模的核心素养. 【解析】(1)过A ,B 分别作MN 的垂线,垂足为A',B', 则AA'=BB'=-1800×403+6×40=160(米).令140a 2=160,得a =80,所以AO'=80,AB =AO'+BO'=80+40=120(米). (2)设O'E =x ,则CO'=80-x ,由{0<x <400<80−x <80,得0<x <40.设总造价为y ,则y =3k2[160−140(80-x )2]+k [160−(-1800x 3+6x)] =k800(x 3-30x 2+160×800), y'=k800(3x 2-60x )=3k800x (x -20),因为k >0,所以令y'=0,得x =0或x =20, 所以当0<x <20时,y'<0,y 单调递减;当20<x <40时,y'>0,y 单调递增.所以,当x =20时,y 取最小值,即当O'E 为20米时,造价最低. 18.(本小题满分16分)在平面直角坐标系xOy 中,若椭圆E :x 24+y 23=1的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B. (1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求·的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别是S 1,S 2,若S 2=3S 1,求M 的坐标.【命题意图】本题考查了(1)利用椭圆的定义求焦点三角形的周长;(2)求平面向量数量积最值问题;(3)面积比值转化为高之比,从而转化为平行线间的距离求出直线方程.考查数学运算、直观想象的核心素养. 【解析】(1)△AF 1F 2的周长=2a +2c =6.(2)由椭圆方程得A (1,32),设点P (t ,0),则直线AP 方程为y =321−t (x -t ),令x =a 2c =4得y Q =6−32t 1−t =12−3t 2(1−t ), 即Q (4,12−3t 2−2t),=(t -4,12−3t 2t -2),·=t 2-4t =(t -2)2-4≥-4, 即·的最小值为-4.(3)设O 到直线AB 的距离为d 1,M 到直线AB 的距离为d 2, 若S 2=3S 1,则12×|AB |×d 2=12×|AB |×d 1×3,即d 2=3d 1, 由题意可得直线AB 的方程为y =34(x +1), 即3x -4y +3=0,所以d 1=35,d 2=95.由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点, 设平行于AB 的直线l 为3x -4y +m =0,与直线AB 的距离为95, 所以√9+16=95,即m =-6或12.当m =-6时,直线l 为3x -4y -6=0, 即y =34(x -2),联立{y =34(x -2)x 24+y 23=1,可得(x -2)(7x +2)=0,即{x M =2y M =0,或{x M =−27y M =−127, 所以M (2,0)或(-27,-127).当m =12时,直线l 为3x -4y +12=0, 即y =34(x +4),联立{y =34(x +4)x 24+y 23=1,可得214x 2+18x +24=0,Δ<0,所以无解.综上所述,M 点坐标为(2,0)或(-27,-127).19.(本小题满分16分)已知关于x 的函数y =f (x ),y =g (x )与h (x )=kx +b (k ,b ∈R)在区间D 上恒有f (x )≥h (x )≥g (x ). (1)若f (x )=x 2+2x ,g (x )=-x 2+2x ,D =(-∞,+∞).求h (x )的表达式; (2)若f (x )=x 2-x +1,g (x )=k ln x ,h (x )=kx -k ,D =(0,+∞).求k 的取值范围;(3)若f (x )=x 4-2x 2,g (x )=4x 2-8,h (x )=4(t 3-t )x -3t 4+2t 2(0<|t |≤√2),D =[m ,n ]⊆[-√2,√2],求证:n -m ≤√7.【命题意图】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.【解析】(1)由f (x )=g (x )得x =0.又f'(x )=2x +2,g'(x )=-2x +2,所以f'(0)=g'(0)=2,所以,函数h (x )的图象为过原点,斜率为2的直线,所以h (x )=2x.经检验:h (x )=2x 符合题意. (2)h (x )-g (x )=k (x -1-ln x ), 设φ(x )=x -1-ln x ,则φ'(x )=1-1x =x -1x , φ(x )≥φ(1)=0,所以当h (x )-g (x )≥0时,k ≥0.设m (x )=f (x )-h (x )=x 2-x +1-(kx -k )=x 2-(k +1)x +(1+k )≥0, 当x =k+12≤0时,m (x )在(0,+∞)上递增,所以m(x)>m(0)=1+k≥0,所以k=-1.>0时,Δ≤0,当x=k+12即(k+1)2-4(k+1)≤0,(k+1)(k-3)≤0,-1≤k≤3.综上,k∈[0,3].(3)①当1≤t≤√2时,≤0.(*)由g(x)≤h(x),得4x2-8≤4(t3-t)x-3t4+2t2,整理得x2-(t3-t)x+3t4-2t2-84令Δ=(t3-t)2-(3t4-2t2-8),则Δ=t6-5t4+3t2+8.记φ(t)=t6-5t4+3t2+8(1≤t≤√2),则φ'(t)=6t5-20t3+6t=2t(3t2-1)(t2-3)<0恒成立,所以φ(t)在[1,√2]上是减函数,则φ(√2)≤φ(t)≤φ(1),即2≤φ(t)≤7所以不等式(*)有解,设解集为{x|x1≤x≤x2},因此n-m≤x2-x1=√Δ≤√7.②当0<t<1时,f(-1)-h(-1)=3t4+4t3-2t2-4t-1.设v(t)=3t4+4t3-2t2-4t-1,v'(t)=12t3+12t2-4t-4=4(t+1)(3t2-1),.令v'(t)=0,得t=√33)时,v'(t)<0,v(t)是减函数;当t∈(0,√33,1)时,v'(t)>0,v(t)是增函数;当t∈(√33v(0)=-1,v(1)=0,则当0<t<1时,v(t)<0,(或证:v(t)=(t+1)2(3t+1)(t-1)<0)则f(-1)-h(-1)<0,因此-1∉(m,n).因为[m,n]⊆[-√2,√2],所以n-m≤√2+1<√7.③当-√2≤t <0时,因为f (x ),g (x )均为偶函数, 因此n -m ≤√7也成立. 综上所述,n -m ≤√7. 20.(本小题满分16分)已知数列{a n }(n ∈N *)的首项a 1=1,前n 项和为S n ,设λ与k 是常数,若对一切正整数n ,均有S n+11k-S n 1k=λa n+11k成立,则称此为“λ-k ”数列.(1)若等差数列{a n }是“λ-1”数列,求λ的值;(2)若数列{a n }是“√33-2”数列,且a n >0,求数列{a n }的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n }为“λ-3”数列,且a n ≥0?若存在,求λ的取值范围;若不存在,说明理由.【命题意图】本题以数列为载体,综合考查等差数列的基本性质,及解决数列综合问题的能力,综合考查代数推理、转化化归及综合运用数学知识探究与解决问题的能力. 【解析】(1)k =1时,a n +1=S n +1-S n =λa n +1,所以λ=1. (2)√S n+1-√S n =√33√a n+1,a n +1=S n +1-S n =√33√a n+1(√S n+1+√S n ), 因此√S n+1+√S n =√3√a n+1.√S n+1=23√3a n+1,S n +1=43a n +1=43(S n +1-S n ). 从而S n +1=4S n .又S 1=a 1=1,所以S n =4n -1,a n =S n -S n -1=3·4n -2,n ≥2. 综上,a n ={1,n =13·4n -2,n ≥2.(3)设各项非负的数列{a n }(n ∈N *)为“λ-3”数列, 则S n+113-S n 13=λa n+113,即√S n+13-√S n 3=λ√S n+1-S n 3.因为a n ≥0,且a 1=1,所以S n +1≥S n >0, 则√S n+1S n3-1=λ√S n+1S n-13.令√S n+1S n3=c n ,则c n -1=λ√c n 3-13(c n ≥1),即(c n -1)3=λ3(c n 3-1)(c n ≥1).(*)①若λ≤0或λ=1,则(*)只有一解为c n =1,即符合条件的数列{a n }只有一个.(此数列为1,0,0,0,…) ②若λ>1,则(*)化为(c n -1)(c n2+λ3+2λ3-1c n +1)=0,因为c n ≥1,所以c n 2+λ3+2λ3-1c n +1>0,则(*)只有一解为c n =1,即符合条件的数列{a n }只有一个.(此数列为1,0,0,0,…)③若0<λ<1,则c n 2+λ3+2λ3-1c n +1=0的两根分别在(0,1)与(1,+∞)内,则方程(*)有两个大于或等于1的解:其中一个为1,另一个大于1(记此解为t ). 所以S n +1=S n 或S n +1=t 3S n .由于数列{S n }从任何一项求其后一项均有两种不同结果, 所以这样的数列{S n }有无数多个,则对应的{a n }有无数多个.综上所述,能存在三个各项非负的数列{a n }为“λ-3”数列,λ的取值范围是0<λ<1. 21.【选做题】A .平面上点A (2,-1)在矩阵M =[a 1-1b]对应的变换作用下得到点B (3,-4). (1)求实数a ,b 的值; (2)求矩阵M 的逆矩阵M -1.【命题意图】本题主要考查矩阵的基本运算及对应变换. 【解析】(1)[a1-1b ][2-1]=[2a -1-2-b] =[3-4], 所以{2a -1=3,-2-b =−4.解得{a =2,b =2.(2)由(1)知M =[21-12]. |M |=2·2+1·1=5,所以M -1=[25-151525].B.在极坐标系中,已知点A (ρ1,π3)在直线l :ρcos θ=2上,点B (ρ2,π6)在圆C :ρ=4sin θ上(其中ρ≥0,0≤θ<2π). (1)求ρ1,ρ2的值;(2)求直线l 与圆C 的公共点的极坐标.【命题意图】本题主要考查极坐标公式及极坐标的意义、极坐标的求法.【解析】(1)ρ1=2cosπ3=4,ρ2=4sin π6=2.(2)联立得4sin θcos θ=2得sin 2θ=1, 因为ρ≥0,0≤θ<2π, 所以θ=π4,ρ=2√2,所以公共点的极坐标为(2√2,π4). C.设x ∈R,解不等式2|x +1|+|x |<4.【命题意图】本题主要考查含有绝对值的不等式的解法. 【解析】当x >0时,2x +2+x <4,解得0<x <23;当-1≤x ≤0时,2x +2-x <4,解得-1≤x ≤0;当x <-1时,-2x -2-x <4,解得-2<x <-1. 综上,解集为(-2,23).22.在三棱锥A -BCD 中,已知CB =CD =√5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点. (1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F -DE -C 的大小为θ,求sin θ的值.【命题意图】本题主要考查利用空间向量法求异面直线所成的角及二面角.重点考查如何建立空间直角坐标系,求出相应点的坐标,再利用公式求角.【解析】建立如图所示的空间直角坐标系,则A (0,0,2),B (1,0,0),C (0,2,0),D (-1,0,0),E (0,1,1).(1)=(1,0,−2),=(1,1,1),则cos<,>==√1515.故直线AB 与DE 所成角的余弦值为√1515. (2)由已知得F (34,12,0),=(74,12,0),=(1,1,1),设平面DEF 的一个法向量为n 1=(x 1,y 1,z 1),则{x 1+y 1+z 1=0,74x 1+12y 1=0, 令x 1=2,得{y 1=−7,z 1=5,所以n 1=(2,-7,5).设平面DEC 的一个法向量为n 2=(x 2,y 2,z 2), 又=(1,2,0),则{x 2+y 2+z 2=0,x 2+2y 2=0, 令x 2=2,得{y 2=−1,z 2=−1,所以n 2=(2,-1,-1), 所以|cos θ|=|n 1·n 2||n 1||n 2|=√6×√78=√1313, 所以sin θ=√1−cos 2θ=√1−113=2√3913. 23.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n .(1)求p 1,q 1和p 2,q 2;(2)求2p n +q n 与2p n -1+q n -1的递推关系式和X n 的数学期望E (X n )(用n 表示).【命题意图】本题主要考查概率的求法及数学期望的求法.重点考查学生利用所学知识解决实际问题的能力.【解析】(1)p 1=13×1=13,q 1=23×1=23.p 2=13p 1+23×13q 1=727, q 2=23p 1+(23×23+13×13)q 1=1627. (2)当n ≥2时,p n =13p n -1+23×13q n -1=13p n -1+29q n -1,q n =23p n -1+(23×23+13×13)q n -1+23×(1-p n -1-q n -1)=-19q n -1+23, 所以2p n +q n =13(2p n -1+q n -1)+23, 则2p n +q n -1=13(2p n -1+q n -1-1), 又2p 1+q 1-1=13,所以2p n +q n =1+(13)n. X n 的概率分布如下:X n 0 1 2 P1-p n -q nq np n则E (X n )=q n +2p n =1+(13)n.。

江苏省专转本(高等数学)模拟试卷33(题后含答案及解析)

江苏省专转本(高等数学)模拟试卷33(题后含答案及解析)

江苏省专转本(高等数学)模拟试卷33(题后含答案及解析)题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.A.1/4B.1/2C.2D.4正确答案:B解析:令.2=1/22.要使f(x)=ln(1+kx)m/x在点x=0处连续,应给f(0)补充定义的数值是( ).A.kmB.k/mC.lnkmD.ekm正确答案:A解析:∵=lnekm=km,∴f(0)=km,选A项.3.设f(x2)=x4+x2+1,则f’(1)=( ).A.1B.3C.-1D.-3正确答案:C解析:(1)∵f(x2)=(x2)2+x2+1,∴f(x)=x2+x+1.(2)f’(x)=2x+1,f’(-1)=-2+1=-1,选C项.4.已知f(x)=(x-3)(x-4)(x-5),则f’(x)=0有( ).A.一个实根B.两个实根C.三个实根D.无实根正确答案:B解析:(1)∵f(x)在[3,4]连续在(3,4),可导且f(3)=f(4)=0,∴f(x)在[3,4]满足罗尔定理条件,故有f’(ξ1)=0(3<ξ1<4).(2)同理f(x)在[4,5]满足罗尔定理有f’(ξ2)=0,4<ξ2<5.综上所述,f’(x)=0在(3,5)至少有两个实根(3)f’(x)=0是一元二次方程,至多有两个根,故选B项.5.已知f(x)的一个原函数为cosx,g(x)的一个原函数为x2,则f[g(x)]的一个原函数为( ).A.x2B.cos2xC.cos2D.cosx正确答案:B解析:(1)∵f(x)=(cosx)’=-sinx,g(x)=(x2)’=2x,∴f[g(x)]=-sin2x.(2)∵(cos2x)’=2cosx(-sinx)=-sin2x,∴选B项.6.设e-x是f(x)的一个原函数,则∫xf(x)dx=( ).A.e-x(x+1)+CB.-e-x(x+1)+CC.e-x(1-x)+CD.e-x(x-1)+C正确答案:A解析:∵F(x)=e-x,f(x)=F’(x)=-e-x,∴原式=∫xdF(x)=xF(x)-∫F(x)dx=xe-x-∫e-x=dx=(x+1)e-x+C选A项.填空题7.正确答案:3/28.f(x)=若f(x)在x=0处连续,则a=_______.正确答案:1解析:因为在f(x)在x=0处连续,则9.设函数anxn的收敛半径为3,则级数nan(x-1)n+1的收敛区间为_______.正确答案:(-2,4)解析:因级数anxn收敛半径为3,易知级数nan(x-1)n+1的收敛半径也为3,所以收敛区间为(-2,4).10.曲线y=cosx,x∈[-]与x轴所围图形绕x轴旋转一周所成体积为_______.正确答案:解析:11.曲线y=xlnx的平行于直线y=x+2的切线方程为_______.正确答案:y=x-1解析:因为切线方程平行于直线,所以其斜率为k=1.12.设z=x/y,则全微分dz=_______.正确答案:解析:解答题解答时应写出推理、演算步骤。

江苏省专转本(数学)模拟试题及参考答案(一)

江苏省专转本(数学)模拟试题及参考答案(一)

江苏省普通高校专转本模拟试题及参考答案高等数学 试题卷一、单项选择题(本大题共 8 小题,每小题 4 分,共 32 分.在下列每小题中选出一个正确答 案,请在答题卡上将所选项的字母标号涂黑)1. 要使函数21()(2)xx f x x −−=−在区间(0,2) 内连续,则应补充定义 f (1) =( )A. 2eB. 1e −C. eD. 2e − 2. 函数2sin ()(1)xf x x x =−的第一类间断点的个数为( )A. 0B. 2C. 3D. 1 3. 设'()1f x =,则0(22)(22)limh f h f h h→−−+=( )A. 2−B. 2C. 4D. 4−4.设()F x 是函数()f x 的一个原函数,且()f x 可导,则下列等式正确的是( ) A. ()()dF x f x c =+∫ B. ()()df x F x c =+∫ C.()()F x dx f x c =+∫ D.()()f x dx F x c =+∫5. 设2Dxdxdy =∫∫,其中222{(,)|,0}D x y x y R x =+≤>,则R 的值为( )A. 1B.D.6.下列级数中发散的是( )A 21sin n nn∞=∑. B. 11sin n n ∞=∑C. 1(1)nn ∞=−∑ D.211(1)sinnn n ∞=−∑ 7.若矩阵11312102A a −−= 的秩为2,则常数a 的值为( )A. 0B. 1C. 1−D. 28. 设1100001111111234D =−−,其中ij M 是D 中元素ij a 的余子式,则3132M M +=( ) A. 2− B. 2 C. 0 D. 1 二、填空题(本大题共6小题,每小题4分,满分24分) 9. 1lim sinn n n→∞=____________________________.10.设函数2sin ,0()10,0xx f x x x ≠ =+ =,则'(0)f =______________________________________.11.设函数()cos 2f x x =, 则(2023)(0)f =__________________________________________. 12.若21ax e dx −∞=∫,则常数a =___________________________________.13. 若幂级数1nnn a x +∞=∑的收敛半径为2,则幂级数11(1)nn n x a +∞=−∑的收敛区间为__________________. 14.若向量组1(1,0,2,0)α=,2(1,0,0,2)α=,3(0,1,1,1)α=,4(2,1,,2)k α=线性相关,则k =_____________________________________.三、计算题(本大题共8小题,每小题8分,满分64分) 15. 求极限22sin lim(cos 1)x x t tdtx x →−∫;16.求不定积分22x x e dx ∫;17.求定积分21sin 2x dx π−∫; 18.设函数(,)z z x y =由方程cos y x e xy yz xz =+++所确定的函数,求全微分dz . 19.求微分方程''4'5x y y y xe −−−=的通解; 20.求二重积分Bxydxdy ∫∫,其中D 为由曲线2(0)y x x ≥及直线2x y +=和y 轴所围成的平面闭区域;21.设矩阵A 与B 满足关系是2AB A B =+,其中301110014A= ,求矩阵B .22.求方程组12341234123436536222x x x x x x x x x x x x ++−=−++=− −+−= 的通解; 四、证明题(本大题10分)23.证明:当04x π−<<时,0sin xt e tdt x <∫.五、综合题(本大题共2小题,每小题10分,满分20分)24.求曲线x =及直线2y =与y 轴所围成的平面图形的面积并计算该图形绕y 轴旋转一周所得的旋转体的体积..25.设定义在(,)−∞+∞上的函数()f x 满足方程'()()f x f x x −=,且(0)0f =,求: (1)函数()f x 的解析式;(2)曲线()y f x =的单调区间和极值点.参考答案一、单项选择题1. B2. D3. D4. D5. B6. B7. A8. B9. C 二、填空题9. 1 10. 1 11. 0 12. 1ln 2213. (1,3)− 14. 4三、计算题15. 2232022250022sin sin 2sin()4lim lim 4lim (1cos )63()2x x x x x t tdt t tdt x x x x x x x →→→===−∫∫; 16. 2222222222222222222224x x x x x x x xxe e x e e e x e e e x e dx x x dx x dx x c =−=−+=−++∫∫∫;17.26206111sin (sin )(sin )22212x dx x dx x dx πππππ−=−+−−∫∫∫; 18. 因为sin sin ,,z zz x y zx y yz x x x x y x ∂∂∂−−−−=+++=∂∂∂+ 且0,y yz zz e x z e x z y x y yy y x∂∂∂−−−=++++=∂∂∂+ 所以可得sin y x y z e x zdzdx dy y x y x−−−−−−=+++. 19. 解:因为特征方程为2450r r −−=,特征值为125,1r r ==−,所以齐次微分方程''4'50y y y −−=的通解为5112x x y c e c e −=+; 设''4'5x y y y xe −−−=的一个特解为*()x y x ax b e −=+,可得11*()1236x y x x e −=−+,所以原方程的通解为:511211*()1236x x x y y y c e c e x x e −−=+=+−+.20. 由22y x x y =+= 可得交点坐标(11),, 可得21116xBxydxdydx xydy ==∫∫∫∫; 21. 因为2AB A B =+,所以可得(2)A E B A −=,从而可得:1(2)B A E A −=−;又因1211(2)221111A E −−−−=−−− ,所以可得1522(2)432223B A E A −−− =−=−− − ; 22.求方程组12341234123436536222x x x x x x x x x x x x ++−=−++=− −+−= 的通解; 解:111361113611136101241513601012010120101212212031240011200112100120101200112−−−−−−→−→−→− −−−−−−− →− − 一个特解为2220 ,齐次线性方程组12341234123430530220x x x x x x x x x x x x ++−=−++= −+−= 的一组基础解系为:11111η= ,所以原方程组的通解为:123412121210x x c x x=+. 四、证明题 23.证明:当04x π−<<时,0sin xt e tdt x <∫.证明:令0()sin xt f x x e tdt =−∫,则有'()1sin x f x e x =−,令:''()sin cos 0x x f x e x e x =−−=,可得4x π=−,当04x π−<<,''()0f x <,所以当04x π−<<时,'()1sin x f x e x =−为递减函数,可得'()1sin '(0)1x f x e x f =−>=,所以当04x π−<<时,0()sin xt f x x e tdt =−∫为递增函数,因此可得:0()sin (0)0xt f x x e tdt f =−>=∫,从而可证得:0sin x t e tdt x <∫; 五、综合题 24.求曲线x =及直线2y =与y 轴所围成的平面图形的面积并计算该图形绕y 轴旋转一周所得的旋转体的体积..解:x x y = ⇒ =,则图形面积为:20Aydx dx = 旋转体的体积:2222200022y V x dy ydy ππππ====∫∫; 25.设定义在(,)−∞+∞上的函数()f x 满足方程'()()f x f x x −=,且(0)0f =,求: (1)函数()f x 的解析式;(2)曲线()y f x =的单调区间和极值点. 解:(1)()()()1dxdxx x x f x e xe dx c e xe dx c x ce −−−−−∫∫=+=+=−++∫∫,又因为(0)0f =,所以可得:1c =−,即:()1x f x x e −=−+−; (2)令'()10x f x e −=−+=,可得0x =; x(,0)−∞ 0 (0,)+∞ '()f x −+因此可知:(,0)−∞为函数()1x f x x e −=−+−的递减区间,(0,)+∞为函数()1x f x x e −=−+−的递增区间,点(0,0)为函数()1x f x x e −=−+−的极小值点.。

江苏专转本高等数学 定积分 例题加习题

江苏专转本高等数学 定积分 例题加习题

- 106 -第四章 定积分本章主要知识点● 定积分计算● 特殊类函数的定积分计算 ● 变限积分● 定积分有关的证明题 ● 广义积分敛散性 ● 定积分应用(1)面积 (2)旋转体体积一、定积分计算定积分计算主要依据牛顿—莱伯尼兹公式:设⎰+=C x F dx x f )()(,则()()()()bb a af x dx F b F a F x =-=⎰。

其主要计算方法与不定积分的计算方法是类似的,也有三个主要方法,但需要指出的是对于第Ⅱ类直接交换法,注意积分限的变化:()111()()()()()(())x t bb aa t x f x dx f t t dt ϕϕϕϕϕϕ---=='=⎰⎰。

例4.1.111)edx x ⎰解:原式=e11)ln d x ⎰=32125((ln )ln )|33ex x +=例4.2.30dx ⎰ 解:原式t x t x =+-==11222 1121t tdt t -+⎰=32 121t t dt t -+⎰=322125()|33t t -= 例4.3.⎰22sin πxdx x- 107 -解:原式=⎰-22cos 21πx xd =⎰+-2022cos 21|2cos 21ππxdx x x =20|2sin 414ππx +=4π 二、特殊类函数的定积分计算1.含绝对值函数利用函数的可拆分性质,插入使绝对值为0的点,去掉绝对值,直接积分即可。

例4.4.⎰--21|1|dx x解:原式=121 1(1)(1)x dx x dx --+-⎰⎰=212|)2(2x x -+=)121(02--+=25例4.5.⎰--++22|)1||1(|dx x x解:原式=112211(|1||1|)(|1||1|)(|1||1|)x x dx x x dx x x dx ---++-+++-+++-⎰⎰⎰=112211(11)(11)(11)x x dx x x dx x x dx ------++++-+++-⎰⎰⎰=112211222xdx dx xdx ----++⎰⎰⎰=212122|4|x x ++---=)14(4)41(-++--=102.分段函数积分例4.6.⎩⎨⎧≤+>=0,10,)(2x x x x x f ,求⎰-11)(dx x f解:原式=⎰⎰-+0110)()(dx x f dx x f =⎰⎰-++01102)1(dx x dx x =103012|31|)2(x x x ++- =31)121(+--=65- 108 -例4.7.⎩⎨⎧≤>+=1,1,12)(x x x x x f ,求⎰-+12)1(dx x f解:原式11221(1)()u x f x dx f u du =+--=+==⎰⎰1211()()f u du f u du -+⎰⎰1222111(21)0()udu u du u u -=++=++⎰⎰624=-=3.奇函数积分如果 ()f x 为定义在[],a a -的奇函数,则()0aaf x dx -≡⎰,这是一个很重要考点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省 2017 年普通高校专转本选拔考试
高数 试题卷
一、单项选择题(本大题共 6 小题,没小题 4 分,共 24 分。

在下列每小题中选出一个正确答案,请在答题卡上将所选项的字母标号涂黑)
1.设)(x f 为连续函数,则0)(0='x f 是)(x f 在点0x 处取得极值的( ) A.充分条件 B.必要条件 C.充分必要条件 D.非充分非必要条件
2.当0→x 时,下列无穷小中与x 等价的是( )
A.x x sin tan -
B.x x --+11
C.11-+x
D.x cos 1-
3.0=x 为函数)(x f =0
00
,1sin ,
2,1>=<⎪⎪⎩

⎪⎨⎧-x x x x x e x
的( )
A.可去间断点
B.跳跃间断点
C.无穷间断点
D.连续点
4.曲线x
x x x y 48
62
2++-=的渐近线共有( ) A.1 条 B.2 条 C.3 条 D.4 条 5.设函数)(x f 在 点0=x 处可导,则有( )
A.)0(')()(lim
f x x f x f x =--→ B.)0(')
3()2(lim 0f x
x f x f x =-→
C.)0(')0()(lim
f x f x f x =--→ D.)0(')
()2(lim 0f x
x f x f x =-→
6.若级数∑∞
-1
-n n
1p
n )
(条件收敛,则常数P 的取值范围( ) A. [)∞+,1 B.()∞+,1 C.(]1,0 D.()1,0
二、填空题(本大题共 6 小题,每小题 4 分,共 24 分) 7.设dx e x
x a x x
x ⎰∞-∞
→=-)1(
lim ,则常数a= .
8.设函数)(x f y =的微分为dx e dy x
2=,则='')(x f . 9.设)(x f y =是由参数方程
{
1
3sin 13++=+=t t x t
y 确定的函数,则
)
1,1(dx
dy = .
10.设x x cos )(F =是函数)(x f 的一个原函数,则⎰
dx x xf )(= .
11.设 →
a 与 →
b 均为单位向量, →
a 与→
b 的夹角为3
π
,则→a +→b = .
12.幂级数 的收敛半径为 .
三、计算题(本大题共 8 小题,每小题 8 分,共 64 分)
13.求极限x
x dt
e x
t x --⎰→tan )1(lim
2
.
14.设),(y x z z =是由方程0ln =-+xy z z 确定的二元函数,求22z
x
∂∂ .
15.求不定积分
dx x x ⎰
+3
2
. 16.计算定积分

210
arcsin xdx x .
17.设),(2
xy y yf z =,其中函数f 具有二阶连续偏导数,求y
x ∂∂∂z
2
18.求通过点(1,1,1)且与直线
1
1
2111-+=
-=-+z y x 及直线{
12z 3y 4x 0
5=+++=-+-z y x 都垂直的直线方程.
19.求微分方程x y y y 332=+'-''是通解.
20.计算二重积分
dxdy y x
⎰⎰D 2,其中 D 是由曲线 1-=y x 与两直线1,3==+y y x 围
成的平面闭区域.
四.证明题(本大题共 2 小题,每小题 9 分,共 18 分)
21.证明:当π≤<x 0时,2cos 2sin <+x x x .
22.设函数)(x f 在闭区间[]a a ,-上连续,且)(x f 为奇函数,证明: 五、综合题(本大题共 2 题,每小题 10 分,共 20 分)
23.设平面图形 D 由曲线 x
e y = 与其过原点的切线及 y 轴所围成,试求; (1)平面图形D 的面积;
(2)平面图形 D 绕 x 轴旋转一周所形成的旋转体的体积.
24.已知曲线)(x f y =通过点(-1,5),且)(x f 满足方程3
5
12)(8)(3x x f x f x =-',试求: (1)函数)(x f 的表达式;
(2)曲线)(x f y =的凹凸区间与拐点.
江苏省 2017 年普通高校专转本选拔考试
高数 试题卷答案
一、单项选择题 1-6 DBACD 解析: 二、填空题 7.-1 8.4 三、计算题 13.1 四、证明题
21.证:令2cos 1sin )(-+=x x x x f
则x x x x x f sin 2cos sin )(-+=' 因为 π≤<x 0 所以 0)(<''x f
因为 ↓')(x f 所以 0)0()(='<'f x f
所以 ↓)(x f
因为 0)0()(=<f x f 所以得出 22.证(1) (2)
dx x f dx x f dx x f a
a
a
a
⎰⎰
⎰+=--0
0)()()(
= 0 五、综合题 23.(1)⎰⎰⎰-=-=
102101
02)(S x e e dx ex e x
x (2)
ππ2
1612-e 24.(1)3
53
8
4)(x x x f -= (2)
拐点:(0,0)(1,3)
凹 :(-∞,0),(1,+∞) 凸 :(0,1)
t x -=。

相关文档
最新文档