高中数学高一上学期知识点总结

合集下载

高一上学期数学详细知识点

高一上学期数学详细知识点

高一上学期数学详细知识点一、代数与函数1. 数与式- 自然数、整数、有理数、实数、复数的概念及性质;- 代数式概念、相等与恒等、同类项与合并、合并与提取公因式。

2. 一次函数与二次函数- 一次函数的定义、图像、性质及其应用;- 二次函数的定义、图像、极值、性质及其应用。

3. 指数与对数函数- 指数函数的定义、图像、性质及其应用;- 对数函数的定义、图像、性质及其应用。

二、平面几何与向量1. 图形的基本概念- 点、线、面的定义及性质;- 直线、射线、线段的定义及性质;- 角的定义、角平分线、垂直角、同位角。

2. 直线与圆- 相交直线的性质、垂直与平行、角平分线; - 圆的定义、圆心角、弧、弦、切线的性质; - 切线定理及其应用。

3. 向量的基本概念- 向量的定义、模、方向及性质;- 向量的表示、共线与平行、运算法则。

三、立体几何1. 空间几何基本概念- 空间图形的种类及其特点;- 空间几何图形的投影及性质。

2. 空间直线与平面- 面的性质、平面的位置关系;- 直线与面的位置关系、直线与平面的交线; - 平面与平面的位置关系及其交线。

3. 空间向量- 空间向量的概念及运算;- 平面向量与空间向量的关系。

四、数列与数学归纳法1. 数列的概念与性质- 数列的定义及基本性质;- 等差数列与等比数列的定义与性质。

2. 数列的求和与通项公式- 数列的求和公式及其应用;- 等差数列与等比数列的通项公式及其应用。

3. 数学归纳法- 数学归纳法的原理及应用。

五、概率与统计1. 概率的基本概念- 随机试验的基本概念及其性质;- 事件、样本空间、概率的定义。

2. 概率计算- 古典概型与几何概型;- 概率计算的方法与公式。

3. 统计图表与统计量- 统计图表的绘制与分析;- 数据的统计量、均值、中位数、众数。

六、三角函数1. 弧度制及三角函数的定义- 弧度制与角度制的转换;- 正弦、余弦、正切函数的定义。

2. 三角函数的性质与图像- 三角函数的性质及其应用;- 三角函数图像的特点及变换。

高一数学上学期的所有知识点

高一数学上学期的所有知识点

高一数学上学期的所有知识点高一数学上学期的全部学问点1.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)推断函数奇偶性可用定义的等价形式:f(x)±f(x)=0或(f(x)≠0);(4)若所给函数的解析式较为冗杂,应先化简,再推断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);讨论函数的问题肯定要留意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=x+a)的对称曲线C2的方程为f(ya,x+a)=0(或f(y+a,x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2ax,2by)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(ax)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(xa)与y=f(bx)的图像关于直线x=对称;4.函数的周期性(1)y=f(x)对x∈R时,f(x+a)=f(xa)或f(x2a)=f(x)(a0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;(6)y=f(x)对x∈R时,f(x+a)=f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;5.方程k=f(x)有解k∈D(D为f(x)的值域);a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;(1)(a0,a≠1,b0,n∈R+);(2)logaN=(a0,a≠1,b0,b≠1);(3)logab的符号由口诀“同正异负”记忆;(4)alogaN=N(a0,a≠1,N0);6.推断对应是否为映射时,抓住两点:(1)A中元素必需都有象且;(2)B中元素不肯定都有原象,并且A中不同元素在B中可以有相同的象;7.能娴熟地用定义证明函数的单调性,求反函数,推断函数的奇偶性。

高一数学必修一知识点总结归纳(6篇)

高一数学必修一知识点总结归纳(6篇)

高一数学必修一知识点总结归纳1二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质1.抛物线是轴对称图形。

对称轴为直线x=-b/2a。

对称轴与抛物线的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

高一数学必修一知识点总结归纳2对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。

因此指数函数里对于a的规定,同样适用于对数函数。

右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

(1)对数函数的定义域为大于0的实数集合。

(2)对数函数的值域为全部实数集合。

高一上数学知识点全总结

高一上数学知识点全总结

高一上数学知识点全总结一、集合与函数1. 集合的概念与表示方法1.1 集合的定义1.2 集合的元素1.3 集合的表示方法:枚举法、描述法、扩展法2. 集合的运算与关系2.1 并集、交集与差集的定义及性质2.2 子集、真子集与集合相等的概念2.3 集合的运算律和运算性质3. 函数的概念与表示方法3.1 函数的定义3.2 函数的图像与函数的性质3.3 函数关系的表示方法:映射、集合对、秩序对4. 函数的基本性质4.1 定义域、值域和对应变量的概念4.2 奇函数与偶函数的定义与性质4.3 单调性、奇偶性与周期性的判定方法二、数列与等差数列1. 数列的概念与表示方法1.1 数列的定义与性质1.2 数列的通项公式1.3 数列的前n项和2. 等差数列的性质与公式2.1 等差数列的定义与性质2.2 等差数列的通项公式与前n项和公式2.3 特殊的等差数列:等差数列的倒数列、等差数列的相乘列3. 等差数列的应用3.1 等差中数的性质与定理3.2 等差数列求和问题3.3 等差数列在实际问题中的应用:等时速度问题、等温度变化问题三、平面几何图形的性质与计算1. 点、线、面和体的概念1.1 点的概念与性质1.2 线的概念与性质1.3 面的概念与性质1.4 体的概念与性质2. 三角形的性质与计算2.1 三角形的定义与性质2.2 三角形的内角和与外角性质2.3 三角形的周长与面积的计算公式2.4 特殊的三角形:等边三角形、等腰三角形3. 直角三角形与勾股定理3.1 直角三角形的概念与性质3.2 勾股定理的表述与证明3.3 勾股定理的应用:求三角形的边长与判断三角形类型四、直线方程与坐标系1. 直线的方程1.1 斜率与直线的关系1.2 直线的点斜式与斜截式方程1.3 直线的一般式方程与截距式方程2. 坐标系及其应用2.1 直角坐标系与平面直角坐标系2.2 点的坐标与位置关系的判定2.3 两点间的距离与点到直线的距离3. 直线的倾斜角及其性质3.1 直线的倾斜角定义及计算方法3.2 直线平行与垂直的判定方法3.3 直线的夹角、交角以及相关性质五、解析几何与向量1. 向量的概念与表示方法1.1 向量的定义与性质1.2 向量的表示方法:坐标表示、数量表示、矢量表示2. 向量的运算2.1 向量的加法与减法2.2 向量的数量乘法与数量除法2.3 向量的数量积与向量积3. 空间几何与平面几何3.1 平面与直线的关系与性质3.2 平面与平面的关系与性质3.3 三角形、四边形及其它多边形的性质与计算总结:高一上学期的数学知识点包括集合与函数、数列与等差数列、平面几何图形的性质与计算、直线方程与坐标系以及解析几何与向量等内容。

高一数学上 全部知识点

高一数学上 全部知识点

高一数学上全部知识点一、代数与函数1.整式的加减乘除、乘方化简2.一元一次方程与一元一次不等式3.二次函数的定义、性质、图像与应用4.基本初等函数与反函数5.实数与绝对值6.数列的概念与常用数列的性质7.分式的化简与分式方程的解法二、平面几何1.平面直角坐标系与向量2.多边形的定义、性质与计算3.圆的定义、性质与计算4.三角形的定义、性质与计算5.相似三角形的判定与计算6.三角函数的定义、性质与计算7.三角函数的应用三、立体几何1.立体图形的投影与展开2.平行线与平面3.多面体的定义、性质与计算4.球的定义、性质与计算5.三棱锥与四棱锥的定义、性质与计算6.正多面体与棱柱的定义、性质与计算四、概率与统计1.随机事件的概念与性质2.概率的定义、性质与计算3.频率与概率的关系4.抽样调查与统计分析5.常用的统计图表的制作与分析6.正态分布的性质与应用五、数学思想方法及数论1.数学的证明方法与思想2.方程与不等式的证明3.数论的基本概念与性质4.整除性与素数的性质5.最大公约数与最小公倍数的计算6.同余关系与模运算六、平面向量与解析几何1.平面向量的概念与运算2.平面向量的线性相关与线性无关3.空间直角坐标系与空间向量4.平面与直线的位置关系5.平面的方程与直线的方程6.平行线与垂直线的判定与性质七、导数与微分1.导数的定义与性质2.常用函数的导数与导数公式3.函数的单调性与极值4.函数图形的描绘与性质5.函数的近似计算与应用6.微分的定义与性质八、不等式与极限1.不等式的基本性质与解法2.绝对值不等式的求解3.函数不等式的解法4.极限的定义与性质5.极限的运算法则与计算6.自然对数与指数函数的极限计算九、数理统计1.随机事件与概率2.频率与概率的估计3.统计图表的绘制与分析4.总体与样本的概念与性质5.统计量的计算与应用6.抽样调查与统计分析总结:高一数学涉及了代数与函数、平面几何、立体几何、概率与统计、数学思想方法及数论、平面向量与解析几何、导数与微分、不等式与极限、数理统计等多个知识点。

高一上册数学知识点(实用6篇)

高一上册数学知识点(实用6篇)

高一上册数学知识点(实用6篇)高一上册数学知识点(1)0的所有实数,q不能是偶数;2、已知函数f(_)=3_+k(k为常数),A(-2k,2)是函数y=f-1(_)图象上的点.[来源](1)求实数k的值及函数f-1(_)的解析式;(2)将y=f-1(_)的图象按向量a=(3,0)平移,得到函数y=g(_)的图象,若2f-1(_+-3)-g(_)≥1恒成立,试求实数m的取值范围.高一上册数学知识点(2)几何体的展开图、几何体的三视图仍是高考的热点.三视图和其他的知识点结合在一起命题是新教材中考查学生三视图及几何量计算的趋势.重点掌握以三视图为命题背景,研究空间几何体的结构特征的题型.要熟悉一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图.知识结构:多面体的结构特征(1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。

正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心.(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.旋转体的结构特征(1)圆柱可以由矩形绕一边所在直线旋转一周得到.(2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到.(3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到.(4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到.空间几何体的三视图空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图.三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,基本步骤是:(1)画几何体的底面在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半.(2)画几何体的高在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变.高一上册数学知识点(3)函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义.构成函数的三要素:定义域、对应关系和值域再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

高一上册数学重要知识点

高一上册数学重要知识点

高一上册数学重要知识点一、函数与方程1. 函数的定义与性质:函数的定义、定义域、值域、奇偶性等基本概念和性质。

2. 一次函数与一次方程:一次函数的定义与性质、一次方程的解法及应用。

3. 二次函数与二次方程:二次函数的定义与性质、二次方程的解法及应用。

4. 复合函数与复合方程:复合函数的概念与性质、复合方程的解法及应用。

二、概率与统计1. 随机事件与概率:随机事件的定义与性质、概率的基本运算和性质。

2. 排列与组合:排列与组合的概念、计算方法及应用。

3. 统计与抽样:统计数据的描述方式、频率分布表与直方图、抽样与样本调查的方法。

三、三角函数1. 角度与弧度:角度的概念及度量、角度转化为弧度的计算。

2. 三角函数的基本关系:正弦函数、余弦函数、正切函数的定义与性质。

3. 三角函数的图像与性质:三角函数的周期性、对称性、图像的变换及应用。

4. 三角恒等变换与解三角形:基本三角公式的推导与应用、解三角形的条件与方法。

四、数列与数学归纳法1. 数列与数列的通项公式:等差数列、等比数列的概念与性质、通项公式的推导与应用。

2. 数列的前n项和:等差数列、等比数列的前n项和公式的推导与应用。

3. 数学归纳法:数学归纳法的基本原理、证明与应用。

五、立体几何1. 空间几何基本概念:点、线、面、多面体等基本概念及性质。

2. 平行与垂直关系:平行关系的定义及性质、垂直关系的判定与性质。

3. 空间图形的计算:正方体、长方体、棱柱、棱锥等立体几何图形的计算和应用。

六、平面向量1. 向量的基本概念与运算:向量的定义、加法、减法、数量积、向量积等运算。

2. 向量的坐标与表示:向量的坐标表示、向量共线判定及数量积的几何意义。

3. 向量的垂直与夹角:向量的垂直判定、数量积与夹角的关系。

七、导数与微分1. 函数的极限与连续性:函数极限的定义与性质、连续函数的概念与判定。

2. 导数的定义与求导法则:导数的定义、基本导数法则及高阶导数。

高一上学期数学重点知识点复习

高一上学期数学重点知识点复习

高一上学期数学重点知识点复习一、函数与方程1.函数的概念与表示方法:自变量、因变量、定义域、值域、图像等。

2.函数的基本性质:奇偶性、周期性、单调性、最值等。

3.常见函数的图像特征:线性函数、二次函数、指数函数、对数函数等。

4.函数的运算:加减乘除、复合函数、反函数等。

5.一次方程与一次不等式的解法。

6.二次方程及其解的求法:配方法、因式分解、公式法等。

7.二次函数与二次方程的关系:顶点坐标、轴对称性等。

二、集合与运算1.集合的表示方法:枚举法、描述法、图示法等。

2.集合的基本运算:并集、交集、差集、补集等。

3.集合的运算规律:交换律、结合律、分配律等。

4.集合的关系:包含关系、相等关系、互不相交关系等。

5.数与集合的基本关系与运算:自然数、整数、有理数、实数等。

三、数列与数列的运算1.数列的概念:顺序数、项数、公差、通项等。

2.常见数列的性质:等差数列、等比数列、斐波那契数列等。

3.数列的运算规律:加法、减法、乘法、除法等。

四、概率与统计1.概率的基本概念:随机试验、样本空间、事件、概率等。

2.事件的运算:包含关系、互不相交关系、并事件、积事件等。

3.概率的计算:古典概率、几何概率、条件概率、独立事件等。

4.统计的概念与方法:频数、频率、分组表、频数分布图等。

五、平面几何1.点、直线、平面及其性质:共线、平行、垂直等。

2.三角形的性质:角的性质、边长关系、面积计算等。

3.四边形的性质:平行四边形、矩形、正方形、菱形等。

4.圆的性质:圆心角、弧长、周长、面积计算等。

5.三角形的相似与全等性质:比例关系、角度关系等。

六、空间几何1.空间图形的基本概念与性质:点、线、面、体等。

2.立体图形的表面积计算:长方体、正方体、棱柱、棱锥等。

3.空间图形的体积计算:长方体、正方体、棱柱、棱锥、球等。

4.空间图形的投影与剖面:平行投影、垂直投影、平面剖面等。

七、导数与微分1.导数的概念与性质:斜率、变化率、图像、导函数等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一(上)数学知识点总结1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。

∅注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

3. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n()若,;2A B A B A A B B ⊆⇔==(3)德摩根定律:()()()()()()C C C C C C UU UU U U A B A B A B A B ==,4. 你会用补集思想解决问题吗?(排除法、间接法)5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().⌝6. 命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。

) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。

7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B 中有元素无原象。

) 8. 函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域) 9. 求函数的定义域有哪些常见类型?10. 如何求复合函数的定义域?(注意整体代换思想)[]如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0义域是_____________。

[](答:,)a a -11. 求一个函数的解析式或一个函数的反函数时,你注明函数的定义域了吗? 12. 反函数存在的条件是什么?(一一对应函数)求反函数的步骤掌握了吗?(①反解x ;②互换x 、y ;③注明定义域) 13. 反函数的性质有哪些?①互为反函数的图象关于直线y =x 对称; ②保存了原来函数的单调性、奇函数性;③设的定义域为,值域为,,,则y f(x)A C a A b C f(a)=b f 1=∈∈⇔=-()b a[][]∴====---f f a f b a f f b f a b111()()()(),14. 如何用定义证明函数的单调性?(取值、作差、定号、下结论)如何判断复合函数的单调性?[](,,则(外层)(内层)y f u u x y f x ===()()()ϕϕ[][]当内、外层函数单调性相同时为增函数,否则为减函数。

)f x f x ϕϕ()()()如:求的单调区间y x x =-+log 1222(设,由则u x x u x =-+><<22002()且,,如图:log 12211u u x ↓=--+当,时,,又,∴x u u y ∈↑↓↓(]log 0112当,时,,又,∴x u u y ∈↓↓↑[)log 121215. 函数f(x)具有奇偶性的必要(非充分)条件是什么?(f (x )定义域关于原点对称)若总成立为奇函数函数图象关于原点对称f x f x f x ()()()-=-⇔⇔ 若总成立为偶函数函数图象关于轴对称f x f x f x y ()()()-=⇔⇔注意如下结论:(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。

()若是奇函数且定义域中有原点,则。

2f(x)f(0)0=16. 你掌握常用的图象变换了吗?f x f x y ()()与的图象关于轴对称- f x f x x ()()与的图象关于轴对称- f x f x ()()与的图象关于原点对称-- f x f x y x ()()与的图象关于直线对称-=1f x f a x x a ()()与的图象关于直线对称2-= f x f a x a ()()()与的图象关于点,对称--20将图象左移个单位右移个单位y f x a a a a y f x a y f x a =>−→−−−−−−−−>=+=-()()()()()00上移个单位下移个单位b b b b y f x a b y f x a b ()()()()>−→−−−−−−−−>=++=+-00注意如下“翻折”变换:f x f x f x f x →→()() (下翻上)()()(右翻左)17. 你熟练掌握常用函数的图象和性质了吗?()()一次函数:10y kx b k =+≠()()()反比例函数:推广为是中心,200y k x k y b kx a k O a b =≠=+-≠'()的双曲线。

()()二次函数图象为抛物线30244222y ax bx c a a x b a ac b a =++≠=+⎛⎝ ⎫⎭⎪+-顶点坐标为,,对称轴--⎛⎝ ⎫⎭⎪=-b a ac b a x ba 24422 开口方向:,向上,函数a y acb a >=-0442mina y acb a <=-0442,向下,max应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程ax bx c x x y ax bx c x 212200++=>=++,时,两根、为二次函数的图象与轴∆的两个交点,也是二次不等式解集的端点值。

ax bx c 200++><()②求闭区间[m ,n ]上的最值。

③求区间定(动),对称轴动(定)的最值问题。

④一元二次方程根的分布问题。

()()指数函数:,401y a a a x =>≠()()对数函数,501y x a a a =>≠log由图象记性质!(注意底数的限定!)a x(a>1)()()“对勾函数”60y x kxk =+>利用它的单调性求最值与利用均值不等式求最值的区别是什么?18. 你在基本运算上常出现错误吗?指数运算:,a a a a a p p 01010=≠=≠-(())aaa aaa mnmn m nmn=≥=>-((010)),()对数运算:·,log log log a a a M N M N M N =+>>00log log log log log a a a a n a M N M N M n M=-=,1 对数恒等式:a x a x log =对数换底公式:log log log log log a c c a na b b a b n m bm =⇒=19. 掌握求函数值域的常用方法了吗? (直接法,二次函数法(配方法),分离常数法,换元法,判别式法,利用函数单调性法。

) 20. 不等式的性质有哪些?(),100a b c ac bcc ac bc >>⇒><⇒<(),2a b c d a c b d >>⇒+>+ (),300a b c d ac bd >>>>⇒>(),4011011a b a b a b a b >>⇒<<<⇒>(),50a b a b a b n n n n >>⇒>>()(),或60||||x a a a x a x a x a x a <>⇔-<<>⇔<->21. 利用均值不等式:()a b ab a b R a b ab ab a b 222222+≥∈+≥≤+⎛⎝ ⎫⎭⎪+,;;求最值时,你是否注意到“,”且“等号成立”时的条件,积或和其中之一为定a b R ab a b ∈++()() 值?(一正、二定、三相等)注意结论:()a b a b ab aba b a b R 22222+≥+≥≥+∈+,当且仅当时等号成立。

a b = ()a b c ab bc ca a b R 222++≥++∈,当且仅当时取等号。

a b c ==如:若,的最大值为x x x >--0234(设y x x =-+⎛⎝ ⎫⎭⎪≤-=-2342212243当且仅当,又,∴时,)340233243x x x x y =>==-max又如:,则的最小值为x y x y +=+2124(∵,∴最小值为)22222222221x y x y +≥=+22. 不等式证明的基本方法都掌握了吗?(比较法、分析法、综合法)23.解分式不等式:()()(1)0()()0,0()()0()()f x f x f xg x f x g x g x g x >⇔⋅><⇔⋅< ()()0()()0()()(2)0,0()0()0()()f x g x f x g x f x f x g x g x g x g x ⋅≥⋅≤⎧⎧≥⇔≤⇔⎨⎨≠≠⎩⎩(注意分母不为零)()370.()()解分式不等式的一般步骤是什么?f x g x a a >≠(移项通分,分子分母因式分解,x 的系数变为1,数轴标根法解得结果。

)24. 用“穿轴法”解高次不等式——“奇穿偶不穿”,从最大根的右上方开始()()()如:x x x +--<11202325. 解含有参数的不等式要注意对字母参数的讨论如:对数或指数的底分或讨论a a ><<101、26.绝对值不等式的解法:()()1.||,0f x a a <>⇔()()2.||,0f x a a >>⇔()()3.||f x g x <⇔()()4.||f x g x >⇔()()5.||||f x g x >⇔()()6.||0b f x a a b <<>>⇔()a f x a-<<()()f x a f x a><-或()()()g x f x g x -<<()()()()f xg x f x g x <->或()()22f x g x >()()b f x a a f x b<<-<<-或27. 对含有两个绝对值的不等式如何去解?(零点分段讨论法)(找零点,分段讨论,去掉绝对值符号,每段取交集,最后综上取各段的并集。

)例如:解不等式||x x --+<311(试一试)(解集为)x x |>⎧⎨⎩⎫⎬⎭12 28.绝对值不等式重要定理:a b a b a b -≤±≤+29. 不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或“△”问题)如:恒成立的最小值a f x a f x <⇔<()() a f x a f x >⇔>()()恒成立的最大值(还要注意有解与解集为空集的情况)例如:对于一切实数,若恒成立,则的取值范围是x x x a a -++>32()()或者:,∴)x x x x a -++≥--+=<323255||||[||,)x a x b a b -+-∈-+∞, ||||[||,||]x a x b a b a b ---∈---30. 等差数列的定义与性质() 定义:为常数,a a d d a a n d n n n +-==+-111()等差中项:,,成等差数列x A y A x y ⇔=+2()()前项和n S a a n nan n dn n =+=+-11212{}性质:是等差数列a n()若,则;1m n p q a a a a m n p q +=++=+22m n pm n p a a a +=+=若,则{}{}{}()数列,,仍为等差数列;2212a a ka b n n n -+S S S S S n n n n n ,,……仍为等差数列;232--()若三个数成等差数列,可设为,,;3a d a a d -+()若,是等差数列,为前项和,则;42121a b S T n a b ST n n n n m m m m =--{}()为等差数列(,为常数,是关于的常数项为52a S an bn a b n n n ⇔=+0的二次函数){}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2项,即:当,,解不等式组可得达到最大值时的值。

相关文档
最新文档