版第5章定积分及其利用单元自测题答案

合集下载

高等数学第05章 定积分及其应用习题详解

高等数学第05章 定积分及其应用习题详解
x

0

x 1 sin tdt 0dt 1 , 2

b a
f ( x)dx 在 几 何 上 表 示 由 曲 线 y f ( x) , 直 线
x a, x b 及 x 轴所围成平面图形的面积. 若 x a, b时,f ( x) 0, 则 b f ( x)dx 在几何 a
上表示由曲线 y f ( x) ,直线 x a, x b 及 x 轴所围平面图形面积的负值. (1)由下图(1)所示, 1 xdx ( A1 ) A1 0 .
n
2
i
i 1
n
2
1 1 1 1 1 n(n 1)(2n 1) = (1 )(2 ) 3 n 6 6 n n 1 1 2 当 0时 (即 n 时 ) ,由定积分的定义得: x d x = . 0 3
= 5. 利用定积分的估值公式,估计定积分
4 3

1 1
(4 x 4 2 x 3 5) dx 的值.
上任取一点 i 作乘积 f ( i ) xi 的和式:
n
f ( i ) xi c ( xi xi1 ) c(b a) ,
i 1 i 1
n
n
记 max{xi } , 则
1i n

b a
cdx lim f ( i ) xi lim c(b a) c(b a) .

x
0
(t 1)dt ,求 y 的极小值
解: 当 y x 1 0 ,得驻点 x 1 , y '' 1 0. x 1 为极小值点, 极小值 y (1)
( x 1)dx - 2

大学高等数学第五章 定积分及其应用答案

大学高等数学第五章 定积分及其应用答案

第五章 定积分及其应用习 题 5-11. 如何表述定积分的几何意义?根据定积分的几何意义推出下列积分的值: (1)⎰-x x d 11, (2)⎰--x x R R R d 22, (3)⎰x x d cos 02π, (4)⎰-x x d 11.解:若[]⎰≥∈x x f x f b a x ab d )(,0)(,,则时在几何上表示由曲线)(x f y =,直线b x a x ==,及x 轴所围成平面图形的面积. 若[]b a x ,∈时,⎰≤x x f x f ab d )(,0)(则在几何上表示由曲线)(x f y =,直线b x a x ==,及x 轴所围平面图形面积的负值. (1)由下图(1)所示,0)(d 1111=+-=⎰-A A x x .(2)由上图(2)所示,2πd 2222R A x x R R R==-⎰-.(3)由上图(3)所示,0)()(d cos 5353543π20=--++=+-+=⎰A A AA A A A x x . (4)由上图(4)所示,1112122d 611=⋅⋅⋅==⎰-A x x . 2. 设物体以速度12+=t v 作直线运动,用定积分表示时间t 从0到5该物体移动的路程S.( 2 )( 1 )( 3 )(4)解:=s ⎰+t t d )12(053. 用定积分的定义计算定积分⎰bax c d ,其中c 为一定常数.解:任取分点b x x x x a n =<<<<= 210,把],[b a 分成n 个小区间],[1i i x x -)2,1(n i =,小区间长度记为x ∆i =i x -1-i x )2,1(n i =,在每个小区间[]i i x x ,1-上任取一点i ξ作乘积i i x f ∆⋅)(ξ的和式:∑∑==--=-⋅=∆⋅n i ni i iiia b c x xc x f 111)()()(ξ,记}{max 1i n i x ∆=≤≤λ, 则)()(lim )(lim d 0a b c a b c x f x c ni i i b a-=-=∆⋅=∑⎰=→→λλξ.4. 利用定积分定义计算120d x x ⎰.解:上在]1,0[)(2x x f =连续函数,故可积,因此为方便计算,我们可以对[]0,1 n 等分,分点i i n i nix ξ;1,,2,1,-==取相应小区间的右端点,故 ∑∑∑===∆=∆=∆ni i i ni i i ni i i x x x x f 12121)(ξξ=∑∑===ni ni in n n i 1232111)(=311(1)(21)6n n n n ⋅++ =)12)(11(61nn ++ 当时0→λ(即时∞→n ),由定积分的定义得: 120d x x ⎰=31.5. 利用定积分的估值公式,估计定积分⎰-+-1134)524(x x x d 的值.解:先求524)(34+-=x x x f 在[]1,1-上的最值,由0616)(23=-='x x x f , 得0=x 或83=x . 比较 35093(1)11,(0)5,(),(1)781024f f f f -====的大小,知min max 5093,111024f f ==,由定积分的估值公式,得[])1(1d )524()]1(1[max 1134min --⋅≤+-≤--⋅⎰-f x x x f ,即14315093(425)d 22512x x x -≤-+≤⎰. 6. 利用定积分的性质说明⎰1d xe x与⎰1d 2x e x ,哪个积分值较大?解:在[]0,1区间内:22xx x x e e ≥⇒≥ 由性质定理知道:⎰1d xe x≥⎰1d 2x e x7. 证明:⎰---<<2121212d 22x e ex 。

微积分 北京大学出版社 第5章 定积分--答案

微积分 北京大学出版社 第5章 定积分--答案
第 5 章 定积分练习补充与答案 一填空选择 1. (03)
1
−1
∫ ( x + x )e
−1
−x
dx =
1 1 1 −x 1 0 1 1
解法 1:原式=
0

1
xe dx + ∫ xe dx = 2∫ xe dx + 0 = −2∫ xde = −2 x e
−x −x −x −x −1 0 0
+ 2∫ e− x dx = −2e−1 − 2 e− x = 2 −
1 1 8(07) ∫ 3 e x dx = x 1
1 1 1 1 1 1 1 1 1 1 1 x x x x 2 = e2 解原式= − ∫ de = − e + ∫ e d = − e + 1 + e x x x 2 2 1 1 1 1 2 2 2 2
2
9(02)设 F ( x) =
x2 f ( t )dt ,其中 f ( x) 为连续函数,则 lim F ( x) = ( x →a x−a ∫ a
2
π
2
; x = 0, t = 0
π
2
π
2
1 + cos 2t ⎛1 1 ⎞2 π 原式= ∫ cos t cos tdt = ∫ dt = ⎜ t + sin 2t ⎟ = 4 2 ⎝2 4 ⎠0 0 0
(注:该题利用几何意义积分比变量替换积分简单)
+∞
π
7(00)
∫e
1
x
1 dx = + e 2− x
6.(00)
⎛1⎞ f⎜ ⎟ ⎝ x⎠

0
1
2 x − x 2 dx =

2019年第五章 定积分及其应用习题.doc

2019年第五章 定积分及其应用习题.doc

第五章 定积分及其应用【内容提要1.定积分的概念和性质(1)定积分的定义设 )(x f 是定义在 [,]a b 上的函数,在区间 [,]a b 内任意插入 1n - 个 分点0121,n n a x x x x x b -=<<<<<=将其分成 n 个小区间。

记1(1,2,,)i i i x x x i n -∆=-=,max{}i x λ=∆,在每个小区间上任取一点 1[,]i i i x x ξ-∈,下列和式的极限01lim()niii f x λξ→=∆∑存在,且与小区间的划分及 iξ 的选取无关,则称函数)(x f 在 [,]a b 上可积,并称该极限值为 )(x f 在 [,]a b 上的定积分 ,记作() d baf x x ⎰,即01() d l i m() d nbiiai f x x f x x λξ→==∆∑⎰,其中 )(x f 称为被积函数,() d f x x称为被积表达式,x 称为积分变量,a 称为积分下限,b 称为积分上限,[,]a b 称为积分区间。

(2)定积分的性质1)常数因子可以提到积分号外()d ()d bbaakf x x k f x x =⎰⎰ (k 为常数)。

2)函数代数和的积分等于它们积分的代数和。

[()()]d ()d ()d b bbaa a f x g x x f x x g x x ±=±⎰⎰⎰3)对任意单个实数 ,,,a b c 恒有()d ()d ()d bcb aacf x x f x x f x x =+⎰⎰⎰。

4)若在区间 [,]a b 上,被积函数 ()f x K ≡,那么()d d d ()bb baaaf x x K x K x K b a ===-⎰⎰⎰特别地,当 1K = 时,()d d bbaaf x x K x b a ==-⎰⎰5)如果在区间 [,]a b 上, ()()f x g x ≤,则()d ()d bbaaf x xg x x ≤⎰⎰ (a b <)。

高数第五章广义积分、定积分应用课堂练习题及参考答案

高数第五章广义积分、定积分应用课堂练习题及参考答案
0
ab.
2
y
b
O
ax
1
4
(2)
四.求下列平面图形分别绕 x 轴、y 轴旋转产生的立体的体积.
1. 由椭圆 x2 y2 1围成的平面图形 a2 b2
解:如图,该旋转体可视为由上半椭圆 y b a2 x2 及 x 轴所围成的图形,绕 x 轴旋转而成 a
的立体,故
Vx
a
dV
a
a
a
b2 a2
解: Vx
2 (x3 )2 dx
0
7
x7
|02
128 7
Vy
2
8 0
x
x3dx
2
1 ( 5
x5 )
|80
64 5
(或者 Vy
8 (22 3
0
y2
)dy
(4 y
3 5
5
y3
)
|80
64 5
(3)
4. 曲线 y x3 与直线 x 0, y 1所围成的图形
解: Vy
1
(3
0
y )2 dy
;当
p 1时,发散
3.
11 1 x2
dx 1 x
1 1
2
( “对”,“错” )
11 1 x2 dx
解:错,无界函数的积分,瑕积分,瑕点为 0,
1
1 dx
01 dx
11 dx
1 x2
1 x2
0 x2
0
1
1 0 dx
lim (1 1) ,(或者
1 x2
x 1
x x 0
2
3
3
x2
x3 3
1
0

定积分及其应用习题详解

定积分及其应用习题详解

第五章 定积分及其应用习 题 5-11. 如何表述定积分的几何意义根据定积分的几何意义推出下列积分的值: (1)⎰-x x d 11, (2)⎰--x x R R R d 22, (3)⎰x x d cos 02π, (4)⎰-x x d 11.解:若[]⎰≥∈x x f x f b a x ab d )(,0)(,,则时在几何上表示由曲线)(x f y =,直线b x a x ==,及x 轴所围成平面图形的面积. 若[]b a x ,∈时,⎰≤x x f x f ab d )(,0)(则在几何上表示由曲线)(x f y =,直线b x a x ==,及x 轴所围平面图形面积的负值. (1)由下图(1)所示,0)(d 1111=+-=⎰-A A x x .(2)由上图(2)所示,2πd 2222R A x x R R R==-⎰-.(3)由上图(3)所示,0)()(d cos 5353543π20=--++=+-+=⎰AA A A A A A x x .(4)由上图(4)所示,1112122d 611=⋅⋅⋅==⎰-A x x .2. 设物体以速度12+=t v 作直线运动,用定积分表示时间t 从0到5该物体移动的路程S.( 2 )( 1 )( 3 )(4)解:=s ⎰+t t d )12(053. 用定积分的定义计算定积分⎰bax c d ,其中c 为一定常数.解:任取分点b x x x x a n =<<<<= 210,把],[b a 分成n 个小区间],[1i i x x -)2,1(n i =,小区间长度记为x ∆i =i x -1-i x )2,1(n i =,在每个小区间[]i i x x ,1-上任取一点i ξ作乘积i i x f ∆⋅)(ξ的和式:∑∑==--=-⋅=∆⋅n i ni i iiia b c x xc x f 111)()()(ξ,记}{max 1i n i x ∆=≤≤λ, 则)()(lim )(lim d 0a b c a b c x f x c ni i i b a-=-=∆⋅=∑⎰=→→λλξ.4. 利用定积分定义计算120d x x ⎰.解:上在]1,0[)(2x x f =连续函数,故可积,因此为方便计算,我们可以对[]0,1 n 等分,分点i i n i nix ξ;1,,2,1,-==取相应小区间的右端点,故∑∑∑===∆=∆=∆n i i i n i i i ni i i x x x x f 12121)(ξξ=∑∑===ni ni in n n i 1232111)(=311(1)(21)6n n n n ⋅++ =)12)(11(61nn ++ 当时0→λ(即时∞→n ),由定积分的定义得: 120d x x ⎰=31.5. 利用定积分的估值公式,估计定积分⎰-+-1134)524(x x x d 的值.解:先求524)(34+-=x x x f 在[]1,1-上的最值,由0616)(23=-='x x x f , 得0=x 或83=x . 比较 35093(1)11,(0)5,(),(1)781024f f f f -====的大小,知min max 5093,111024f f ==,由定积分的估值公式,得[])1(1d )524()]1(1[max 1134min --⋅≤+-≤--⋅⎰-f x x x f ,即14315093(425)d 22512x x x -≤-+≤⎰. 6. 利用定积分的性质说明⎰1d xe x与⎰1d 2x e x ,哪个积分值较大解:在[]0,1区间内:22xx x x e e ≥⇒≥ 由性质定理知道:⎰10 d x e x≥⎰10 d 2x e x7. 证明:⎰---<<2121212d 22x e ex 。

版第5章定积分及其应用单元自测题答案-8页文档资料

版第5章定积分及其应用单元自测题答案-8页文档资料

第五章 定积分及其应用主要内容内容提要:一、定积分的定义 二、定积分的简单性质⎰⎰⎰±=±bab ab adx x g dx x f dx x g x f )()()]()([⎰⎰=bab a dx x f k dx x kf )()(0)(=⎰a a dx x f⎰⎰-=ba ab dx x f dx x f )()(⎰⎰⎰+=bcc ab adx x f dx x f dx x f )()()(当)(x f 是奇函数时,0)(=⎰-a a dx x f ;当)(x f 是偶函数时,⎰⎰=-aa adx x f dx x f 0)(2)(.三、微积分基本公式C x F dx x f +=⎰)()( ⇒)()()()(a F b F x F dx x f ba b a-==⎰.四、定积分的计算:方法与不定积分相同. 1.换元积分法(1)定积分的凑微分法⎰⎰='bab ax d x f dx x x f )())(()())((ϕϕϕϕ⎰=)()()()(b a du u f x u ϕϕϕ)()()(b a u F ϕϕ=(2)定积分的第二类换元法 令)(a ϕα=,)(b ϕβ=,则⎰⎰'=b adt t t f t x dx x f )())(()()(ϕϕϕβα2.分部积分法⎰⎰='bab ax dv x u dx x v x u )()()()(⎰-=b aba x du x v x v x u )()()]()([⎰'-=b aba dx x u x v x v x u )()()]()([五、积分上限函数的导数:(1))()(x f dt t f xa ='⎪⎭⎫ ⎝⎛⎰ (2))())(()()(x u x u f dt t f dx d x u a '=⎰(3))('))(()('))(()()()(x x f x x f dt t f dx d x x ϕϕψψψϕ-=⎰六、反常积分 1、⎩⎨⎧≤>⎰∞+1,1,1p p x dx p 发散收敛; 2、⎩⎨⎧≥<-⎰1p ,1p ,)a x (dxba p 发散收敛 七、定积分的应用(微元法) 1.平面图形的面积.2.体积:只要求旋转体的体积. 3.弧长第五章 定积分及其应用单元自测题一、填空题: 1.=⎰-xdx x sin 4ππ0 。

高等数学:第5章定积分(自测题答案)

高等数学:第5章定积分(自测题答案)

《高等数学》单元自测题答案 第五章 定积分及其应用一、填空题: 1、0; 2、≤; 3、65; 4、)sin(362x x ; 5、2+e . 二、选择题:1、D ; 2 、C ; 3、B ; 4、C ; 5、D 。

三、计算题:1、解 令t x sin 2=,则tdt dx cos 2=,且 当0=x 时,0=t ;当2=x 时,2π=t 。

所以,⎰⎰⋅-=-20232023cos 2sin 44sin 84πtdt t t dx x x⎰⎰⋅-=⋅⋅=2022203cos cos )1(cos 32cos 2cos 2sin 8ππttd t tdt t t1564)cos 31cos 51(322035=-=πt t 。

2、解⎰⎰⎰⎰+=+=+---20322322223cos 20cos )cos (πππππππxdx xdx xdx dx x x34)sin 31(sin 2sin )sin 1(2203202=-=-=⎰ππt x x d x 。

3、解⎰⎰⎰--=-⋅=210221021021112arcsin )arcsin (arcsin dx xx x xd x x xdx π123121221121)1(211221022122-+=-⋅+=--+=⎰πππxx x d 。

4、解31)11lim (31)131(31314=--=⋅-=+∞→+∞∞+⎰xx x dx x 。

5、解 2)arcsin(ln )(ln 1ln )(ln 111212π==-=-⎰⎰ee e x x x d x x dx 。

四、应用题:1、已知函数)(x f 在 12=x 的某邻域内可导,且0)(lim 12=→x f x ,1004)(lim 12='→x f x ,求3121212)12(])([limx dtdu u tf x tx -⎰⎰→。

解 []2121231212123121212)12(3)(lim )12(])([lim )12(])([lim x du u xf x dt du u tf x dt du u tf x x xt x xt x --='-'⎥⎦⎤⎢⎣⎡=-⎰⎰⎰⎰⎰→→→ [])12(6)]([)(lim )12(3)(lim 121221212x x f x du u f x du u f x x x x x --+='--'⎥⎦⎤⎢⎣⎡=⎰⎰→→ 20086)()(2lim 6)]()([)(lim 1212='+=-'+--=→→x f x x f x f x x f x f x x 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内容提要:
一、定积分的定义
二、定积分的简单性质
b
[ f (x) g(x)]dx f (x)dx g(x)dx
a
a
b
kf (x)dx k f (x)dx
a
a f (x)dx 0
a
b f (x)dx a f (x)dx
b
a
c
b
b
a f (x)dx a f (x)dx c f (x)dx
F(x) b
a

F (b) F (a) .
a
b
u
(
x)v
(
x)dx

[u(x)v(x)] b
[u(x)v(x)] b
五、积分上限函数的导数:
(1)
d
(2)
d
(3)
x a
dx a
dx (x)
六、反常积分
1、
1
f
(t
)dt
a
当 f (x) 是奇函数时, f (x)dx 0 ;
a
a
b
a
当 f (x) 是偶函数时, f (x)dx 2 f (x)dx .
三、微积分基本公式
f (x)dx F (x) C
a
四、定积分的计算:方法与不定积分相同.
1.换元积分法
(1)定积分的凑微分法
a
b f ((x)) (x)dx b f ((x))d(x)
u ( x )
(2)定积分的第二类换元法
令 (a) , (b) ,则


f (x)dx
2.分部积分法
x (t)
aLeabharlann F( aa
u
第五章 定积分及其应用
(b )
)( a )
b f ((t)) (t)dt
b
a
主要内容
b
b
f (x)dx
0
(b )
f ( u )du
(a )
a
第 1 页 共 8 页

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。


a
f (x)
u( x ) f ( t )dt f ( u( x ))u( x )
b
u ( x)dv( x)
(x) f (t)dt f ( (x)) '(x) f ((x))'(x)
dx 收敛, p 1
xp
发散,
b dx 发发 , p 1
2、 a ( x a ) p 发发 , p 1
七、定积分的应用(微元法) 1.平面图形的面积. 2.体积:只要求旋转体的体积. 3.弧长

p 1
a
a
b
v( x)du ( x)
a
b
v(
a
x)u
(
x)dx
第 2 页 共 8 页
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
相关文档
最新文档