定积分测试题及答案
(易错题)高中数学高中数学选修2-2第四章《定积分》测试卷(含答案解析)(1)

一、选择题1.12201x dx -=⎰( )A .12πB .3128π+ C .368π+ D .364π+2.直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积为( ) A .22B .42C .2D .43.如图,由曲线21y x =-直线0,2x x ==和x 轴围成的封闭图形的面积是( )A .1B .23C .43D .24.设1130,,a xdx b xdx c x dx ===⎰⎰⎰,则,,a b c 的大小关系为( )A .b c a >>B .b a c >>C .a c b >>D .a b c >>5.对于函数()sin x f x x =, 30,2x π⎛⎤∈ ⎥⎝⎦,下列说法错误的是( ) A .函数()f x 在区间()0,π是单调函数 B .函数()f x 只有1个极值点 C .函数()f x 在区间0,2π⎛⎫⎪⎝⎭有极大值 D .函数()f x 有最小值,而无最大值 6.曲线xy e =在点(0,1)处的切线与坐标轴所围三角形的面积为( ) A .12B .1C .2D .3 7.定积分220[4(2)]x x dx --⎰的值为( )A .24π- B .2π- C .22π- D .48π-8.())122011d x x x --⎰的值是( )A .π143- B .π14- C .π123- D .π12-9.若向区域(){},|0101x y x y Ω=≤≤≤≤,内投点,则该点落在由直线y x =与曲线y = )A .18B .16C .13D .1210.函数()2,02x x f x x -<⎧⎪=≤≤,则22()f x dx -⎰的值为( )A .6π+B .2π-C .2πD .811.函数0()(4)xf x t t dt =-⎰在[1,5]-上( )A .有最大值0,无最小值B .有最大值0,最小值323-C .最小值323-,无最大值 D .既无最大值,也无最小值12.=⎰( )A .1B .4π C .2π D .π二、填空题13.若2211S x dx =⎰,2211S dx x=⎰,231x S e dx =⎰,则1S ,2S ,3S 的大小关系为___.14.)2x dx =⎰______.15.设函数2y nx n =-+和1122y x n =-+(*n N ∈,2n ≥)的图像与两坐标轴围成的封闭图形的面积为n S ,则lim n n S →∞=________ 16.若112lim 22n nn n n t t +-→+∞-=+ ,则实数t 的取值范围是_____________.17.曲线2yx x 和2y x x 所围成的封闭图形的面积是_______.18.曲线()sin 0πy x x =≤≤与x 轴围成的封闭区域的面积为__________. 19.()40sin cos 2x a x dx π-=⎰,则实数a =____________. 20.从如图所示的正方形OABC 区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为__.三、解答题21.已知二次函数()f x 满足(0)0f =,且对任意x 恒有(1)()22f x f x x +-=+. (1)求()f x 的解析式;(2)设函数()()'()g x f x f x λ=-,其中'()f x 为()f x 的导函数.若对任意[0,1]x ∈,函数()y g x =的图象恒在x 轴上方,求实数λ的取值范围.22.设点P 在曲线y =x 2上,从原点向A (2,4)移动,如果直线OP ,曲线y =x 2及直线x =2所围成的面积分别记为S 1、S 2.(1)当S 1=S 2时,求点P 的坐标;(2)当S 1+S 2有最小值时,求点P 的坐标和最小值. 23.已知函数2()11xf x x =++,2()e (0)ax g x x a =<. (1)求函数()f x 的单调区间.(2)若对任意1x ,2[0,2]x ∈,12()()f x g x ≥恒成立,求a 的取值范围.24.设函数()32,0{,0xx x x f x axe x ->=≤,其中0a >. (1)若直线y m =与函数()f x 的图象在(]0,2上只有一个交点,求m 的取值范围; (2)若()f x a ≥-对x ∈R 恒成立,求实数a 的取值范围. 25.计算下列各式的值. (1) ()0sin cos d x x x π-⎰;(2)2132d x x x +-⎰.26.已知函数()xae f x x x=+.(1)若函数()f x 的图象在(1,(1))f 处的切线经过点(0,1)-,求a 的值;(2)是否存在负整数a ,使函数()f x 的极大值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由;(3)设0a >,求证:函数()f x 既有极大值,又有极小值【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】令21y x =-,则()2210x y y +=≥,点(),x y 的轨迹表示半圆,则该积分表示该半圆与y 轴,12x =,x 轴围成的曲边梯形的面积,求出面积即可. 【详解】解:令21y x =-,则()2210x y y +=≥,点(),x y 的轨迹表示半圆,12201x dx -⎰表示以原点为圆心,2为半径的圆的上半圆与y 轴,12x =,x 轴围成的曲边梯形的面积,如图:故12201131311222612OAB BOCx dx SS ππ-=+=⨯⨯⨯=+扇形. 故选:B. 【点睛】本题考查定积分的几何意义,属基础题.2.D解析:D 【解析】直线4y x =与曲线3y x =的交点坐标为(0,0)和(2,8), 故直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积23242001(4)2|8444S x x dx x x ⎛⎫=⎰-=-=-= ⎪⎝⎭.故选D .3.D解析:D 【解析】由曲线21y x =-直线0,2x x ==和x 轴围成的封闭图形的面积是122201(1)(1)S x dx x dx =---⎰⎰31320111281()|()|2133333x x x x -+-=+--+ 4.D解析:D 【解析】根据微积分定理,3120022|33a x ⎛⎫=== ⎪⎝⎭,1210011|22b xdx x ⎛⎫=== ⎪⎝⎭⎰,13410011|44c x dx x ⎛⎫=== ⎪⎝⎭⎰,所以a b c >>,故选择D 。
上海民办扬波中学高中数学选修2-2第四章《定积分》测试题(含答案解析)

一、选择题1.计算211x dx x ⎛⎫+ ⎪⎝⎭⎰的值为( )A .34B .3ln 22+C .55ln 22+ D .3ln 2+2.在1100x y x y ==-=,,,围成的正方形中随机投掷10000个点,则落入曲线20x y -=,1y =和y 轴围成的区域的点的个数的估计值为( )A .5000B .6667C .7500D .78543.若正四棱锥(底面为正方形,且顶点在底面的射影为正方形的中心)的侧棱长为3,侧面与底面所成的角是45︒,则该正四棱锥的体积是( ) A .23B .43C .223D .4234.如图,设D 是途中边长分别为1和2的矩形区域,E 是D 内位于函数1(0)y x x=>图象下方的阴影部分区域,则阴影部分E 的面积为( )A .ln 2B .1ln 2-C .2ln 2-D .1ln 2+5.曲线22y x x =-与直线11x x =-=,以及x 轴所围图形的面积为( ) A .2 B .83 C .43 D .236.已知1(1)1x f x x e ++=-+,则函数()f x 在点(0,(0))f 处的切线l 与坐标轴围成的三角形的面积为 A .14 B .12C .1D .2 7.())122011d x x x --⎰的值是( )A .π143- B .π14- C .π123- D .π12- 8.已知10(31)()0ax x b dx ,,a b ∈R ,则⋅a b 的取值范围为( )A .1,9B .1,1,9C .1,[1,)9D .()1,+∞9.曲线22,y x y x ==所围成图形的面积是( ) A .1B .13C .12D .2310.已知幂函数a y x =图像的一部分如下图,且过点(2,4)P ,则图中阴影部分的面积等于( )A .163B .83C .43D .23 11.由直线y= x - 4,曲线2y x =x 轴所围成的图形面积为( )A .15B .13C .252D .40312.1201(1))x x dx ⎰--=( ) A .22π+B .12π+ C .122π-D .142π- 二、填空题13.已知函数()[)[)[]3,2,22,2,cos ,,2x x f x x x x x πππ⎧∈-⎪=∈⎨⎪∈⎩则()22f x dx π-=⎰___________14.已知0a >,6x x ⎫-⎪⎭展开式的常数项为15,则(0224a x x x dx -++-=⎰______.15.(222sin 4x x dx --=⎰______.16.424(16)x x dx --=⎰__________.17.曲线()sin 0πy x x =≤≤与x 轴围成的封闭区域的面积为__________.18.1321(tan sin )x x x x dx -++⎰的值为______________________19.若,则的值是__________.20.()402sin cos 2x a x dx π-=-⎰,则实数a =____________. 三、解答题21.已知函数()21ln ,2f x x ax a R =-∈.(1)求函数()f x 的单调区间;(2)若关于x 的不等式()()11f x a x ≤--恒成立,求整数a 的最小值. 22.(2015秋•钦州校级期末)求曲线y=sinx 与直线,,y=0所围成的平面图形的面积. 23.计算: (1)710C (2)()22224x x dx -+-⎰24.如图,有一块半圆形空地,开发商计划建一个矩形游泳池ABCD 及其矩形附属设施EFGH ,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为O ,半径为R ,矩形的一边AB 在直径上,点C 、D 、G 、H 在圆周上,E 、F 在边CD 上,且3BOG π∠=,设BOC θ∠=.(1)记游泳池及其附属设施的占地面积为()f θ,求()f θ的表达式; (2)怎样设计才能符合园林局的要求?25.已知函数f (x )32x cos 2x +cos 22x +m 的图象过点(56π,0). (1)求实数m 值以及函数f (x )的单调递减区间; (2)设y=f (x )的图象与x 轴、y 轴及直线x=t (0<t <23π)所围成的曲边四边形面积为S ,求S 关于t 的函数S (t )的解析式.26.已知()ln f x x x mx =+,2()3g x x ax =-+-(1)若函数()f x 在(1,)+∞上为单调函数,求实数m 的取值范围;(2)若当0m =时,对任意(0,),2()()x f x g x ∈+∞≥恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据牛顿莱布尼茨公式,即可代值求解. 【详解】根据牛顿莱布尼茨公式211x dx x ⎛⎫+ ⎪⎝⎭⎰2211()2x lnx =+1142122ln ln ⎛⎫=⨯+-+ ⎪⎝⎭ 322ln =+. 故选:B. 【点睛】本题考查牛顿莱布尼茨公式的直接应用,属基础题.2.B解析:B 【分析】应用微积分基本定理求出对应的原函数,再由定积分定义求出空白区域面积,由正方形面积减去空白区域面积即可求出阴影部分面积,结合几何概型可推导出对应区域内的点的个数 【详解】由微积分基本定理可求出2yx 的原函数为()313F x x =,空白区域面积为31101133S x ==,故阴影部分面积212133S =-=,由几何概型可知,落入阴影部分的点数估计值为21000066673⨯≈ 故选:B 【点睛】本题考查定积分与微积分的基本定理,几何概型,属于基础题3.B解析:B 【解析】设底面边长为a ,依据题设可得棱锥的高2ah =,底面中心到顶点的距离22d =,由勾股定理可得22221()()(3)22a a +=,解之得2a =,所以正四棱锥的体积21242323V =⨯⨯=,故应选答案B .4.D解析:D 【解析】试题分析:由题意,阴影部分E 由两部分组成,因为函数1(0),y x x=>当2y =时,1,2x =所以阴影部分E 的面积为1111221121ln |1ln 2,2dx x x ⨯+=+=+⎰故选D . 考点:利用定积分在曲边形的面积.5.A解析:A 【解析】试题分析:在抄纸上画出图像,可根据图像列出方程1221(20)(2)x x dx x x dx---+-+⎰⎰=320321111()33x x x x --+-+=110(1)(1)33---+-+=4233+=2考点:区间函数的运用6.A解析:A 【解析】试题分析:由1(1)1x f x x e ++=-+知()2x f x x e =-+,则()1(0)2x f x e f ''=+⇒=,而(0)1f =-,即切点坐标为()0,1-,切线斜率(0=2k f '=),则切线()():12021l y x y x --=-⇒=-,切线l 与坐标轴的交点分别为1,02⎛⎫⎪⎝⎭和()0,1-,则切线l 与坐标轴围成的三角形的面积为1111224S =⋅⋅-= 考点:函数在某点处的切线7.A解析:A 【详解】因为定积分11122000d )(x d x x x ⎫⎫=-⎪⎪⎭⎭⎰⎰⎰,结合定积分的几何意义可知,原式等于圆心为(1,1),半径为1的四分之一个圆的面积减去13得到,即为143-π,选A. 8.C解析:C 【分析】本题可以先根据定积分的运算法则建立a 与b 的等量关系,然后设abt ,则312t a b,再然后根据构造法得出a 、b 为方程23102t xx t 的根,最后根据判别式即可得出结果. 【详解】112(31)()(33)ax x b dx ax abx x b dx 1223331()02222abx x ab ax bx a b =+++=+++=,即3210ab a b ,设abt ,则312t a b,a 、b 为方程23102t xx t 的根,有231402t t ,解得19t 或1t ≥, 所以1,[1,)9a b ,故选C .【点睛】本题考查定积分的运算法则以及构造法,能否根据被积函数的解析式得出原函数的解析式是解决本题的关键,考查韦达定理的使用,是中档题.9.B解析:B 【分析】由题意,可作出两个函数y x =与2yx 的图象,先求出两函数图象交点A 的坐标,根据图象确定出被积函数2 x x -与积分区间[0,1],计算出定积分的值即可. 【详解】 作出如图的图象联立22 y x y x ⎧=⎨=⎩解得0 0x y =⎧⎨=⎩或1 1x y =⎧⎨=⎩,即点()11A ,, 所求面积为)13231202121133333S x x dx x x ⎛⎫==-=-= ⎪⎝⎭⎰, 故选B. 【点睛】本题考点是定积分在求面积中的应用,考查了作图的能力及利用积分求面积,解题的关键是确定出被积函数与积分区间,熟练掌握积分的运算.10.B解析:B 【解析】试题分析:由题意得,因为幂函数a y x =图像过点(2,4)P ,所以42α=,解得2α=,所以幂函数2yx ,则阴影部分的面积为22320018|33S x dx x ===⎰,故选B.考点:幂函数的解析式;定积分的应用.11.D解析:D 【详解】根据题意,画出如图所示:由直线4y x =-,,曲线2y x =x 轴所围成的面积为:4288221402(24)(4)42322xdx x x dx x x x x +⎰+=+-+=.故选D.12.D解析:D 【分析】 函数1201(1)y x dx =--⎰的图象是以(1,0)为圆心,以1为半径的上半圆,作出直线y x =,则图中阴影部分的面积为题目所要求的定积分.【详解】 由题意,)111221(1)1(1)()x x dx x dx x dx --=--+-⎰⎰⎰,如图:1201(1)x dx --⎰的大小相当于是以(1,0)为圆心,以1为半径的圆的面积的14,故其值为4π,021011()1()|22x d x x --=-=⎰, 所以,)11122011(1)1(1)()42x x dx x dx x dx π--=--+-=-⎰⎰⎰ 所以本题选D. 【点睛】本题考查求定积分,求解本题关键是根据定积分的运算性质将其值分为两部分来求,其中一部分要借用其几何意义求值,在求定积分时要注意灵活选用方法,求定积分的方法主要有两种,一种是几何法,借助相关的几何图形,一种是定义法,求出其原函数,本题两种方法都涉及到了,由定积分的形式分析,求解它的值得分为两部分来求,1201(1)x dx --⎰和1()x dx -⎰.二、填空题13.【分析】利用定积分的计算法则可得由基本初等函数的求导公式求得原函数即可求解【详解】因为函数所以故答案为:【点睛】本题考查定积分的几何意义和定积分的计算法则及基本初等函数的求导公式;属于中档题 解析:24π-【分析】利用定积分的计算法则可得()22f x dx π-=⎰223222cos x dx xdx xdx πππ-++⎰⎰⎰,由基本初等函数的求导公式求得原函数即可求解. 【详解】因为函数()[)[)[]3,2,22,2,cos ,,2x x f x x x x x πππ⎧∈-⎪=∈⎨⎪∈⎩,所以()22f x dx π-=⎰223222cos x dx xdx xdx πππ-++⎰⎰⎰4222221sin 4x x xπππ-⎛⎫=++ ⎪⎝⎭24π=-,故答案为:24π- 【点睛】本题考查定积分的几何意义和定积分的计算法则及基本初等函数的求导公式;属于中档题.14.【分析】利用二项式展开式的通项公式求出再利用定积分的运算性质和几何意义去求即得【详解】二项式展开式的通项为展开式的常数项为15令故答案为:【点睛】本题考查二项式展开式的通项公式考查微积分基本定理136π- 【分析】利用二项式展开式的通项公式求出a ,再利用定积分的运算性质和几何意义去求即得. 【详解】二项式6x ⎫-⎪⎭展开式的通项为()()626136631r rrrrrr r x a C xT C --+---==.6a x x ⎛⎫- ⎪⎝⎭展开式的常数项为15, ∴令330,22rr -=∴=,()262261=15a C -∴-,4=1a ∴,0,1aa >∴=.((0221a x x dx x x dx --∴+=++⎰⎰2322111001111121132226x dx xdx x x π---=++=++⨯⨯⨯--⎰⎰()()32321101013223π⎡⎤⎡⎤=--+--++⎣⎦⎣⎦11132336ππ=-+=+-. 136π+-. 【点睛】本题考查二项式展开式的通项公式,考查微积分基本定理.15.【分析】根据定积分的四则运算和几何意义求定积分【详解】因为故答案为2π【点睛】本题考查了定积分的计算;利用定积分的几何意义分别求出两个被积函数的定积分属于基础题 解析:2π【分析】根据定积分的四则运算和几何意义求定积分. 【详解】因为(222222sin sin 022x dx xdx ππ---+=+=+=⎰⎰⎰故答案为2π. 【点睛】本题考查了定积分的计算;利用定积分的几何意义分别求出两个被积函数的定积分,属于基础题.16.【分析】由题原式等于利用积分的几何意义分别求得其定积分可得答案【详解】由题表示的几何意义为:以(00)为圆心4为半径的圆在第一第二象限的面积所以=所以故答案为【点睛】本题考查了定积分熟悉理解定积分的 解析:8π【分析】由题,原式等于4444xdx --+⎰,利用积分的几何意义分别求得其定积分,可得答案.【详解】由题444444)x dx xdx ---=+⎰⎰4-表示的几何意义为:以(0,0)为圆心,4为半径的圆在第一第二象限的面积,所以44-=21482ππ⨯= ,440xdx -=⎰所以44)8x dx π-=⎰故答案为8π 【点睛】本题考查了定积分,熟悉理解定积分的几何意义是解题的关键,属于中档题.17.2【解析】与轴所围成的封闭区域的面积故答案为2解析:2 【解析】sin (0π)y x x =≤≤与x 轴所围成的封闭区域的面积ππsin d cos cos πcos020S x x x==-=-+=⎰,故答案为2.18.0【解析】因为f(x)=x3+tanx+x2sinx−1⩽x ⩽1所以f(−x)=−x3−tanx−x2sinx=−f(x)所以f(x)为奇函数解析:0 【解析】因为f (x )=x 3+tanx +x 2sinx ,−1⩽x ⩽1 所以f (−x )=−x 3−tanx −x 2sinx =−f (x ), 所以f (x )为奇函数,21310x tanx x sinx dx -⎛⎫∴++= ⎪⎝⎭⎰.19.2【解析】试题分析:∵易得故答案为考点:定积分的计算解析:2 【解析】 试题分析:∵,易得,故答案为.考点:定积分的计算.20.【分析】直接根据定积分的运算法则再分别计算定积分解得的值【详解】根据定积分的运算法则所以解得故答案为【点睛】本题主要考查了定积分的求解涉及正弦函数和余弦函数的定积分和积分运算法则的应用属于基础题 2【分析】直接根据定积分的运算法则,()4440sin cos sin cos πππx a x dx xdx a xdx -=-⎰⎰⎰,再分别计算定积分,解得a 的值. 【详解】根据定积分的运算法则,()4440sin cos sin cos πππx a x dx xdx a xdx -=-⎰⎰⎰440222sin 1cosxa xππ=--⋅== 所以2102a -=,解得2a = 2 【点睛】本题主要考查了定积分的求解,涉及正弦函数和余弦函数的定积分和积分运算法则的应用,属于基础题.三、解答题21.(1) 当0a ≤时,()f x 的单调递增区间为()0,∞+,无减区间,当0a >时,()f x 的单调递增区间为⎛ ⎝,单调递减区间为⎫+∞⎪⎪⎭;(2)2. 【解析】 试题分析:(1)首先对函数求导,然后对参数分类讨论可得当0a ≤时,()f x 的单调递增区间为()0,+∞,无减区间,当0a >时,()f x 的单调递增区间为⎛ ⎝,单调递减区间为⎫+∞⎪⎪⎭; (2)将原问题转化为()22ln 12x x a x x++≥+在()0,+∞上恒成立,考查函数()()22ln 12x x g x x x++=+的性质可得整数a 的最小值是2.试题(1)()211'ax f x ax x x-=-=,函数()f x 的定义域为()0,+∞.当0a ≤时,()'0f x >,则()f x 在()0,+∞上单调递增,当0a >时,令()'0f x =,则x =舍负),当0x <<时,()'0f x >,()f x 为增函数,当x >()'0f x <,()f x 为减函数, ∴当0a ≤时,()f x 的单调递增区间为()0,+∞,无减区间,当0a >时,()f x 的单调递增区间为⎛ ⎝,单调递减区间为⎫+∞⎪⎪⎭. (2)解法一:由()21ln 112x ax a x -≤--得()()22ln 12x x a x x ++≤+, ∵0x >, ∴原命题等价于()22ln 12x x a x x++≥+在()0,+∞上恒成立,令()()22ln 12x x g x x x++=+,则()()()()22212ln '2x x x g x x x-++=+,令()2ln h x x x =+,则()h x 在()0,+∞上单调递增,由()110h =>,112ln2022h ⎛⎫=-+< ⎪⎝⎭, ∴存在唯一01,12x ⎛⎫∈⎪⎝⎭,使()00h x =,002ln 0x x +=. ∴当00x x <<时,()'0g x >,()g x 为增函数, 当0x x >时,()'0g x <,()g x 为减函数, ∴0x x =时,()()()0002max 000002ln 12122x x x g x x x x x x +++===++,∴01a x ≥, 又01,12x ⎛⎫∈ ⎪⎝⎭,则()011,2x ∈,由a Z ∈,所以2a ≥. 故整数a 的最小值为2. 解法二:()21ln 112x ax a x -≤--得, ()2222ln 20ax a x x +---≥,令()()()2222ln 20g x ax a x x x =+--->,()2'222g x ax a x=+--,①0a ≤时,()'0g x <,()g x 在()0,+∞上单调递减, ∵()1340g a =-<,∴该情况不成立. ②0a >时,()()()()22222221'ax a x ax x g x xx+---+==当10,x a ⎛⎫∈ ⎪⎝⎭时,()'0g x <,()g x 单调递减; 当1,x a ⎛⎫∈+∞⎪⎝⎭时,()'0g x >,()g x 单调递增,∴()min 1112ln g x g a a a ⎛⎫==--⎪⎝⎭, ()0g x ≥恒成立()min 112ln 0g x aa⇔=--≥, 即112ln0a a+≤. 令()112lnh a a a=+,显然()h a 为单调递减函数. 由a Z ∈,且()110h =>,()12ln402h =-<, ∴当2a ≥时,恒有()0h a ≤成立, 故整数a 的最小值为2.综合①②可得,整数a 的最小值为2.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出 ,本专题在高考中的命题方向及命题角度 从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用. 22.4﹣【解析】试题分析:求曲线y=sinx 与直线,,y=0所围成的平面图形的面积解:s=|sinx|dx=﹣sinxdx+sinxdx ﹣sinxdx=cosx ﹣cosx +cosx =1+2+(﹣+1)=4﹣.考点:定积分在求面积中的应用. 23.(1)120;(2)2π 【分析】(1)根据组合数的对称性计算;(2)将括号中内容拆分,一部分按定积分性质计算,另一部分使用定积分几何意义计算. 【详解】 (1)7310101098C =C ==1203⨯⨯!; (2)(222222224=24x x dx xdx x dx ----+-⎰⎰⎰,其中222xdx -⎰中()2f x x =是奇函数,所以 2220xdx -=⎰;2-⎰表示圆心在原点半径等于2的圆在x 轴上方的面积,故(2222242=2022x dx xdx ππ---++=+=⎰⎰⎰. 【点睛】 (1)计算()aaf x dx -⎰(0a >)时,若()f x 为奇函数,则()0aaf x dx -=⎰;若()f x 为偶函数,则()2()2()aaaaf x dx f x dx f x dx --==⎰⎰⎰.(2)组合数对称性:C =C ()mn mn nm n -≤.24.(1)2()(2sin cos sin (0,)3f R πθθθθθ=-+∈(2)cos θ=【解析】试题分析:(1)根据直角三角形求两个矩形的长与宽,再根据矩形面积公式可得函数解析式,最后根据实际意义确定定义域(2)利用导数求函数最值,求导解得零点,列表分析导函数符号变化规律,确定函数单调性,进而得函数最值 试题(1)由题意,2cos AB R θ=,sin BC R θ=,且HOG 为等边三角形,所以,HG R =,sin EH R θ=-, ()=ABCD EFGH f S S θ+2cos sin sin 2R R R R R θθθ⎛⎫=⋅+- ⎪ ⎪⎝⎭2(2sin cos sin R θθθ=-,03πθ⎛⎫∈ ⎪⎝⎭,. (2)要符合园林局的要求,只要()fθ最小,由(1)知,()()22222'(2cos 2sin cos =4cos cos 2f R R θθθθθθ=----)令()'0f θ=,即24cos cos 2=0θθ--,解得cos θ或cos θ(舍去),令00cos 03,πθθ⎛⎫∈ ⎪⎝⎭, 当00θθ∈(,)时,()()'0,f fθθ<是单调减函数, 当03πθθ∈(,)时,()()'0,f fθθ>是单调增函数,所以当0=θθ时,()fθ取得最小值.答:当θ满足cos θ时,符合园林局要求. 25.(1)12m =-,单调递减区间是42,233k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z ;(2)2()sin())33s t t t ππ=-<<.【分析】(1)利用二倍角的正弦和余弦公式降幂,化为y=162sin x m π⎛⎫+++ ⎪⎝⎭的形式,把点(56π,0)代入函数解析式求得m 的值,再代入函数解析式后利用复合函数的单调性求得函数f (x )的单调递减区间;(2)对(1)中所求函数f (x )求0到t 上的积分,即求被积函数f (x )的原函数,代入积分上限和下限后作差得答案. 【详解】(1)f (x )2x cos 2x +cos 22x +m=1122cosx m +++ =162sin x m π⎛⎫+++ ⎪⎝⎭. ∵f (x )的图象过点(56π,0), ∴510662sin m ππ⎛⎫+++=⎪⎝⎭,解得12m =-.∴f (x )=6sin x π⎛⎫+ ⎪⎝⎭, 由322262k x k πππππ+≤+≤+,得42233k x k ππππ+≤≤+,k ∈Z . 故f (x )的单调递减区间是42,233k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z ;(2)由(1)得,f (x )12sinx cosx +.∴012tS cosx dx ⎫=⎰+⎪⎪⎝⎭=01|2t sinx ⎛⎫+ ⎪ ⎪⎝⎭=11002222cost sint cos sin ⎛⎫⎛⎫-+--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=32sin t π⎛⎫-+ ⎪⎝⎭.∴()3S t sin t π⎛⎫=- ⎪⎝⎭(203t π<<). 【点睛】本题主要考查二倍角公式、两角和与差的三角函数公式、三角函数的图象与性质及定积分等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想、函数与方程思想,是中档题.26.(1)1m ≤-;(2)4a ≤. 【解析】试题分析:(1)求导,利用导数对t 的范围进行分类讨论求最值.(2)本小题实质是22ln 3x x x ax ≥-+-在()0,x ∈+∞上恒成立,进一步转化为3 2ln a x x x ≤++在()0,x ∈+∞上恒成立,然后构造函数()32ln (0)h x x x x x=++>利用导数研究h(x)的最小值即可.注意不要忽略x>0的条件,导致求导数的方程时产生增根. 试题(1)()f x 定义域为()0,+∞,()()ln 1f x x m '=++,因为()f x 在()1,+∞上为单调函数,则方程()ln 10x m ++=在()1,+∞上无实根. 故10m +≥,则1m ≤-.(2)22ln 3x x x ax ≥-+-,则32ln a x x x≤++,对一切()0,x ∈+∞恒成立. 设()32ln (0)h x x x x x =++>,则()()()231'x x h x x +-=, 当()()()0,1,'0,x h x h x ∈<单调递减, 当()()()1,,'0,x h x h x ∈+∞>单调递增.()h x 在()0,+∞上,有唯一极小值()1h ,即为最小值.所以()()min 14h x h ==,因为对任意()()()0,,2x f x g x ∈+∞≥恒成成立, 故4a ≤.点睛:利用导数解决不等式恒成立问题的“两种”常用方法(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,f(x)≥a 恒成立,只需f(x)min≥a 即可;f(x)≤a 恒成立,只需f(x)max≤a 即可.(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解.。
《定积分》测试题

《定积分》测试题一、选择题1. 在等分区间的情况下f (x )=11+x2(x ∈[0,2])及x 轴所围成的曲边梯形面积正确的是 ( ) ∑=∞→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅⎪⎭⎫ ⎝⎛-+n i n n n i A 122)1(211lim .∑=∞→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅⎪⎭⎫ ⎝⎛+n i n n n i B 122211lim .∑=∞→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅⎪⎭⎫ ⎝⎛+n i n n n i C 12111lim .∑=∞→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅⎪⎭⎫ ⎝⎛-+n i n n n i D 2121111lim . 2.下列命题不正确的是( )A .若()f x 是连续的奇函数,则()d 0aa f x x -=⎰B .若()f x 是连续的偶函数,则0()d 2()d aa af x f x x x -=⎰⎰C .若()f x 在[],a b 上连续且恒正,则()d 0bax f x >⎰D .若()f x 在[),a b 上连续且()d 0baf x x >⎰,则()f x 在[),a b 上恒正3.由直线0,0,1===x y x和曲线3x y =3所围成的曲边梯形,将区间4等分,则曲边梯形面积的的近似值(取每个区间的右端点)是 ( ) A.119B.111256 C.1127D.25644.由曲线y =x 2-4,直线x =0,x =4和x 轴围成的封闭图形的面积(如图)是 ( )dx x A )4(.240-⎰dx x B )4(.240+⎰dx x C 4.240-⎰dx x dx x D )4()4(.242220-+-⎰⎰5.=-⎰dx x 4230( )A .321 B .322 C .323 D .325 6.一物体以速度)/(232s m t t v +=做直线运动,则它在t =0s 到t =3s 时间段内的位移是( )A . 31mB .36mC .38mD .40m7.设物体以速度v(t)=3t 2+t(m/s)作直线运动,则它在0~4s 内所走的路程为( )A.70mB.72mC.75mD.80m8.一物体在力F(x )=4x -1(单位:N)的作用下,沿着与力F 相同的方向,从x =1运动到x =3处(单位:m),则力F(x )所做的功为( )A .8JB .10JC .12JD .14J9.物体受到与它的运动方向相反的力F(x )=110e x +x 的作用,则它从x =0运动到x =1时,F(x )所做功等于( )A.e 10+25 B.e 10-25 C .-e 10+25 D .-e 10-2510.若两曲线y=x 2与y=c x 3(c>0)围成图形的面积是23,则c 等于( ) A.13B.12C.1D.2311.若某产品一天内的产量(单位:百件)是时间t 的函数,若已知产量的变化率为a =36t ,那么从3小时到6小时期间内的产量为( ) A.12 B .3-32 2 C .6+3 2 D .6-32 12..定积分0|sin cos |d x x x π-=⎰( )A .22+B .22-C .2D .22二、填空题13.已知1201d 3x x =⎰,2217d 3x x =⎰,则220(1)d x x +=⎰________________.14.=⎪⎭⎫ ⎝⎛+⎰dx x x 222cos 2sin π______________15.一物体沿直线以v =1+t m/s 的速度运动,该物体运动开始后10s 内所经过的路程是________. 16.从如图所示的长方形区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为 .三、解答题17.已知()y f x =是二次函数,方程()0f x =有两个相等的实根,且()22f x x '=+.(1)求()f x 的解析式; (2)求曲线()y f x =与曲线241y x x =--+所围成的图形的面积S .18..以初速度40m/s 竖直向上抛一物体,ts 时刻的速度v=40-10t 2,求此物体达到最高时的高度为多少?19.设f(x )是二次函数,其图象过点(0,1),且在点(-2,f(-2))处的切线方程为2x +y +3=0. (1)求f(x )的表达式;(2)求f(x )的图象与两坐标轴所围成图形的面积;(3)若直线x =-t(0<t<1)把f(x )的图象与两坐标轴所围成图形的面积二等分,求t 的值.。
(压轴题)高中数学高中数学选修2-2第四章《定积分》测试题(含答案解析)

一、选择题1.给出下列函数:①())ln f x x =;②()3cos f x x x =;③()xf x e x =+.0a ∃>使得()0aaf x dx -=⎰的函数是( )A .①②B .①③C .②③D .①②③2.设113a x dx -=⎰,1121b x dx =-⎰,130c x dx =⎰则a ,b ,c 的大小关系( )A .a>b>cB .b>a>cC .a>c>bD .b>c>a3.若函数()31f x x ax x =++在1,2⎛⎫+∞ ⎪⎝⎭是增函数,则a 的取值范围是( ) A .1,2⎛⎫-+∞ ⎪⎝⎭ B .1,2⎡⎫-+∞⎪⎢⎣⎭ C .13,4⎛⎫+∞ ⎪⎝⎭D .13,4⎡⎫+∞⎪⎢⎣⎭ 4.由23y x =-和2y x =围成的封闭图形的面积是( ) A..9-.323 D .3535.已知1(1)1x f x x e ++=-+,则函数()f x 在点(0,(0))f 处的切线l 与坐标轴围成的三角形的面积为 A .14 B .12C .1D .2 6.一物体在力F (x )=3x 2-2x +5(力单位:N ,位移单位:m)作用力下,沿与力F (x )相同的方向由x =5 m 直线运动到x =10 m 处做的功是( ). A .925 JB .850 JC .825 JD .800 J7.由曲线1xy =,直线,3y x y ==所围成的平面图形的面积为( ) A .2ln3-B .4ln3+C .4ln3-D .3298.已知函数()[](]sin ,,00,1x x f x x π⎧∈-=∈,则()1f x dx π-=⎰( ) A .2π+ B .2πC .22π-+D .24π-9.函数0()(4)xf x t t dt =-⎰在[1,5]-上( )A .有最大值0,无最小值B .有最大值0,最小值323-C .最小值323-,无最大值 D .既无最大值,也无最小值10.10)x dx ⎰=( )A .22π+B .12π+ C .122π-D .142π- 11.下列积分值最大的是( ) A .222sin +1x x dx -⎰()B .()22cos x dx ππ--⎰C .224x dx --⎰D .11edx x12.由曲线4y x =,1y x=,2x =围成的封闭图形的面积为( ) A .172ln 22- B .152ln 22- C .15+2ln 22D .17+2ln 22二、填空题13.定积分211dx x⎰的值等于________. 14.定积分21d 1x x ⎰-的值为__________.15.已知()[](]2,0,11,1,x x f x x e x⎧∈⎪=⎨∈⎪⎩(e 为自然对数的底数),则()e 0f x dx =⎰_________.16.设函数()f x 的图象与直线,x a x b ==及x 轴所围成图形的面积称为函数()f x 在[],a b 上的面积,已知函数()sin f x nx =在0,2n π⎡⎤⎢⎥⎣⎦上的面积为1n()*n N ∈,则函数()()sin 32f x x π=-+在4,33ππ⎡⎤⎢⎥⎣⎦上的面积为__________.17.定积分2sin cos t tdt π=⎰________.18.已知平面区域(){}2,|04x y y x Ω=≤≤-,直线:2l y mx m =+和曲线2:4C y x =-有两个不同的交点,直线l 与曲线C 围成的平面区域为M ,向区域Ω内随机投一点A ,点A 落在区域M 内的概率为()P M ,若2(),12P M ππ-⎡⎤∈⎢⎥⎣⎦,则实数m 的取值范围是___________. 19.曲线与直线所围成的封闭图形的面积为____________.20.曲线2y x 和曲线y x =________.三、解答题21.已知函数2()ln f x x a x =-(a R ∈),()F x bx =(b R ∈). (1)讨论()f x 的单调性;(2)设2a =,()()()g x f x F x =+,若12,x x (120x x <<)是()g x 的两个零点,且1202x x x +=, 试问曲线()y g x =在点0x 处的切线能否与x 轴平行?请说明理由. 22.如图,函数()sin()f x x ωϕ=+(其中π0,2ωϕ>≤)的图象与坐标轴的三个交点为,,P Q R ,且π(,0)6P ,2π(,0)3Q ,M 为QR 的中点,且M 的纵坐标为34-.(1)求()f x 的解析式;(2)求线段QR 与函数()f x 图象围成的图中阴影部分的面积. 23.梯形ABCD 顶点B 、C 在以AD 为直径的圆上,AD =2米,(1)如图1,若电热丝由AB ,BC ,CD 这三部分组成,在AB ,CD 上每米可辐射1单位热量,在BC 上每米可辐射2单位热量,请设计BC 的长度,使得电热丝辐射的总热量最大,并求总热量的最大值;(2)如图2,若电热丝由弧,AB CD 和弦BC 这三部分组成,在弧,AB CD 上每米可辐射1单位热量,在弦BC 上每米可辐射2单位热量,请设计BC 的长度,使得电热丝辐射的总热量最大.24.一物体沿直线以速度()23v t t =-(t 的单位为:秒,v 的单位为:米/秒)的速度作变速直线运动,求该物体从时刻t=0秒至时刻 t=5秒间运动的路程? 25.已知函数2()ln 1a f x x x +=++,其中a ∈R. (1)当a =4时,求f (x )的极值点;(2)讨论并求出f (x )在其定义域内的单调区间.26.已知函数()xae f x x x=+.(1)若函数()f x 的图象在(1,(1))f 处的切线经过点(0,1)-,求a 的值;(2)是否存在负整数a ,使函数()f x 的极大值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由;(3)设0a >,求证:函数()f x 既有极大值,又有极小值【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】利用定义判断①②中的函数为奇函数,根据奇函数和定积分的性质,判断①②;利用反证法,结合定积分的性质,判断③. 【详解】对①,()f x 的定义域为R1())))()f x x x x f x --===-=-即函数()f x 为奇函数,则0a ∃>使得()0aaf x dx -=⎰对②,()f x 的定义域为R33()cos()cos ()f x x x x x f x -=--=-=-,即函数()f x 为奇函数,则0a ∃>使得()0aaf x dx -=⎰对③,若0a ∃>,使得()0aaf x dx -=⎰成立则()2102aaxx a aa a e x dx e x e e ---⎛⎫+=+- ⎪⎝==⎭⎰,解得0a =,与0a >矛盾,则③不满足 故选:A 【点睛】本题主要考查了定积分的性质以运用,属于中档题.2.A解析:A 【解析】借助定积分的计算公式可算得1121330033|22a x dx x -===⎰,1131220022111|1333b x dx x =-=-=-=⎰,13410011|44c x dx x ===⎰,所以a b c >>,应选答案A 。
(必考题)高中数学高中数学选修2-2第四章《定积分》测试题(答案解析)

一、选择题1.给出下列函数:①()()2ln 1f x x x =+-;②()3cos f x x x =;③()xf x e x =+.0a ∃>使得()0aaf x dx -=⎰的函数是( )A .①②B .①③C .②③D .①②③2.已知71()x x +展开式中,5x 的系数为a ,则62axdx =⎰( )A .10B .11C .12D .133.如图,由曲线21y x =-直线0,2x x ==和x 轴围成的封闭图形的面积是( )A .1B .23C .43D .24.已知函数()2ln 2f x mx x x =+-在定义域内存在单调递减区间,则实数m 的取值范围是( ) A .12m ≥B .12m < C .1m ≥ D .1m < 5.3侧面与底面所成的角是45︒,则该正四棱锥的体积是( ) A .23B .43C .23D .236.22221231111,,,x S x dx S dx S e dx x ===⎰⎰⎰若 ,则s 1,s 2,s 3的大小关系为( )A .s 1<s 2<s 3B .s 2<s 1<s 3C .s 2<s 3<s 1D .s 3<s 2<s 17.曲线3y x =在点()1,1处的切线与x 轴、直线2x =所围成的三角形的面积为( ) A .83B .73C .53D .438.已知1(1)1x f x x e ++=-+,则函数()f x 在点(0,(0))f 处的切线l 与坐标轴围成的三角形的面积为 A .14 B .12C .1D .29.一物体在力(单位:N)的作用下沿与力相同的方向,从x=0处运动到(单位:)处,则力做的功为( ).A .44B .46C .48D .50 10.已知10(31)()0ax x b dx ,,a b ∈R ,则⋅a b 的取值范围为( )A .1,9B .1,1,9C .1,[1,)9D .()1,+∞11.定义{},,min ,,,a ab a b b a b ≤⎧=⎨>⎩设31()min ,f x x x ⎧⎫=⎨⎬⎩⎭,则由函数()f x 的图象与x 轴、直线4x =所围成的封闭图形的面积( ) A .12ln 26+ B .12ln 24+ C .1ln 24+ D .1ln 26+ 12.某几何体的三视图如图所示,则该几何体的体积为( )A .4B .2C .43D .23二、填空题13.若112lim 22n nn n n t t +-→+∞-=+ ,则实数t 的取值范围是_____________.14.曲线,,0x y e y e x ===围成的图形的面积S =______15.曲线()sin 0πy x x =≤≤与x 轴围成的封闭区域的面积为__________. 16.已知函数()323232t f x x x x t =-++在区间()0,∞+上既有极大值又有极小值,则实数t 的取值范围是__________. 17.定积分()12xx e dx +=⎰__________.18.曲线2y x =与直线230x y --=所围成的平面图形的面积为________.19.二项式33()6a x -的展开式的第二项的系数为,则的值为______.20.若,则的值是__________.三、解答题21.已知二次函数()f x 满足(0)0f =,且对任意x 恒有(1)()22f x f x x +-=+. (1)求()f x 的解析式;(2)设函数()()'()g x f x f x λ=-,其中'()f x 为()f x 的导函数.若对任意[0,1]x ∈,函数()y g x =的图象恒在x 轴上方,求实数λ的取值范围.22.为了降低能源消耗,某冷库内部要建造可供使用20年的隔热层,每厘米厚的隔热层建造成本为4万元,又知该冷库每年的能源消耗费用c (单位:万元)与隔热层厚度x (单位:cm )满足关系()(010)25kc x x x =≤≤+,若不建隔热层,每年能源消耗为8万元.设()f x 为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及()f x 的表达式;(2)隔热层修建多厚时,总费用()f x 达到最小?并求最小值. 23.已知函数()32f x x ax =+图像上一点()1,P b 的切线斜率为3-,()()()3261302t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[]1,4x ∈-时,求()f x 的值域;(Ⅲ)当[]1,4x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围. 24.计算曲线223y x x =-+与直线3y x所围图形的面积.25.在(332x x11的展开式中任取一项,设所取项为有理项的概率为α,求1x α⎰d x26.已知()ln f x x x mx =+,2()3g x x ax =-+-(1)若函数()f x 在(1,)+∞上为单调函数,求实数m 的取值范围;(2)若当0m =时,对任意(0,),2()()x f x g x ∈+∞≥恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A【分析】利用定义判断①②中的函数为奇函数,根据奇函数和定积分的性质,判断①②;利用反证法,结合定积分的性质,判断③. 【详解】对①,()f x 的定义域为R1())))()f x x x x f x --===-=-即函数()f x 为奇函数,则0a ∃>使得()0aaf x dx -=⎰对②,()f x 的定义域为R33()cos()cos ()f x x x x x f x -=--=-=-,即函数()f x 为奇函数,则0a ∃>使得()0aaf x dx -=⎰对③,若0a ∃>,使得()0aaf x dx -=⎰成立则()2102aax x a aa a e x dx e x e e ---⎛⎫+=+- ⎪⎝==⎭⎰,解得0a =,与0a >矛盾,则③不满足 故选:A 【点睛】本题主要考查了定积分的性质以运用,属于中档题.2.D解析:D 【分析】利用二项式的通项公式求得7a =,从而求得762xdx ⎰的值.【详解】在71()x x +展开式中,得二项式的通项公式7721771rr r r r r T C x C x x --+⎛⎫== ⎪⎝⎭,令725r -=,解得1r =,所以5x 的系数为177C =,即7a =.所以7267662213axdx xdx x ===⎰⎰.故选:D 【点睛】本题主要考查二项式展开式的通项公式,求展开式中某项的系数,二项式系数的性质,求定积分的值,属于中档题.3.D解析:D 【解析】由曲线21y x =-直线0,2x x ==和x 轴围成的封闭图形的面积是122201(1)(1)S x dx x dx =---⎰⎰31320111281()|()|2133333x x x x -+-=+--+ 4.B解析:B【解析】求导函数,可得()1'220f x mx x x=+->,,函数()2ln 2f x mx x x =+-在定义域内是增函数,所以()'0f x < 成立,即1220(0)mx x x+-<>恒成立,所以21211m x ⎛⎫->-- ⎪⎝⎭,所以21m ->-,所以12m < 时,函数()f x 在定义域内是增函数.故选B .5.B解析:B 【解析】设底面边长为a ,依据题设可得棱锥的高2ah =,底面中心到顶点的距离2d =,由勾股定理可得2221()()22a a +=,解之得2a =,所以正四棱锥的体积21242323V =⨯⨯=,故应选答案B .6.B解析:B 【解析】3221321322217ln |ln 2||,.11133x S x S x S e e e S S S ==<==<==-∴<<选B.考点:此题主要考查定积分、比较大小,考查逻辑推理能力.7.A解析:A 【解析】 试题分析:()'323x x=,所以切线方程为13(1),32y x y x -=-=-,所以切线与x 轴、直线2x =所围成的三角形的面积()2238323S x dx =-=⎰.考点:1、切线方程;2、定积分.【易错点晴】本题易错点有三个,一个是切线方程,错解为看成过()1,1的切线方程;第二个错误是看成与y 轴围成的面积,()()22320328103232333S x dx x dx =--+-=+=⎰⎰;第三个是没有将切线与x 轴的交点求出来,导致没有办法解决题目.切线的常见问题有两种,一种是已知切点求切线方程;另一种是已知切线过一点求切线方程,两种题目都需要我们认真掌握.8.A解析:A 【解析】试题分析:由1(1)1x f x x e ++=-+知()2x f x x e =-+,则()1(0)2x f x e f ''=+⇒=,而(0)1f =-,即切点坐标为()0,1-,切线斜率(0=2k f '=),则切线()():12021l y x y x --=-⇒=-,切线l 与坐标轴的交点分别为1,02⎛⎫⎪⎝⎭和()0,1-,则切线l 与坐标轴围成的三角形的面积为1111224S =⋅⋅-= 考点:函数在某点处的切线9.B解析:B 【解析】由定积分的物理意义,得,即力做的功为46.考点:定积分的物理意义.10.C解析:C 【分析】本题可以先根据定积分的运算法则建立a 与b 的等量关系,然后设abt ,则312t a b,再然后根据构造法得出a 、b 为方程23102t xx t 的根,最后根据判别式即可得出结果. 【详解】112(31)()(33)ax x b dx ax abx x b dx 1223331()02222abx x ab ax bx a b =+++=+++=,即3210ab a b,设ab t ,则312t a b,a 、b 为方程23102t xx t 的根,有231402t t ,解得19t 或1t ≥, 所以1,[1,)9a b ,故选C .【点睛】本题考查定积分的运算法则以及构造法,能否根据被积函数的解析式得出原函数的解析式是解决本题的关键,考查韦达定理的使用,是中档题.11.B解析:B 【解析】由31x x=,得1x =±,则图象的交点为(1,1)--,(1,1) ∵()31min ,f x x x ⎧⎫=⎨⎬⎩⎭∴根据对称性可得函数()f x 的图象与x 轴、直线4x =所围成的封闭图形的面积为143401141111|ln |ln 42ln 201444x dx dx x x x +=+=+=+⎰⎰ 故选B12.D解析:D 【分析】根据三视图可得到该几何体的直观图,进而可求出该几何体的体积. 【详解】根据三视图可知该几何体为四棱锥E ABCD -,四边形ABCD 是边长为1的正方形,BE ⊥平面ABCD ,2BE =,则四棱锥E ABCD -的体积为1233ABCD V S BE =⋅=. 故选D.【点睛】本题考查了三视图,考查了四锥体的体积的计算,考查了学生的空间想象能力,属于基础题.二、填空题13.【分析】利用数列的极限的运算法则转化求解即可【详解】解:当|t|≥2时可得可得t =﹣2当|t|<2时可得:综上可得:实数t 的取值范围是:﹣22)故答案为﹣22)【点睛】本题考查数列的极限的运算法则的 解析:[)2,2-【分析】利用数列的极限的运算法则,转化求解即可. 【详解】解:当|t |≥2时,n+1nn n-1n 2-t lim =22+t→∞,可得2n 22()11t lim 2121n t t t→∞⨯--==⎛⎫+ ⎪⎝⎭ ,可得t =﹣2. 当|t |<2时,n+1nn n-1n 2-t lim =22+t→∞可得: 22()2lim 211?()2n n tt t →∞+=+ , 综上可得:实数t 的取值范围是:[﹣2,2). 故答案为[﹣2,2). 【点睛】本题考查数列的极限的运算法则的应用,考查计算能力.14.【解析】【分析】先求出两曲线的交点再由面积与定积分的关系利用定积分即可求解【详解】由题意令解得交点坐标为所以曲线围成的图形的面积【点睛】本题主要考查了利用定积分求解曲边形的面积其中解答中根据题设中的 解析:1【解析】 【分析】先求出两曲线,x y e y e ==的交点,再由面积与定积分的关系,利用定积分即可求解. 【详解】由题意,令x y ey e=⎧⎨=⎩,解得交点坐标为(1,)e , 所以曲线,,0xy e y e x ===围成的图形的面积110()()|1x xS e e dx ex e =-=-=⎰.【点睛】本题主要考查了利用定积分求解曲边形的面积,其中解答中根据题设中的条件建立面积的积分表达式,利用定积分的计算准确求解是解答的关键,着重考查了运算与求解能力,属于基础题.15.2【解析】与轴所围成的封闭区域的面积故答案为2解析:2 【解析】sin (0π)y x x =≤≤与x 轴所围成的封闭区域的面积ππsin d cos cos πcos020S x x x==-=-+=⎰,故答案为2.16.【解析】由题意可得在有两个不等根即在有两个不等根所以解得填解析:90,8⎛⎫⎪⎝⎭【解析】2()32f x tx x -'=+,由题意可得()0f x '=在()0,+∞有两个不等根,即2320tx x -+=在()0,+∞有两个不等根,所以302980tt ⎧>⎪⎨⎪∆=->⎩,解得908t <<,填90,8⎛⎫⎪⎝⎭ 17.e 【解析】点睛:1求曲边图形面积的方法与步骤(1)画图并将图形分割为若干个曲边梯形;(2)对每个曲边梯形确定其存在的范围从而确定积分的上下限;(3)确定被积函数;(4)求出各曲边梯形的面积和即各积分解析:e 【解析】1212120(2)()|(1)(0)x x x e dx x e e e e +=+=+-+=⎰. 点睛:1.求曲边图形面积的方法与步骤 (1)画图,并将图形分割为若干个曲边梯形;(2)对每个曲边梯形确定其存在的范围,从而确定积分的上、下限; (3)确定被积函数;(4)求出各曲边梯形的面积和,即各积分的绝对值的和.2.利用定积分求曲边图形面积时,一定要找准积分上限、下限及被积函数.当图形的边界不同时,要分不同情况讨论.18.【解析】试题分析:联立交点所以围成的图形为直线的左上方和曲线所围成的区域面积为考点:1定积分的应用---求曲边梯形的面积;2微积分基本定理【方法点晴】求曲边梯形的步骤:①画出草图在直角坐标系中画出直 解析:323【解析】 试题分析:联立2{230y x x y =--=,交点(1,1)A -,(9,3)B ,所以围成的图形为直线的左上方和曲线所围成的区域,面积为322332111132(23)(3)|(399)(13)333S y y dy y y y --=+-=+-=+---+=⎰.考点:1.定积分的应用---求曲边梯形的面积;2.微积分基本定理.【方法点晴】求曲边梯形的步骤:①画出草图,在直角坐标系中画出直线或曲线的大致图象;②联立方程,求出交点坐标,确定积分的上、下限;③把曲边梯形的面积表示为若干个定积分的和;④计算定积分,写出答案.由于本题中,若对x 进行定积分,2,y x y x ==±,有些麻烦,这里就转化为对y 进行定积分,要容易很多.19.或【解析】试题分析:展开后第二项系数为时时考点:1定积分;2二项式定理解析:3或73【解析】试题分析:展开后第二项系数为233122a a -=-∴=±,1a =时3121|33x -==,1a =-时 31217|33x --== 考点:1.定积分;2.二项式定理20.2【解析】试题分析:∵易得故答案为考点:定积分的计算解析:2 【解析】 试题分析:∵,易得,故答案为.考点:定积分的计算.三、解答题21.(1)()2f x x x =+;(2){|0}λλ<【解析】分析:(1)设2()f x ax bx c =++,代入已知,由恒等式知识可求得,,a b c ; (2)由(1)得()g x ,题意说明()0<g x 在[0,1]x ∈上恒成立,由分离参数法得221x x x λ+<+,问题转化为求22([0,1])21x x x x +∈+的最小值. 详解:(1)设()()20f x ax bx c a =++≠,()00f =,0c ∴=. 于是()()()()22111f x f x a x b x ax bx +-=+++--222ax a b x =++=+.解得1a =,1b =.所以()2f x x x =+. (2)由已知得()()221g x x x x λ=+-+ 0>在[]0,1x ∈上恒成立. 即221x x x λ+<+在[]0,1x ∈上恒成立. 令()221x x h x x +=+,[]0,1x ∈ 可得()()()()()22222212221'02121x x x x x h x x x +-+++==>++. ∴函数()h x 在[]0,1单调递增,∴ ()()min 00h x h ==.∴ λ的取值范围是{|0}λλ<.点睛:本题考查用导数研究不等式恒成立问题,不等式恒成立问题通常伴随着考查转化与化归思想,例如常用分离参数法化为()()g h x λ≤,这样只要求得()h x 的最小值min ()h x ,然后再解min ()()g h x λ≤,即得λ范围.22.(1)800()4(010)25f x x x x =+≤≤+;(2)当隔热层修建7.5cm 厚时,总费用最小,最小费用70万元.【解析】试题分析:(I )根据c (0)=8计算k ,从而得出f (x )的解析式;(II )利用基本不等式得出f (x )的最小值及等号成立的条件.试题(1)当0x =时,()085k c ==,∴40k =. 由题意知,()4020425f x x x ⨯=++,即()()800401025f x x x x =+≤≤+. (2)∵()()800401025f x x x x =+≤≤+∴()()21600'425f x x -=++,令()'0f x =,即()242516000x +-=, ∴7.5x =. 当[)0,7.5x ∈时,()'0f x <,当(]7.5,10x ∈时,()'0f x >,当7.5x =时,()f x 取得最小值. ()min 80047.57027.55f x =⨯+=⨯+. 所以,当隔热层修建7.5cm 厚时,总费用最小,最小费用70万元. 23.(Ⅰ)3a=-,2b =-;(Ⅱ)[]4,16-;(Ⅲ)124t ≤≤ 【解析】试题分析:(Ⅰ)由导函数研究原函数切线的方法得到关于实数a,b 的方程组,求解方程组可得3a =-,2b =-;(Ⅱ)将不等式恒成立的问题分类讨论可得实数t的取值范围是124t ≤≤+ 试题(Ⅰ)()232f x x ax '=+ ∴()1323f a =+=-' ∴3a =- ∴()323f x x x =-因为()113f b =-= ∴2b =- (Ⅱ)由(Ⅰ)得()323f x x x =- ∴()236f x x x '=- 令()0f x '= 解得120,2x x ==()()()()14,00,24,416f f f f -=-==-=∴()f x 的值域是[]4,16- (Ⅲ)因为[]1,4x ∈时,不等式()()f x g x ≤恒成立∴()22160tx t x -++≥在[]1,4上恒成立,令()()2216h x tx t x =-++ 对称轴为1t x t +=因为0t >∴11t x t+=> ∴()21441240t t t t +⎧<⎪⎨⎪∆=+-≤⎩或()()144168160t t h t t +⎧≥⎪⎨⎪=-++≥⎩ 解得:t的取值范围为124t ≤≤+ 24.92. 【解析】【详解】试题分析:利用定积分计算曲线所围成面积,先画出图象,再找到图象交点的横坐标,然后写出定积分式子,注意被积函数为上方的图象对应的函数减图象在下方的函数. 试题由23{23y x y x x =+=-+解得03x x ==及.从而所求图形的面积332200[(3)(23)](3)S x x x dx x x dx =+--+=-+⎰⎰3230139=|322x x ⎛⎫-+= ⎪⎝⎭. 考点:定积分. 25.67 【分析】 先求()332x x -11展开式的通项公式,其中有2项有理项,确定概率1α6=,根据定积分的计算法则,先求出被积函数x α的原函数,再分别将积分上下限代入求差,即可求出结果.【详解】解:T r +1=11r C ·(3x )11-r ·()32x -r =11r C ·311-r ·(-2)r ·,r =0,1,…,11,共12项其中只有第4项和第10项是有理项,故所求概率为21α126==. 111716600066=|=77x dx x dx x α∴=⎰⎰ 【点睛】本题考查利用二项展开式的通项公式解决二项式展开式的特定项问题、考查古典概型的概率公式,考查定积分的计算.解题关键是熟练应用二项式展开式的通项公式,找出符合条件的项数.26.(1)1m ≤-;(2)4a ≤.【解析】试题分析:(1)求导,利用导数对t 的范围进行分类讨论求最值.(2)本小题实质是22ln 3x x x ax ≥-+-在()0,x ∈+∞上恒成立,进一步转化为3 2ln a x x x ≤++在()0,x ∈+∞上恒成立,然后构造函数()32ln (0)h x x x x x=++>利用导数研究h(x)的最小值即可.注意不要忽略x>0的条件,导致求导数的方程时产生增根. 试题(1)()f x 定义域为()0,+∞,()()ln 1f x x m '=++,因为()f x 在()1,+∞上为单调函数,则方程()ln 10x m ++=在()1,+∞上无实根. 故10m +≥,则1m ≤-.(2)22ln 3x x x ax ≥-+-,则32ln a x x x ≤++,对一切()0,x ∈+∞恒成立. 设()32ln (0)h x x x x x =++>,则()()()231'x x h x x +-=, 当()()()0,1,'0,x h x h x ∈<单调递减,当()()()1,,'0,x h x h x ∈+∞>单调递增.()h x 在()0,+∞上,有唯一极小值()1h ,即为最小值.所以()()min 14h x h ==,因为对任意()()()0,,2x f x g x ∈+∞≥恒成成立,故4a ≤.点睛:利用导数解决不等式恒成立问题的“两种”常用方法(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,f(x)≥a 恒成立,只需f(x)min≥a 即可;f(x)≤a 恒成立,只需f(x)max≤a 即可.(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解.。
(整理)定积分及其应用测试题.

第五章 定积分及其应用一、填空题1.由[],a b 上连续曲线()y f x =,直线(),x a x b a b ==<和x 轴围成的图形的面积4.利用定积分的几何意义求10d x x =⎰ 5.积分1213lnd x x x ⎰值的符号是6.定积分()4520sinsin d x x x π-⎰值的符号是8.积分413I ln d x x =⎰与4223I ln d x x =⎰的大小关系为9.区间[][],,c d a b ⊂,且()0f x >,则()1I d b af x x =⎰与()2I d dcf x x =⎰的大小关系为10.()f x 在[],a b 上连续,则()d baf x x =⎰ ()d abf x x ⎰11.若在区间[],a b 上,()0f x ≥,则()d baf x x ⎰ 012.定积分中值定理中设()f x 在[],a b 上连续,则至少存在一点(),a b ξ∈,使得()f ξ=13.设()20,0x F x t x =>⎰,则()F x '=15.设()()()33sin d ,x F x t t x ϕϕ=⎰可导,则()F x '=16.0limx t x→=⎰18.设()()01d x f x t t t =-⎰,则()f x 的单调减少的区间是 19.函数()203d 1x tf x t t t =-+⎰在区间[]0,1上的最大值是 ,最小值是20.设()3131sin d x f x t t +=⎰,则()f x '=21.设()F x 是连续函数()f x 在区间[],a b 上的任意一个原函数,则()d b af x x =⎰ 22.1023d x x x ⋅=⎰23.sin 22cos d x xe x ππ-=⎰24.设()f x '在[]1,3上连续,则()()321d1f x x f x '=+⎰25.2x ππ=⎰26.20cos d x x π=⎰27.2101d 1x x e x e -=-⎰28.20sin d x x π=⎰29.21e =⎰30.23545sin d 1x xx x -=+⎰ 31.设()f x 在[],a a -上连续,则()()sin d aax f x f x x -+-=⎡⎤⎣⎦⎰ 32.设()21,0,0x x f x x x +<⎧=⎨≥⎩,则()11d f x x -=⎰33.设()[]cos ,,02,0,1x x x f x e x π⎧⎡⎫∈-⎪⎪⎢=⎣⎭⎨⎪∈⎩,计算()12d f x x π-=⎰34.若广义积分11d q x x +∞⎰发散,则必有q 35.若广义积分101d p x x ⎰收敛,则必有p36.反常积分2d x xe x +∞-=⎰37.1x =⎰38.曲线22,y x y x ==所围成的图形的面积为39.曲线1sin 2,1,0,22y x y x x π====所围成的图形的面积为二、单项选择题1.函数()[]0,,f x x a b ≥∈且连续,则()y f x =,x 轴,x a =与x b =围成图形的面积s =( ) A .()d baf x x ⎰ B .()d baf x x⎰C .()d baf x x ⎰D .()()()2f b f a b a +-⎡⎤⎣⎦2.413I ln d x x =⎰,4223I ln d x x =⎰,则1I 与2I 大小关系为( )A .≥B .≤C .>D .< 3.()f x 连续,()0I d s t t f tx x =⎰,则下列结论正确的是( )A .I 是s 和t 的函数B .I 是s 的函数C .I 是t 的函数D .I 是常数4.()f x 连续且满足()()2,0f x f a x a =-≠,c 为任意正数,则()d ccf a x x --=⎰( )A .()022d c f a x x -⎰ B .()22d c cf a x x --⎰ C .()02d cf a x x -⎰ D .05.()f x 连续,()()d xe xF x f t t -=⎰,则()F x '=( )A .()()x x e f e f x ----B .()()x x e f e f x ---+C .()()x x e f e f x ---D .()()x x e f e f x --+6.设()2I sin d x xx t t =⎰,则()I x '=( )A .2cos cos x x- B .22cos cos x x x- C .22sin sin x x x -D .22sin sin x x x + 7.当0x →时,()sin 20sin d x f x t t =⎰与()34g x x x =+比较是( )A .高阶无穷小B .低阶无穷小C .同阶但非等价无穷小D .等价无穷小8.()(),f x x φ在点0x =的某邻域内连续,且当0x →时,()f x 是()x φ的高阶无穷小,则0x →时,()0sin d xf t t t ⎰是()0d xt t t φ⎰( )A .低阶无穷小B .高阶无穷小C .同阶但不等价无穷小D .等价无穷小9.()f x 为连续的奇函数,又()()0d xF x f t t =⎰,则()F x -=( )A .()F xB .()F x -C .0D .非零常数 10.设()()2d 2xx F x f t t x =-⎰,f 连续,则()2lim x F x →=( ) A .0 B .2 C .()22f D .()2f 11.设()f x 连续,0x >,且()()221d 1x f t t x x =+⎰,则()2f =( )A .4 B.12 C.12+D.12-12.设()f x ''在[],a b 上连续,且()(),f a b f b a ''==,则()()d baf x f x x '''=⎰( )A .a b -B .()12a b - C .22a b - D .()2212a b - 13.若()()2021d ,0,0x t e tx f x x a x ⎧-⎪≠=⎨⎪=⎩⎰,且已知()f x 在0x =点连续,则必有( )C .0a =D .1a =-A .t⎰B .et ⎰C .1et ⎰D .1et ⎰15.()f x 在给定区间连续,则()320d ax f x x =⎰( )A .()01d 2axf x x⎰ B .()201d 2a xf x x ⎰C .()22d a xf x x ⎰D .()0d axf x x ⎰16.积分1ln d exx x⎰的值是( ) A .2122e - B .21122e - C .12 D .1-17.若()4d 2xx f t t =⎰,则40d f x =⎰( )A .16B .8C .4D .218.积分1x -⎰的值是( )A . 0B .1C .12D.2 19.曲线1,,2y y x x x===所围平面图形的面积为( )A .211d x x x ⎛⎫- ⎪⎝⎭⎰B .211d x x x ⎛⎫- ⎪⎝⎭⎰C .()221112d 2d y y y y ⎛⎫-+- ⎪⎝⎭⎰⎰ D .()221112d 2d x x x x ⎛⎫-+- ⎪⎝⎭⎰⎰20.曲线x y e =与其过原点的切线及y 轴所围平面图形的面积为( )A .()10d xe ex x-⎰B .()1ln ln d ey y y y-⎰C .()1d exx exe x -⎰D .()10ln ln d y y y y -⎰21.在区间[],a b 上()()()0,0,0f x f x f x '''><>,令()()()()()()1231d ,,2ba s f x x s fb b a s f b f a b a ==-=+-⎡⎤⎣⎦⎰,则有( ) A .123s s s << B .213s s s << C .312s s s << D .231s s s << 22.曲线cos ,22y x x ππ=-≤≤与x 轴围成的平面图形绕x 轴旋转一周而成的旋转体体积等于( )A .2π B .π C .212π D .2π 23.曲边梯形()0,f x y a x b ≤≤≤≤,绕x 轴旋转而成的旋转体体积为( )A .()2d baxf x x π-⎰ B .()2d baf x xπ⎰ C .()d baxf x x -⎰D .()2d baf x x ⎰24.曲线()2ln 1y x =-上满足102x ≤≤的一段弧的弧长为( )A .12221d 1x x x +-⎰B .x C .xD .x25. 一无限长直线放在正实轴上,其线密度x e ρ-=,则其质量M =( ) A .e B .∞ C .1 D.226.一变力212F x=把一物体从0.9x =推到 1.1x =,它所做的功W =( )A . 1.120.912d x x ⎰B .0.22012d x x ⎰C . 1.220.912d x x x ⋅⎰D .0.22012d x x x ⋅⎰三、证明题1.设()f x 是连续函数,证明:()()()10d d ba f x xb a f a b a x x =-+-⎡⎤⎣⎦⎰⎰ . 2.设()f x 是连续函数,证明:()()232001d d ,02a a x f x x xf x x a =>⎰⎰.3.设()f x 是连续函数,证明:()()20sin d sin d f x x f x x ππππ=⎰⎰.4.证明不等式()52441sin d 2x x ππππ≤+≤⎰.四、计算题1.()1001lim 1sin 2d xu x u u x →+⎰2.2001limarctan d xx u u x →⎰3.2001lim cos d xx u u x →⎰4.求21sin d xt t ⎰的导数.5.()()ln 1d xxf x t t φ=⎰,()t φ为连续函数,求()f x '.6.求函数()()()212d xu f x u u e u -=--⎰的极值点.7.计算()2d xe x x -⎰8.计算(2411x ⎰ 9.计算()12032d x x x +-⎰11.计算94x ⎰14.计算ln 0x ⎰15.计算21211sin d x x xππ⎰ 16.计算16x ⎰17.计算31e x ⎰18.计算()251d x x -⎰19.计算1d x xe x -⎰20.计算()113d x x x -⎰21.计算40sin d x x x π⎰22.计算()10ln 1d x x +⎰23.计算)221ln d e x x ⎰24.计算2222d x xe x --⎰25.计算221d 1x x +∞-⎰26.计算1x ⎰27.计算1x ⎰28.求曲线22235,1y x x y x =+-=-围成的平面图形的面积. 29.求曲线231,53y x y x =-=-围成的平面图形的面积.30.求曲线6,7xy x y =+=围成的平面图形的面积. 31.求曲线ln ,0,y x y x e ===围成的平面图形的面积. 32.求曲线,,0x y e y e x ===围成的平面图形的面积.33.求曲线22235,1x y y x y =+-=-围成的平面图形的面积.34.求曲线()22,0,0,0y px y x a p a ===>>围成的平面图形绕x 轴旋转而形成的旋转体的体积.35.求曲线2xy a =,0y =,x a =,()20x a a =>围成的平面图形绕x 轴旋转而形成的旋转体的体积.36.求曲线2y x =,2x y =围成的平面图形绕y 轴旋转而形成的旋转体的体积. 37.分别求曲线3y x =,0y =,2x =围成的平面图形绕x 轴,y 轴旋转而成的旋转体的体积.38.求曲线3223y x =上相应于x 从a 到b 的一段弧的长度.39.求()()sin 1cos x a y a θθθ=-⎧⎪⎨=-⎪⎩的一拱()02θπ≤≤的长度.40.求阿基米德螺线(0)r a a θ=>相应于θ从0到2π的一段弧的弧长.41.圆柱形的水桶高为5m ,底圆半径为3m ,桶内盛满了水,试问要把桶内的水全部吸出需做多少功?。
(常考题)北师大版高中数学高中数学选修2-2第四章《定积分》测试(答案解析)(2)

一、选择题1.已知函数2(1),10()01x x f x x ⎧+-≤≤⎪=<≤则11()d f x x -=⎰( ) A .3812π- B .4312π+ C .44π+ D .4312π-+ 2.计算211x dx x ⎛⎫+ ⎪⎝⎭⎰的值为( )A .34B .3ln 22+ C .55ln 22+ D .3ln 2+3.0xdx +=( )A .2π B .12π+ C .4π D .π4.若函数()31f x x ax x =++在1,2⎛⎫+∞ ⎪⎝⎭是增函数,则a 的取值范围是( ) A .1,2⎛⎫-+∞ ⎪⎝⎭ B .1,2⎡⎫-+∞⎪⎢⎣⎭ C .13,4⎛⎫+∞ ⎪⎝⎭D .13,4⎡⎫+∞⎪⎢⎣⎭ 5.设函数()f x 是R 上的奇函数, ()()f x f x π+=-,当02x π≤≤时,()cos 1f x x =-,则22x ππ-≤≤时, ()f x 的图象与x 轴所围成图形的面积为( )A .48π-B .24π-C .2π-D .36π-6.设()2012a x dx =-⎰,则二项式6212a x x ⎛⎫+ ⎪⎝⎭的常数项是( )A .240B .240-C .60-D .607.曲线22y x x =-与直线11x x =-=,以及x 轴所围图形的面积为( ) A .2 B .83 C .43 D .238.由直线,1y x y x ==-+,及x轴所围成平面图形的面积为 ( ) A .()101y y dy ⎡⎤--⎣⎦⎰B .()1201x x dx ⎡⎤-+-⎣⎦⎰C .()121y y dy ⎡⎤--⎣⎦⎰D .()101x x dx ⎡⎤--+⎣⎦⎰9.已知幂函数a y x =图像的一部分如下图,且过点(2,4)P ,则图中阴影部分的面积等于( )A .163B .83C .43D .2310.设曲线e x y x =-及直线0y =所围成的封闭图形为区域D ,不等式组1102x y -≤≤⎧⎨≤≤⎩所确定的区域为E ,在区域E 内随机取一点,则该点落在区域D 内的概率为A .2e 2e 14e --B .2e 2e 4e -C .2e e 14e --D .2e 14e-11.定义{},,min ,,,a ab a b b a b ≤⎧=⎨>⎩设31()min ,f x x x ⎧⎫=⎨⎬⎩⎭,则由函数()f x 的图象与x 轴、直线4x =所围成的封闭图形的面积( )A .12ln 26+ B .12ln 24+ C .1ln 24+ D .1ln 26+ 12.已知11e m dx x=⎰,函数()f x 的导数()()()f x a x m x a '=++,若()f x 在x a =-处取得极大值,则a 的取值范围是( ) A .1a < B .10a -<< C .1a >或0a <D .01a <<或0a <二、填空题13.02114edx x dx x-+-=⎰⎰______________.14.若2211S x dx =⎰,2211S dx x =⎰,231x S e dx =⎰,则1S ,2S ,3S 的大小关系为___.15.设函数2y nx n =-+和1122y x n =-+(*n N ∈,2n ≥)的图像与两坐标轴围成的封闭图形的面积为n S ,则lim n n S →∞=________ 16.()12012x x dx -=⎰__________.17.计算()32sin x x dx π+⎰=_________________.18.已知函数()xxf x e =,在下列命题中,其中正确命题的序号是_________. (1)曲线()y f x =必存在一条与x 轴平行的切线; (2)函数()y f x =有且仅有一个极大值,没有极小值;(3)若方程()0f x a -=有两个不同的实根,则a 的取值范围是1()e-∞,; (4)对任意的x ∈R ,不等式1()2f x <恒成立; (5)若1(0,]2a e∈,则12,x x R +∃∈,可以使不等式()f x a ≥的解集恰为12[,]x x ; 19.二项式33()6a x -的展开式的第二项的系数为,则的值为______.20.π4cos xdx =⎰______.三、解答题21.已知函数31()ln 2f x x ax x =--()a R ∈.(1)若()f x 在(1,2)上存在极值,求(1)f 的取值范围; (2)当0x >时,()0f x <恒成立,比较a e 与232a e+的大小. 22.已知函数()()2log 3a f x x =-++(0a >且1a ≠),()112x g x -⎛⎫= ⎪⎝⎭.(1)函数()y f x =的图象恒过定点A ,求A 点坐标;(2)若函数()()()F x f x g x =-的图象过点()1,5--,证明:方程()0F x =在()1,5x ∈上有唯一解.23.如图计算由直线y =6-x ,曲线8y x =以及x 轴所围图形的面积.24.已知函数()121f x x x a =+--+ (1)当0a =时,解不等式()0f x ≥;(2)若二次函数2814y x x =-+-的图象在函数()y f x = 的图象下方,求a 的取值范围·25.已知函数()x ae f x x x=+.(1)若函数()f x 的图象在(1,(1))f 处的切线经过点(0,1)-,求a 的值;(2)是否存在负整数a ,使函数()f x 的极大值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由;(3)设0a >,求证:函数()f x 既有极大值,又有极小值 26.已知()ln f x x x mx =+,2()3g x x ax =-+-(1)若函数()f x 在(1,)+∞上为单调函数,求实数m 的取值范围;(2)若当0m =时,对任意(0,),2()()x f x g x ∈+∞≥恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据积分的性质将所求积分化为()0211x dx -++⎰⎰,根据微积分基本定理和定积分的求法可求得结果. 【详解】()()22321100011112100101111333x dx x x dx x x x --+=++=++=++-++=---⎰⎰,0⎰表示以原点为圆心,1为半径的圆在第一象限中的部分的面积,4π∴=⎰,()()121114313412f x dx x dx ππ--+∴=++=+=⎰⎰⎰.故选:B . 【点睛】本题考查积分的求解问题,涉及到积分的性质、微积分基本定理和定积分的求解等知识,属于基础题.2.B解析:B 【分析】根据牛顿莱布尼茨公式,即可代值求解. 【详解】根据牛顿莱布尼茨公式211x dx x ⎛⎫+ ⎪⎝⎭⎰2211()2x lnx =+1142122ln ln ⎛⎫=⨯+-+ ⎪⎝⎭ 322ln =+. 故选:B. 【点睛】本题考查牛顿莱布尼茨公式的直接应用,属基础题.3.A解析:A 【分析】分别根据积分的运算法则和几何意义求得两个积分的值,进而得到结果. 【详解】22200112xdx x ==⎰ 2224x dx -⎰表示下图所示的阴影部分的面积S2OA =,2OC =4AOC π∴∠=12221422S ππ∴=⨯-=- 2220241122x dx ππ+-∴=+-=⎰故选:A 【点睛】本题考查积分的求解问题,涉及到积分的运算法则和几何意义的应用.4.D【解析】由题意得()22130f x x a x =+-≥'在1,2⎛⎫+∞ ⎪⎝⎭上恒成立,即22max 13a x x ⎛⎫≥- ⎪⎝⎭,因为2213y x x =-在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,所以2213131334,444y x a x =-<-=≥,选D. 点睛:已知函数单调性求参数值或取值范围的一般方法:(1)利用导数结合参数讨论函数单调区间取法,根据单调区间与定义区间包含关系,确定参数值或取值范围;(2)利用导数转化为导函数非正或非负恒成立问题,结合变量分离转化为不含参数的函数,利用导数求新函数最值得参数值或取值范围.5.A解析:A【解析】由题设()()()()2f x f x f x f x ππ+=-⇒+=,则函数()y f x =是周期为2π的奇函数,画出函数()[],0,2y f x x π=∈的图像,结合函数的图像可知:只要求出该函数(),0,2y f x x π⎡⎤=∈⎢⎥⎣⎦的图像与x 轴所围成的面积即可。
高二数学-导数定积分

高二数学 导数、定积分测试题(考试时间:100分钟,满分120分)班级 姓名 学号 得分 一、选择题(共10小题,每小题4分,共40分)1. 已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为 ( ) A.1B.2C.-1D. 02. 已知函数()f x 在1x =处的导数为3,则()f x 的解析式可能为 ( ) A .(x-1)3+3(x-1) B .2(x-1)2 C .2(x-1) D .x-13. 已知函数()f x 在1x =处的导数为1,则(1)(1)3limx f x f x x→--+= ( )A .3B .23-C . 13D .32-4. 函数y =(2x +1)3在x =0处的导数是 ( ) A.0 B.1 C.3 D.65.函数)0,4(2cos π在点x y =处的切线方程是 ( )A .024=++πy xB .024=+-πy xC .024=--πy xD .024=-+πy x6.曲线3cos (0)2y x x π=≤≤与坐标轴围成的面积是 ( ) A.4 B. 52C.3D.27.一质点做直线运动,由始点起经过ts 后的距离为s=41t 4-4t 3+16t 2,则速度为零的时刻是 ( ) A.4s 末 B.8s 末 C.0s 与8s 末 D.0s,4s,8s 末8.函数313y x x =+- 有 ( ) A.极小值-1,极大值1 B. 极小值-2,极大值3 C. 极小值-1,极大值3 D. 极小值-2,极大值2 9. 已知自由下落物体的速度为V=gt ,则物体从t=0到t 0所走过的路程( )A . 2012gtB .20gtC . 2013gtD .2014gt10.如果10N 的力能使弹簧压缩10cm ,为在弹性限度内将弹簧拉长6cm ,则力所做的功为 ( ) A .0.28J B .0.12J C .0.26J D .0.18J二、填空题(共5小题,每小题5分,共25分)11.函数32y x x x =--的单调区间为_________________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定积分测试题及答案
班级: 姓名: 分数:
一、选择题:(每小题5分)
1.0=⎰( )
A.0
B.1
C.π D 4π
2(2010·山东日照模考)a =⎠⎛02x d x ,b =⎠⎛02e x d x ,c =⎠⎛02sin x d x ,则a 、b 、c 的大小关系是( )
A .a <c <b
B .a <b <c
C .c <b <a
D .c <a <b
3.(2010·山东理,7)由曲线y =x 2,y =x 3围成的封闭图形面积为( )
A.112
B.14
C.13
D.712
4.由三条直线x =0、x =2、y =0和曲线y =x 3所围成的图形的面积为( )
A .4 B.43 C.185 D .6
5.(2010·湖南师大附中)设点P 在曲线y =x 2上从原点到A (2,4)移动,如果把由直线OP ,直线y =x 2及直线x =2所围成的面积分别记作S 1,S 2.如图所示,当S 1=S 2时,点P 的坐标是( )
A.⎝ ⎛⎭⎪⎫43,169
B.⎝ ⎛⎭⎪⎫45,169
C.⎝ ⎛⎭⎪⎫43,157
D.⎝ ⎛⎭
⎪⎫45,137 6.(2010·湖南省考试院调研)1
-1⎰ (sin x +1)d x 的值为( )
A .0
B .2
C .2+2cos1
D .2-2cos1
7.曲线y =cos x (0≤x ≤2π)与直线y =1所围成的图形面积是( )
A .2π
B .3π C.3π2 D .π
8.函数F (x )=⎠⎛0
x t (t -4)d t 在[-1,5]上( ) A .有最大值0,无最小值 B .有最大值0和最小值-323 C .有最小值-323,无最大值 D .既无最大值也无最小值 9.已知等差数列{a n }的前n 项和S n =2n 2+n ,函数f (x )=⎠⎛1
x 1t d t ,若f (x )<a 3,则x 的取值范围是( )
A.⎝ ⎛⎭
⎪⎫36,+∞ B .(0,e 21) C .(e -11,e ) D .(0,e 11) 10.(2010·福建厦门一中)如图所示,在一个长为π,宽为2的矩形OABC 内,曲线y =sin x (0≤x ≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( )
A.1π
B.2π
C.3π
D.π4
11.(2010·吉林质检)函数f (x )=⎩⎨⎧ x +2(-2≤x <0)
2cos x (0≤x ≤π2)
的图象与x 轴所围
成的图形面积S 为( )
A.32 B .1 C .4 D.12 12.(2010·吉林省调研)已知正方形四个顶点分别为O (0,0),A (1,0),B (1,1),C (0,1),曲线y =x 2(x ≥0)与x 轴,直线x =1
构成区域M ,现将一个质点随机地投入正方形中,
则质点落在区域M 内的概率是( )
A.12
B.14
C.13
D.25
二、填空题:(每小题5分)
13. 0π⎰sin x d x =______________
14.物体在力F(x)=3x+4的作用下,沿着与F 相同的方向,从x=0处运动到x=4处,力F 所做的功为______________ 15.211()x x dx +=⎰
______________ 16.10()x x e e dx -+=⎰ ______________
17.(2010·芜湖十二中)已知函数f (x )=3x 2+2x +1,若1-1⎰f (x )d x =2f (a )
成立,则a =________.
18.(2010·安徽合肥质检)抛物线y 2=ax (a >0)与直线x =1围成的封闭
图形的面积为43,若直线l 与抛物线相切且平行于直线2x -y +6=0,
则l 的方程为______.
19.(2010·福建福州市)已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围成区域(图
中阴影部分)的面积为112,则a 的值为________.
20.如图所示,在区间[0,1]上给定曲线y =x 2,试在此区间内确定t 的值,使图中阴影部分的面积S 1+S 2最小为________.
答案
1.D 2D 3A 4A 5A 6B 7A 8B 9D 10 A 11C 12 C
13.2 14.40 153
2+ln 2 16.e-1e 17.-1或13 18.16x-8y+1=0
19.-1 20.1
4。