定积分及其应用练习 带详细答案

合集下载

不定积分+定积分及其应用习题附带答案

不定积分+定积分及其应用习题附带答案

1.设是在上的一个原函数,且为奇函数,则是 ( )()F x ()f x (),-∞+∞()F x ()f x A .偶函数 B . 奇函数C . 非奇非偶函数 D .不能确定2.已知的一个原函数为,的一个原函数为,则的一个原函数()f x cos x ()g x 2x ()f g x ⎡⎤⎣⎦为 ( )A .B . 2x 2cos x C . D .2cos x cos x3.设为连续导函数,则下列命题正确的是 ( )()f x A . ()()1222f x dx f x c '=+⎰B .()()22f x dx f x c'=+⎰C . ()()()222f x dx f x ''=⎰D .()()2f x dx f x c'=+⎰4.设且()22cos sin f x x '= ,则=( )()00f =()f x A . B . 212x x -212x -C . D .1x -313x x-5.设是的一个原函数,则2xe-()f x ( )()02()limx f x x f x x∆→-∆-=∆A . B .22xe -28xe-C . D .22xe--24xe-6.设,则=( )()xf x e -=()ln f x dx x'⎰A .B . 1x-c +ln x c -+C .D . 1c x+ln x c +7.若是的一个原函数,则ln x x ()f x =()f x '8.设的一个原函数为()()tan 2f x k x =,则 2ln cos 23x k =9.若,则()2f x dx x c =+⎰=()231x f x dx -⎰10.()()2cos 2sin 2d θθθ=⎰11.若,则()()f x dx F x c =+⎰()xx ef e dx --=⎰12.若,则()ln cos f x x '=⎡⎤⎣⎦()f x =13.计算()23x xe dx +⎰14.计算()()sin ln cos ln x x dx x⎡⎤⎡⎤⎣⎦⎣⎦⎰15.计算ln(tan )sin cos x dxx x ⎰16.计算21arctan1x dx x +⎰17.计算11sin dx x+⎰18.计算19.计算20.计算21.计算22.计算23. 计算()221tan xex dx+⎰24.已知的一个原函数为,求()f x sin x x()3x f x dx '⎰1、解:可导奇函数的导函数必为偶函数.必为偶函数.选A()()f x F x '∴=2、解:(1),()()cos sin f x x x '==- ()()()22sin 2g x x x f g x x'==∴=-⎡⎤⎣⎦(2)()2cos 2cos (sin )xx x '=- 选B sin 2x =-∴3、解:()()12222f x dx f x d x''=⎰⎰()122f x c =+选A4、解:(1)()22cos 1cos f x x '=- ()1f x x'∴=- (2)()22x f x x c=-+且得()00f =0c =,选A ()22x f x x =-5、解:(1)原式=()()()022limx f x x f x x∆→-∆--⎡⎤⎣⎦-2∆()2f x '=-(2)()2xF x e-= ()()222x xf x e e --'∴==-(3) 原式= 选D222(2)4xx ee ----=6、解:(1)()()ln ln ln f x dx f x d xx''=⎰⎰()ln f x c=+(2)(),xf x e -= ()1lnln 1ln x xf x e ex-∴===(3)原式=选C 1c x+7、解:(1)()ln F x x x= ()()1ln f x F x x'∴==+(2) ()()11ln f x x x''=+=8、解:()2ln cos 23F x x =()()2sin 223cos 2xf x x -∴=-故 ()()4tan 21ln 3x F x x '=-=+43k =-9、解: 原式=()()331113f x d x ---⎰()3113x c =--+10、解:原式=2222cos sin 4sin cos d θθθθθ-⎰221144sin cos d d θθθθ=-⎰⎰11cot tan 44t cθθ=--+或1csc 2c θ⎛⎫=-+ ⎪⎝⎭11、解:原式=()()xxx f edeF e c----=-+⎰12、解:()ln cos f x dx xdx'=⎡⎤⎣⎦⎰⎰()1ln sin f x x c =+()1sin sin c x xf x e c e -==⋅13、解:原式=()22323x xx x e e dx ⎡⎤++⋅⎢⎥⎣⎦⎰()2923xxxe dx dx e dx=++⎰⎰⎰219232ln 91ln 3x x xx e e c ⋅⋅=++++14、解:原式=()()sin ln cos ln ln x x d x⋅⎰()()sin ln sin ln x d x =⎰=()21sin ln 2x c +⎡⎤⎣⎦15、解:原式=()2ln tan tan cosx dxx x⎰()ln tan tan tan x d xx=⎰()()ln tan ln tan x d x =⎰ ()21ln tan 2x c =+⎡⎤⎣⎦16、解:原式=221arctan11x dx x x ⎛⎫+ ⎪⎝⎭⎰21arctan111x d x x ⎛⎫=- ⎪⎝⎭⎛⎫+ ⎪⎝⎭⎰11arctan arctand x x=-⎰211arctan 2cx ⎛⎫=-+ ⎪⎝⎭17、解:原式=21sin 1sin xdx x --⎰21sin cos cos x dx dx x x=-⎰⎰2cos tan cos d xx x =+⎰1tan cos x cx=-+18、解:2,1,2t x t dx tdt==-=原式=()2221211tdt dt tt t=++⎰⎰=2arctan t c+c+回代19、解:令2tan ,sec x t dx tdt==原式=32tan sec sec ttdtt⎰=2tan sec td t⎰()2sec 1sec t d t=-⎰31sec sec 3t t c =-+()()3122221113x x c +-++回代20、解:令2sin ,2cos x t dx tdt ==原式=2cos 2sin cos t dtt t ⎰1csc 2tdt =⎰()1ln csc cot 2t t c -+公式12c 回代21、解:(倒代换)令211,x dx dt t t-==原式==-11arcsin 333t c =-=-+13arcsin 3c x-+回代13arccos 3c x=+(注:(三角代换)令3sec ,x t =,3sec tan dx t tdt =原式=3sec tan 19sec tan 3t t dt t c t t =+⎰)13arccos 3c x+回代22、解:2,1,xt e t ==+ ()222ln 1,1tx tdx dtt=+=+原式=222211211t t t dt dtt t ⋅+-=++⎰⎰=()2arctan t t c-+2c-+回代23、解: 原式=()221tan2tan xex x dx++⎰2tan 2tan x d x e xdx=+⎰⎰2x e 222tan tan 22tan x x x e x x e dx e xdx =-⋅⋅+⎰⎰22tan 2tan x x e x x e dx =-⋅⎰22tan x xe dx +⎰2tan x e x c=+24、解: ()sin x F x x= ()()2cos sin x x xf x F x x -'∴==原式()3x df x =⎰()()323x f x f x x dx=-⋅⎰2222cos sin cos sin 3x x x x x x x x dx x x --=⋅-⎰2cos sin 3sin 3sin x x x x xd x xdx=--+⎰⎰2cos sin 3sin 3sin 3sin x x x x x x xdx xdx =--++⎰⎰2cos 4sin 6cos x x x x x c=--+1.设初等函数在区间有定义,则在上一定 ( )()f x [],a b ()f x [],a b A .可导 B .可微C .可积D .不连续2.若连续,下列各式正确的是 ( )f A .()()ba d f x dx f x dx =⎰B .()()df x dx f x dx dx =⎰C . ()()bx d f t dt f x dx =⎰D .()()xad f t dt f x dx =⎰3. 下列关系式中正确的是 ( )A .B .21100x x e dx e dx =⎰⎰211x x e dx e dx≥⎰⎰C .D .以上都不对211x x e dx e dx ≤⎰⎰4.下列各式中,正确的是 ( )A .B .2101x e dx ≤≤⎰211x e dx e≤≤⎰C . D .以上都不对2120x e e dx e ≤≤⎰5.下列函数在区间上可用牛顿——莱布尼兹公式的是 ( )[]1,1-AB .C1x 6.设在上,[],a b ()()()0,'0,''0f x f x f x ><>记,,,则有 ( )()110S f x dx =⎰()()2S f b b a =⋅-()()32b aS f b f a -=+⎡⎤⎣⎦A . B .123S S S <<213S S S <<C . D .312S S S<<231S S S <<7.xx →=8.设连续,且,则 ()f x ()()xe xF x f t dt -=⎰()'F x =9.设连续,则 ()'f x 1'2x f dx ⎛⎫= ⎪⎝⎭⎰10.设则()()120121f x f x dx x=-+⎰ ()1f x dx =⎰11.设连续,且则 ()f x ()21301,(1)x f t dt x x -=+>⎰()8f =12.设,则y 的极小值为()01xy t dt =-⎰13.方程,确定,求cos 0yx t e dt tdt +=⎰⎰()y y x =0x dydx=14.设在连续,且满足,求 ()f x []0,1()()13243f x x x f x dx =-⎰()f x 15.讨论方程在区间内实根的个数4013101xx dt t --=+⎰()0,116.设在连续,且在单调减少,讨论在区间()f x [],a b (),a b ()()1xa F x f t dt x a=-⎰的单调性(),a b 17.求()22220limx t xx t e dt te dt→⎰⎰18.设其中为连续函数,求()()2xa x F x f t dt x a=-⎰f ()lim x a F x →19.设,且可导,,求()()01122xf t dt f x =-⎰()f x ()0f x ≠()f x20.若为连续的奇函数,判别的奇偶性()f x ()0xf t dt ⎰21.1321sin x x x dx-⎡⎤⎣⎦⎰22.已知,求221x t e dt -⎰()1xf x dx⎰23.1⎰24.设连续,证明()f x 并由此计算()()20sin 2sin f x dx f x dx ππ=⎰⎰0π⎰1、解:初等函数在定义区间内必连续,连续必可积。

定积分练习题参考答案

定积分练习题参考答案

3
x
4
sin 2
x
dx
解:原式
3
xdctgx
xctgx
3
3
ctgxdx
4
4
4
1 4
3 9
ln
sin
x
3
4
1 4
3 9
ln
3 ln 2
2 2
1 4
3 9
1 2
ln
3 2
3
14.
4 ln x dx
1x
解:原式 2
4
ln xd
x
1
2
4
4
x ln x
1
1
xd ln x
2
sin 2x 0
0
sin
2
x
2
xdx
3 1
6 4 0 xd cos 2x
3 6
1 4
x
cos
2x
0
0
cos 2xdx
3 6
4
18.
e
1
sin
ln
x
dx
解:原式
x sinlnLeabharlann x e 1e1
x cosln
x
1 x
dx
e
sin 1
e
1
cosln
x
dx
e sin 1
x cosln
x e 1
d
3
sin
2
d
sin
4
22 3 3
4. 1 xdx
1 5 4x
解:令 5 4x u ,则 x 5 1 u 2 , dx 1 udu
44
2

定积分及其应用练习 带详细答案

定积分及其应用练习 带详细答案

定积分及其应用题一 题面:求由曲线2(2)y x =+与x 轴,直线4y x =-所围成的平面图形的面积. 答案:323.变式训练一题面:函数f (x )=错误!的图象与x 轴所围成的封闭图形的面积为( ) A.错误! B .2 C .3D .4答案:D. 详解:画出分段函数的图象,如图所示,则该图象与x 轴所围成的封闭图形的面积为错误!×2×2+∫错误!02cos x d x =2+2sin x 错误!=4.变式训练二 题面:由直线y =2x 及曲线y =3-x 2围成的封闭图形的面积为( ) A .2错误! B .9-2错误! C.错误!D 。

错误!答案: 详解:注意到直线y =2x 与曲线y =3-x 2的交点A ,B 的坐标分别是(-3,-6),(1,2),因此结合图形可知,由直线y =2x 与曲线y =3-x 2围成的封闭图形的面积为错误!(3-x 2-2x )d x =错误!错误!=3×1-错误!×13-12-错误!错误!=错误!,选D.题二 题面:如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( ).A .14B .错误!C .错误!D .错误!变式训练一题面:函数f (x )=sin(ωx +φ)的导函数y =f ′(x )的部分图象如图所示,其中,P 为图象与y 轴的交点,A ,C 为图象与x 轴的两个交点,B 为图象的最低点.若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为________.答案:错误!. 详解:设A(x0,0),则ωx0+φ=错误!,∴x0=错误!-错误!.又y=ωcos(ωx+φ)的周期为错误!,∴|AC|=错误!,C错误!。

依题意曲线段错误!与x轴围成的面积为S=-∫错误!-错误!+错误!错误!-错误!ωcos(ωx+φ)d x=2。

∵|AC|=πω,|y B|=ω,∴S△ABC=错误!.∴满足条件的概率为错误!.变式训练二题面:(2012•福建)如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()A.B.C.D.答案:C.详解:根据题意,正方形OABC的面积为1×1=1,而阴影部分由函数y=x与y=围成,其面积为∫01(﹣x)dx=(﹣)|01=,则正方形OABC中任取一点P,点P取自阴影部分的概率为=;故选C.金题精讲题一题面:(识图求积分,二星)已知二次函数y=f(x)的图象如图所示,则它与x轴所围图形的面积为().A.错误!B.错误!C.错误!D.错误!答案:变式训练一题面:如图求由两条曲线y =-x 2,y =-错误!x 2及直线y =-1所围成的图形的面积.答案:错误!。

数学必修二:微积分中的定积分习题答案

数学必修二:微积分中的定积分习题答案

数学必修二:微积分中的定积分习题答案在微积分学习的过程中,掌握定积分的概念和求解方法是非常重要的。

本文将提供一些关于定积分的习题,并给出详细的解答,帮助读者更好地理解和掌握定积分的应用。

一、基础习题1. 求函数f(x)=2x的定积分∫[1, 3] 2x dx的值。

解答:利用定积分的定义,首先求出原函数F(x) = x^2,在[1, 3]范围内,F(3) - F(1)即为所求的定积分的值。

F(x) = x^2∫[1, 3] 2x dx = [x^2]1^3 = 3^2 - 1^2 = 8。

2. 计算定积分∫[-2, 2] |x| dx。

解答:分段函数|x|的定义为:当x≥0时,|x| = x;当x<0时,|x| = -x。

所以在[-2, 2]范围内,|x|可分为两个部分,负值和正值。

∫[-2, 2] |x| dx = ∫[-2, 0] -x dx + ∫[0, 2] x dx。

根据定积分的性质,负号可以提出定积分符号外,所以上式等于:= -∫[-2, 0] x dx + ∫[0, 2] x dx。

根据定积分的定义,∫[-2, 0] x dx = [x^2/2]_(-2)^0 = (0^2/2) - ((-2)^2/2) = 2。

同样,∫[0, 2] x dx = [x^2/2]_0^2 = 2^2/2 - 0^2/2 = 2。

将上述结果代入原式得:-∫[-2, 0] x dx + ∫[0, 2] x dx = -2 + 2 = 0。

二、综合习题1. 求函数f(x) = x^3 - 2x在[-1, 2]上的定积分。

解答:首先求出原函数F(x),F(x) = (x^4/4) - (x^2)。

∫[-1, 2] (x^3 - 2x)dx = [(x^4/4) - (x^2)]_(-1)^2。

将x代入方程得:= (2^4/4) - (2^2) - [(-1)^4/4] - [(-1)^2] = 8/4 - 4 - 1/4 - 1。

定积分及其应用习题详解

定积分及其应用习题详解

第五章 定积分及其应用习 题 5-11. 如何表述定积分的几何意义根据定积分的几何意义推出下列积分的值: (1)⎰-x x d 11, (2)⎰--x x R R R d 22, (3)⎰x x d cos 02π, (4)⎰-x x d 11.解:若[]⎰≥∈x x f x f b a x ab d )(,0)(,,则时在几何上表示由曲线)(x f y =,直线b x a x ==,及x 轴所围成平面图形的面积. 若[]b a x ,∈时,⎰≤x x f x f ab d )(,0)(则在几何上表示由曲线)(x f y =,直线b x a x ==,及x 轴所围平面图形面积的负值. (1)由下图(1)所示,0)(d 1111=+-=⎰-A A x x .(2)由上图(2)所示,2πd 2222R A x x R R R==-⎰-.(3)由上图(3)所示,0)()(d cos 5353543π20=--++=+-+=⎰AA A A A A A x x .(4)由上图(4)所示,1112122d 611=⋅⋅⋅==⎰-A x x .2. 设物体以速度12+=t v 作直线运动,用定积分表示时间t 从0到5该物体移动的路程S.( 2 )( 1 )( 3 )(4)解:=s ⎰+t t d )12(053. 用定积分的定义计算定积分⎰bax c d ,其中c 为一定常数.解:任取分点b x x x x a n =<<<<= 210,把],[b a 分成n 个小区间],[1i i x x -)2,1(n i =,小区间长度记为x ∆i =i x -1-i x )2,1(n i =,在每个小区间[]i i x x ,1-上任取一点i ξ作乘积i i x f ∆⋅)(ξ的和式:∑∑==--=-⋅=∆⋅n i ni i iiia b c x xc x f 111)()()(ξ,记}{max 1i n i x ∆=≤≤λ, 则)()(lim )(lim d 0a b c a b c x f x c ni i i b a-=-=∆⋅=∑⎰=→→λλξ.4. 利用定积分定义计算120d x x ⎰.解:上在]1,0[)(2x x f =连续函数,故可积,因此为方便计算,我们可以对[]0,1 n 等分,分点i i n i nix ξ;1,,2,1,-==取相应小区间的右端点,故∑∑∑===∆=∆=∆n i i i n i i i ni i i x x x x f 12121)(ξξ=∑∑===ni ni in n n i 1232111)(=311(1)(21)6n n n n ⋅++ =)12)(11(61nn ++ 当时0→λ(即时∞→n ),由定积分的定义得: 120d x x ⎰=31.5. 利用定积分的估值公式,估计定积分⎰-+-1134)524(x x x d 的值.解:先求524)(34+-=x x x f 在[]1,1-上的最值,由0616)(23=-='x x x f , 得0=x 或83=x . 比较 35093(1)11,(0)5,(),(1)781024f f f f -====的大小,知min max 5093,111024f f ==,由定积分的估值公式,得[])1(1d )524()]1(1[max 1134min --⋅≤+-≤--⋅⎰-f x x x f ,即14315093(425)d 22512x x x -≤-+≤⎰. 6. 利用定积分的性质说明⎰1d xe x与⎰1d 2x e x ,哪个积分值较大解:在[]0,1区间内:22xx x x e e ≥⇒≥ 由性质定理知道:⎰10 d x e x≥⎰10 d 2x e x7. 证明:⎰---<<2121212d 22x e ex 。

定积分应用题附答案(可编辑修改word版)

定积分应用题附答案(可编辑修改word版)

⎩ y ⎨ ⎩ 2 《定积分的应用》复习题一.填空:1. 曲线 y = ln x , y = ln a , y = ln b (0 < a < b )及y 轴所围成的平面图形的面积为 A =ln be y dy =b-aln a2. 曲线y = x 2和y = x 所围成的平面图形的面积是 1 3二.计算题:1. 求由抛物线 y 2= 2x 与直线 2x + y – 2 = 0 所围成的图形的面积。

解:(1)确定积分变量为 y ,解方程组⎧ y 2 = 2x ⎧x 1 = 1/ 2 ⎧ x 2 = 2 ⎨y = -2x + 2 得 ⎩ y 1 = 11 , ⎨ = -2 即抛物线与直线的交点为( ,1)和( 2 , - 2 ).故所求图形在直线 y = 1 和 y 2= - 2 之间,即积分区间为[-2,1 ]。

(2)在区间[-2,1]上,任取一小区间为[ y , y + dy ],对应的窄条面积近 1 1似于高为[(1- y )- y 2 ],底为 dy 的矩形面积,从而得到面积元素22 11dA = [(1- y)-y 2 ]dy22(3)所求图形面积 A =1[(1- 11 y )- y2 ]dy = [y - 1 y 2 – 1 y3 ]1 =9⎰ - 22246-242. 求抛物线 y = - x 2+ 4x - 3 及其在点(0,- 3)和(3,0)处的切线所围成的图形的面积。

解:由 y = - x 2 + 4x – 3 得y ' = -2x + 4 , y '(0) = 4, y '(3) = -2 。

抛物线在点(0,- 3)处的切线方程为 y = 4x – 3 ;在点(3,0)处的切线方程为 3 y = - 2x + 6 ; 两切线的交点坐标为 ( ,3 )。

2故 面积 A =⎰⎰2=⎰2⎪ ⎰ ⎰ ⎰ =3 (1+ 2 c os + )d + 2 (1+ cos 2)d = 3392 [(4x - 3) - (x + 4x - 3)] dx +3 [(-2x + 6) - (x + 4x - 3)] dx = 023. 求由摆线 x = a (t – sint) , y = a( 1- cost) 的一拱( 0 ≤ t ≤ 2)与横轴所围成的图形的面积。

(完整word版)定积分典型例题20例答案

(完整word版)定积分典型例题20例答案

定积分典型例题20例答案例1 求33322321lim(2)n n n n n →∞+++.分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x n ∆=,然后把2111n n n=⋅的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即33322321lim(2)n n n n n →∞+++=333112lim ()n n n n nn →∞+++=13034xdx =⎰.例2 2202x x dx -⎰=_________.解法1 由定积分的几何意义知,2202x x dx -⎰等于上半圆周22(1)1x y -+= (0y ≥)与x 轴所围成的图形的面积.故2202x x dx -⎰=2π. 解法2 本题也可直接用换元法求解.令1x -=sin t (22t ππ-≤≤),则222x x dx -⎰=2221sin cos t tdt ππ--⎰=2221sin cos t tdt π-⎰=2202cos tdt π⎰=2π 例3 (1)若22()x t xf x e dt -=⎰,则()f x '=___;(2)若0()()xf x xf t dt =⎰,求()f x '=___.分析 这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-⎰.解 (1)()f x '=422x x xe e ---;(2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =⎰,则可得()f x '=0()()xf t dt xf x +⎰.例4 设()f x 连续,且31()x f t dt x -=⎰,则(26)f =_________.解 对等式310()x f t dt x -=⎰两边关于x 求导得32(1)31f x x -⋅=,故321(1)3f x x -=,令3126x -=得3x =,所以1(26)27f =. 例5 函数11()(3)(0)x F x dt x t =->⎰的单调递减开区间为_________.解 1()3F x x'=-,令()0F x '<得13x >,解之得109x <<,即1(0,)9为所求. 例6 求0()(1)arctan xf x t tdt =-⎰的极值点.解 由题意先求驻点.于是()f x '=(1)arctan x x -.令()f x '=0,得1x =,0x =.列表如下:故1x =为()f x 的极大值点,0x =为极小值点.例7 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中2arcsin 0()xt g x e dt -=⎰,[1,1]x ∈-,试求该切线的方程并求极限3lim ()n nf n→∞.分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ''=.解 由已知条件得2(0)(0)0t f g e dt -===⎰,且由两曲线在(0,0)处切线斜率相同知2(arcsin )2(0)(0)11x x e f g x -=''===-.故所求切线方程为y x =.而3()(0)3lim ()lim33(0)330n n f f n nf f n n→∞→∞-'=⋅==-. 例8 求 22000sin lim(sin )x x xtdtt t t dt→-⎰⎰;分析 该极限属于型未定式,可用洛必达法则. 解 22000sin lim (sin )x x xtdtt t t dt→-⎰⎰=2202(sin )lim (1)(sin )x x x x x x →-⋅⋅-=220()(2)lim sin x x x x →-⋅-=304(2)lim 1cos x x x→-⋅-x(,0)-∞0 (0,1)1 (1,)+∞()f x '-+-=2012(2)lim sin x x x→-⋅=0.注 此处利用等价无穷小替换和多次应用洛必达法则.例9 试求正数a 与b ,使等式2201lim1sin x x t dt x b x a t→=-+⎰成立. 分析 易见该极限属于型的未定式,可用洛必达法则. 解 20201lim sin x x t dt x b x a t →-+⎰=220lim 1cos x x a x b x →+-=22001lim lim 1cos x x x b x a x→→⋅-+201lim 11cos x x b x a →==-,由此可知必有0lim(1cos )0x b x →-=,得1b =.又由2012lim 11cos x x x a a→==-, 得4a =.即4a =,1b =为所求. 例10 设sin 20()sin x f x t dt =⎰,34()g x x x =+,则当0x →时,()f x 是()g x 的( ).A .等价无穷小.B .同阶但非等价的无穷小.C .高阶无穷小.D .低阶无穷小.解法1 由于 22300()sin(sin )cos lim lim()34x x f x x xg x x x →→⋅=+ 2200cos sin(sin )lim lim34x x x x x x →→=⋅+ 22011lim 33x x x →==. 故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到sin 223370111()[()]sin sin 3!342x f x t t dt x x =-+=-+⎰,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f x g x x x x→→→-+-+===++. 例11 计算21||x dx -⎰.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -⎰=0210()x dx xdx --+⎰⎰=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 33222111[]6dx x x --=-=⎰,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界.例12 设()f x 是连续函数,且10()3()f x x f t dt =+⎰,则()________f x =.分析 本题只需要注意到定积分()baf x dx ⎰是常数(,a b 为常数).解 因()f x 连续,()f x 必可积,从而10()f t dt ⎰是常数,记1()f t dt a =⎰,则()3f x x a =+,且11(3)()x a dx f t dt a +==⎰⎰.所以2101[3]2x ax a+=,即132a a +=, 从而14a =-,所以 3()4f x x =-.例13 计算2112211x x dx x-++-⎰.分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. 解 2112211x x dx x-++-⎰=211112221111x x dx dx x x--++-+-⎰⎰.由于22211x x+-是偶函数,而211x x+-是奇函数,有112011xdx x-=+-⎰, 于是2112211x x dx x -++-⎰=2102411x dx x +-⎰=22120(11)4x x dx x--⎰=11200441dx x dx --⎰⎰ 由定积分的几何意义可知12014x dx π-=⎰, 故211122444411x x dx dx xππ-+=-⋅=-+-⎰⎰.例14 计算220()xd tf x t dt dx -⎰,其中()f x 连续. 分析 要求积分上限函数的导数,但被积函数中含有x ,因此不能直接求导,必须先换元使被积函数中不含x ,然后再求导.解 由于220()xtf x t dt -⎰=2221()2x f x t dt-⎰. 故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以220()x tf x t dt -⎰=201()()2x f u du -⎰=201()2x f u du ⎰, 故220()x d tf x t dt dx -⎰=201[()]2x d f u du dx ⎰=21()22f x x⋅=2()xf x .错误解答220()x d tf x t dt dx -⎰22()(0)xf x x xf =-=. 错解分析 这里错误地使用了变限函数的求导公式,公式()()()xad x f t dt f x dx 'Φ==⎰中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.例15 计算30sin x xdx π⎰.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.解30s i n x x d x π⎰30(c o s )x d x π=-⎰33[(c o s )](c o s )x x x d x ππ=⋅---⎰ 30cos 6xdx ππ=-+⎰326π=-. 例16 计算120ln(1)(3)x dx x +-⎰.分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.解 120ln(1)(3)x dx x +-⎰=101ln(1)()3x d x +-⎰=1100111[ln(1)]3(3)(1)x dx x x x +-⋅--+⎰ =101111ln 2()2413dx x x-++-⎰11ln 2ln324=-. 例17 计算20sin x e xdx π⎰.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法.解 由于2sin xe xdx π⎰20sin xxde π=⎰220[sin ]cos xx e x e xdx ππ=-⎰220cos x e e xdx ππ=-⎰, (1)而20cos xe xdx π⎰20cos xxde π=⎰220[cos ](sin )xx e x e x dx ππ=-⋅-⎰20sin 1x e xdx π=-⎰, (2)将(2)式代入(1)式可得20sin xe xdx π⎰220[sin 1]x e e xdx ππ=--⎰,故20sin xe xdx π⎰21(1)2e π=+.例18 计算1arcsin x xdx ⎰.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解 10arcsin x xdx ⎰210arcsin ()2x xd =⎰221100[arcsin ](arcsin )22x x x d x =⋅-⎰21021421x dx x π=--⎰. (1) 令sin x t =,则2121x dx x-⎰222sin sin 1sin td t tπ=-⎰220sin cos cos ttdt t π=⋅⎰220sin tdt π=⎰201cos22t dt π-==⎰20sin 2[]24t t π-4π=. (2)将(2)式代入(1)式中得1arcsin x xdx =⎰8π. 例19设()f x [0,]π上具有二阶连续导数,()3f π'=且0[()()]cos 2f x f x xdx π''+=⎰,求(0)f '.分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于0[()()]cos f x f x xdx π''+⎰00()sin cos ()f x d x xdf x ππ'=+⎰⎰[]000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ππππ'''=-++⎰⎰()(0)2f f π''=--=.故 (0)f '=2()235f π'--=--=-. 例20 计算243dxx x +∞++⎰. 分析 该积分是无穷限的的反常积分,用定义来计算. 解2043dx x x +∞++⎰=20lim 43t t dx x x →+∞++⎰=0111lim ()213t t dx x x →+∞-++⎰ =011lim [ln ]23t t x x →+∞++=111lim (ln ln )233t t t →+∞+-+ =ln 32.。

(完整版)定积分应用题附答案

(完整版)定积分应用题附答案

《定积分的应用》复习题一.填空:1.曲线ln ,ln ,ln (0)y x y a y b a b y ===<<及轴所围成的平面图形的面积为A =ln ln by ae dy ⎰=b-a______2.2y x y ==曲线和 ____13____二.计算题:1.求由抛物线 y 2 = 2x 与直线 2x + y – 2 = 0 所围成的图形的面积。

解:(1)确定积分变量为y ,解方程组2222y x y x ⎧=⎨=-+⎩ 得12121/22,12x x y y ==⎧⎧⎨⎨==-⎩⎩ 即抛物线与直线的交点为(21,1)和( 2 , - 2 ).故所求图形在直线y = 1和y = - 2 之间,即积分区间为[-2,1 ]。

(2)在区间[-2,1]上,任取一小区间为[ y , y + dy ],对应的窄条面积近似于高为[(1-21y )-21y 2 ],底为dy 的矩形面积,从而得到面积元素 dA = [(1-21y)- 21y 2 ]dy (3)所求图形面积 A =⎰-12[(1- 21y )-21y 2 ]dy = [y - 41y 2 – 61y 3]12-= 942.求抛物线 y = - x 2 + 4x - 3 及其在点(0,- 3)和(3,0)处的切线所围成的图形的面积。

解:由y = - x 2 + 4x – 3 得 '24,'(0)4,'(3)2y x y y =-+==-。

抛物线在点(0,- 3)处的切线方程为 y = 4x – 3 ;在点(3,0)处的切线方程为 y = - 2x + 6 ; 两切线的交点坐标为 ( 32,3 )。

故 面积A =332223029[(43)(43)][(26)(43)]4x x x dx x x x dx --+-+-+-+-=⎰⎰3.求由摆线 x = a (t – sint) , y = a( 1- cost) 的一拱(02t π≤≤)与横轴所围成的图形的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定积分及其应用题一 题面:求由曲线2(2)y x =+与x 轴,直线4y x =-所围成的平面图形的面积. 答案:323.变式训练一题面:函数f (x )=⎩⎪⎨⎪⎧x +2-2≤x <0,2cos x ⎝ ⎛⎭⎪⎫0≤x ≤π2的图象与x 轴所围成的封闭图形的面积为( )B .2 |C .3D .4答案:D.详解:画出分段函数的图象,如图所示,则该图象与x 轴所围成的封闭图形的面积为12×2×2+∫π202cos x d x =2+2sin x |π20=4.变式训练二 题面:由直线y =2x 及曲线y =3-x 2围成的封闭图形的面积为( )¥A .2 3B .9-23答案: 详解:注意到直线y =2x 与曲线y =3-x 2的交点A ,B 的坐标分别是(-3,-6),(1,2),因此结合图形可知,由直线y =2x 与曲线y =3-x 2围成的封闭图形的面积为⎠⎛-31(3-x 2-2x )d x =⎝ ⎛⎭⎪⎫3x -13x 3-x 2⎪⎪⎪1-3=3×1-13×13-12-⎣⎢⎡3×-3-13×-33]--32=323,选D.题二 ^题面:如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( ).A .1B .1C .1D .17变式训练一题面:函数f (x )=sin(ωx +φ)的导函数y =f ′(x )的部分图象如图所示,其中,P 为图象与y 轴的交点,A ,C 为图象与x 轴的两个交点,B 为图象的最低点.若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为________.:答案:π4. 详解:设A (x 0,0),则ωx 0+φ=π2,∴x 0=π2ω-φω. 又y =ωcos(ωx +φ)的周期为2πω, ∴|AC |=πω,C ⎝ ⎛⎭⎪⎫π2ω-φω+πω,0.依题意曲线段ABC 与x 轴围成的面积为 S =-∫π2ω-φω+πωπ2ω-φωωcos(ωx +φ)d x =2. ∵|AC |=πω,|y B |=ω,∴S △ABC =π2. ∴满足条件的概率为π4.。

变式训练二 题面:(2012•福建)如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( )A .B .·C .D .答案:C. 详解:根据题意,正方形OABC 的面积为1×1=1, 而阴影部分由函数y=x 与y=围成,其面积为∫01(﹣x )dx=(﹣)|01=,则正方形OABC 中任取一点P ,点P 取自阴影部分的概率为=; 故选C .【金题精讲 题一 题面:(识图求积分,二星)已知二次函数y =f (x )的图象如图所示,则它与x 轴所围图形的面积为( ).A .2π5B .43C .32D .π2答案:变式训练一…题面:如图求由两条曲线y =-x 2,y =-14x 2及直线y =-1所围成的图形的面积.答案:43. 详解:由⎩⎨⎧y =-x 2,y =-1,得交点 A (-1,-1),B (1,-1).由⎩⎪⎨⎪⎧y =-14x 2,y =-1,得交点C (-2,-1),D (2,-1). ∴所求面积S =2⎣⎢⎡⎦⎥⎤∫10⎝ ⎛⎭⎪⎫-14x 2+x 2d x +⎠⎛12⎝ ⎛⎭⎪⎫-14x 2+1d x =43. 》变式训练二 题面:例1求在[0,2]π上,由x 轴及正弦曲线sin y x =围成的图形的面积. 答案:4. 详解:作出sin y x =在[0,2]π上的图象如右 sin y x =与x 轴交于0、π、2π,所 求积2200sin |sin |(cos )|(cos )|4s xdx xdx x x ππππππ=+=---=⎰⎰题二 题面:(作图求积分,四星)求曲线36y x x =-与曲线2y x =所围成的图形的面积.#x y-Л2Л交点的横坐标分别为2,0,3-,12112S =.变式训练一题面:求曲线2y x =,y x =及2y x =所围成的平面图形的面积. 答案:76. 详解:作出2y x =,y x =及2y x =的图如右解方程组22y x y x =⎧⎨=⎩ 得24x y =⎧⎨=⎩ 00x y =⎧⎨=⎩ 解方程组2y x y x =⎧⎨=⎩得11x y =⎧⎨=⎩ 00x y =⎧⎨=⎩∴所求面积12201(2)(2)s x x dx x x dx =-+-⎰⎰12201(2)xdx x x dx =+-⎰⎰212320111|()|23x x x =+- 76=答:此平面图形的面积为76变式训练二 题面:%求由抛物线28(0)y x y =>与直线6x y +=及0y =所围成图形的面积.答案:403. 详解:作出28(0)y x y =>及6x y +=的图形如右:y解方程组2860y x x y ⎧=⎨+-=⎩ 得24x y =⎧⎨=⎩解方程组600x y y +-=⎧⎨=⎩ 得60x y =⎧⎨=⎩∴所求图形的面积26028(6)s xdx x dx =+-⎰⎰322620221402|(6)|323x x x ⋅+-= 题三 题面: (1)由曲线y x =,直线2y x =-及y 轴所围成的图形的面积为_______.(2)由曲线2y x =与直线2y x =-所围成的封闭图形的面积为_______.·答案:(1)163;(2)92.变式训练一题面: 设f (x )=,函数图象与x 轴围成封闭区域的面积为( )A .B .】C .D .答案:C.详解:根据题意作出函数的图象:xO2(66根据定积分,得所围成的封闭区域的面积S=故选C…变式训练二 题面:已知函数的图象与x 轴所围成图形的面积为( ) A . 1/2 B .1 C . ]2D .3/2 答案:D. 详解:由题意图象与x 轴所围成图形的面积为102(1)cos x dx xdx π--++⎰⎰210021()|sin |2x x x π-=-++ 112=+ 32=.故选D .题四 题面:(导数与积分结合,二星)设函数()mf x x ax =+的导函数为()21f x x '=+,则21()f x dx -⎰的值等于______.答案:56.变式训练一题面:"设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则⎠⎛12f (-x )d x 的值等于( )答案:A. 详解:由于f (x )=x m +ax 的导函数f ′(x )=2x +1,所以f (x )=x 2+x ,于是∫21f (-x )d x=∫21(x 2-x )d x =⎝ ⎛⎭⎪⎫13x 3-12x 2⎪⎪⎪21=56.变式训练二 题面: )设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则⎠⎛12f (-x )d x 的值等于( )答案:A. 详解:由于f (x )=x m +ax 的导函数为f ′(x )=2x +1,所以f (x )=x 2+x ,于是⎠⎛12f (-x )d x =⎠⎛12 (x 2-x )d x =⎪⎪⎪⎝ ⎛⎭⎪⎫13x 3-12x 221=56. 题五 题面: …(化简后求积分,四星)(1)求21sin 2xdx π-20sin cos x x dxπ=-⎰原式4204(cos sin )(sin cos )x x dx x x dx πππ=-+-⎰⎰22 2.=(2)440(sin cos )22x xdx π+⎰变式训练一题面:与定积分∫3π01-cos x d x 相等的是( ) ∫3π0sinx2d x∫3π0⎪⎪⎪⎪⎪⎪sin x 2d x x2d x )))D .以上结论都不对[答案:B. 详解:∵1-cos x =2sin 2x 2,∴∫3π01-cos x d x =∫3π02 ⎪⎪⎪⎪⎪⎪sin x 2d x =2∫3π0⎪⎪⎪⎪⎪⎪sinx 2d x .变式训练二 题面: 40cos xdx π=⎰________. 答案:22. 《详解: 因为40cos xdx π=⎰sin x ⎪⎪⎪ π40=sin π4=22,所以∫π40cos x d x =22.题六题面: (定积分的运用,三星)函数f (x )=sin(ωx +φ)的导函数y =f ′(x )的部分图象如图所示,其中,P 为图象与y 轴的交点,A ,C 为图象与x 轴的两个交点,B 为图象的最低点.(1)若φ=π6,点P 的坐标为⎝⎛⎭⎪⎫0,332,则ω=________; (2)若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为________.[解析] (1)函数f (x )=sin(ωx +φ)求导得,f ′(x )=ωcos(ωx +φ),把φ=π6和点⎝⎛⎭⎪⎫0,332代入得ωcos ⎝⎛⎭⎫0+π6=332解得ω=3. … (2)取特殊情况,在(1)的条件下,导函数f ′(x )=3cos ⎝⎛⎭⎫3x +π6,求得A ⎝⎛⎭⎫π9,0, B ⎝⎛⎭⎫5π18,-3,C ⎝⎛⎭⎫4π9,0,故△ABC 的面积为S △ABC =12×3π9×3=π2,曲线段与x 轴所围成的区域的面积S =-⎪⎪f x 4π9π9=-sin ⎝⎛⎭⎫4π3+π6+sin ⎝⎛⎭⎫3π9+π6=2,所以该点在△ABC 内的概率为P =S △ABC S =π4.同类题一题面:设y =f (x )是二次函数,方程f (x )=0有两个相等的实根,且f ′(x )=2x -2.(1)求y =f (x )的表达式;(2)求y =f (x )的图象与两坐标轴所围成图形的面积.答案:(1) f (x )=x 2-2x +1.… (2) 13. 详解:(1)设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b .又f ′(x )=2x -2,所以a =1,b =-2,即f (x )=x 2-2x +c .又方程f (x )=0有两个相等实根,所以Δ=4-4c =0,即c =1.故f (x )=x 2-2x +1.(2)依题意,所求面积为S =⎠⎛01(x 2-2x +1)d x =(13x 3-x 2+x )|10=13. 。

同类题二题面:设y =f (x )是二次函数,方程f (x )=0有两个相等的实根,且f ′(x )=2x +2.(1)求y =f (x )的表达式;(2)求y =f (x )的图象与两坐标轴所围成图形的面积.(2)若直线x =-t (0<t <1=把y =f (x )的图象与两坐标轴所围成图形的面积二等分,求t 的值.答案:¥(1)f (x )=x 2+2x +1.(2)13. (3)t =1-321. 详解: (1)设f (x )=ax 2+bx +c ,则f ′(x )=2ax +b ,又已知f ′(x )=2x +2∴a =1,b =2. ∴f (x )=x 2+2x +c又方程f (x )=0有两个相等实根,∴判别式Δ=4-4c =0,即c =1.[故f (x )=x 2+2x +1.(2)依题意,有所求面积=31|)31()12(0123201=++=++--⎰x x x dx x x . (3)依题意,有x x x x x x t t d )12(d )12(2021++=++⎰⎰---, ∴023123|)31(|)31(t t x x x x x x ---++=++,-31t 3+t 2-t +31=31t 3-t 2+t ,2t 3-6t 2+6t -1=0,∴2(t -1)3=-1,于是t =1-321.思维拓展题一题面:(几何法求积分,四星)(1)计算0⎰,121sin x xdx -⎰;(2)求椭圆22221x y a b +=的面积.0044b S a ==⎰⎰,转化为圆的面积.同类题一题面:求定积分11dx -⎰的值. 答案:2π. 详解:11dx -⎰表示圆x 2+y 2=1在第一、二象限的上半圆的面积. 因为2S π=半圆,又在x 轴上方.所以11dx -⎰=2π.同类题二题面:20)ax dx -⎰的值是( ) A. 143π- B. 143π+ C. 123π- D. 12π- 答案:A.详解:积分所表示的几何意义是以(1,0)为圆心,1为半径第一象限内圆弧与抛物线y=x 2在第一象限的部分坐标轴围成的面积,故只需求出圆的面积乘以四分之一与抛物线在第一象限的部分与x 轴和直线x=1围成的图形的面积之差.即20)ax dx-⎰ 1231001|443x dx x ππ=-=-⎰ 143π=-. 故答案选A。

相关文档
最新文档