不定积分的测试题
不定积分经典习题

=
td
cot
t
tdt
t
cot
t
cot
tdt
t2 2
= t cot t ln | sin t | t2 C 2
= arctgx ln | x | (arctgx)2 C
x
1 x2
2
[解二]
arctan x dx x2 (1 x2 )
=
令 x tant ,则
原式=
1 x2 1 x
1 x
dx
=
1
cos t sin
t
1 sin
t
d
sin
t
=
cos2 t 1 sin t
1 sin t
dt
= ln csc t cot t t C = csc tdt t C = csc tdt t C = ln csc t cot t t C
一、知识网络图
原函数
1.基本概念不定积分
不定积分的几何意义
不 2.性质与公式不基定本积积分分的公性式质
定 积 分
3.计算方法查换分直表元部接法积积积分分分法法法第第一二换换元元积积分分法法(凑微分法)
4.特殊函数的积分某三有些角理无函函理数数函有积数理分积式分积分
( 1 1 ) arctan xdx x2 1 x2
arctan xdx =
arctan x2
xdx
(arctan 2
x)2
arctan xd 1 (arctan x)2
高数习题集及答案

高数习题集及答案一、极限1. 求下列极限:- \( \lim_{x \to 0} \frac{\sin x}{x} \)- \( \lim_{x \to \infty} (1 + \frac{1}{x})^x \)2. 利用夹逼定理证明:- \( \lim_{n \to \infty} (1 + \frac{1}{n})^n = e \)答案:1. 对于第一个极限,我们可以使用洛必达法则或者直接利用三角函数的性质得到:\[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \]对于第二个极限,我们可以使用重要极限:\[ \lim_{x \to \infty} (1 + \frac{1}{x})^x = e \]2. 利用夹逼定理,我们可以找到两个序列 \( a_n \) 和 \( b_n \) 使得:\[ a_n \leq (1 + \frac{1}{n})^n \leq b_n \]并且 \( \lim_{n \to \infty} a_n = e \) 和 \( \lim_{n \to \infty} b_n = e \),从而证明 \( \lim_{n \to \infty} (1 +\frac{1}{n})^n = e \)。
二、导数与微分1. 求下列函数的导数:- \( f(x) = x^3 - 2x^2 + x \)- \( g(x) = \ln(x) \)2. 利用导数求函数的单调区间:- 对于函数 \( h(x) = x^2 - 4x + 4 \),求其单调增区间。
答案:1. 对于 \( f(x) \) 的导数,我们有:\[ f'(x) = 3x^2 - 4x + 1 \]对于 \( g(x) \) 的导数,我们有:\[ g'(x) = \frac{1}{x} \]2. 对于函数 \( h(x) \),我们先求导:\[ h'(x) = 2x - 4 \]令 \( h'(x) > 0 \),解得 \( x > 2 \),因此 \( h(x) \) 在\( (2, \infty) \) 上单调增。
不定积分专题试题

不定积分专题试题(含答案)一、填空题1、若⎰==__)(sin cos )()('dx x xf u f u F ,则 C x F +)(sin2、设)(x f 的一个原函数为x x tan ,则⎰=___)('dx x xf C x xx +-tan 2sec 2 3、若)1()(ln '2>=x x x f ,则___)(=x f C e x +2214、_____1)2(=--⎰xx dxC x +--1arctan 25、设x x f ln )(=,则____)('=⎰--dx ee f x x C x +6、___sin cos 2222=+⎰xb x a dx C x a bab +)tan arctan(1 7、已知边际收益为x 230-,则收益函数为___ 230x x -8、=-+=⎰⎰dx x xf C x dx x f )1()(22,则若______ C x +--22)121(9、____)2ln 1(12=+⎰dx x x C x +2ln arctan10、若____1)1()()(2=⋅+=⎰⎰dx xxf C u F du u f ,则 C xF +-)1(二、选择题1、函数x x e 3的一个原函数为( B )A 、)3ln 1()3(+xe B 、3ln 1)3(+xeC 、3ln 3xe D 、3ln 3xe2、求dx x ⎰-42时,为使被积函数有理化,可作变换(C )A、t x sin 2= B 、t x tan 2= C 、t x sec = D 、42-=t x3、若x ln 是函数)(x f 的原函数,那么)(x f 的另一个原函数是BA 、ax lnB 、ax a ln 1C 、x a +lnD 、2)ln 21x (4、函数__)(_)()()(2D x F x x x f =+=的一个原函数A 、334xB 、334x xC 、)(3222x x x + D 、)(322x x x +5、__)(_)(cos )1cos 1(2D x d x =-⎰A 、C x x +-tanB 、C x anx +-cos tC 、C x x+--cos 1 D 、C x x +--cos cos 1三、计算题 1、⎰+)1(x x dxC x +arctan 2 2、dx x x ⎰-234 C x x +-+--3)4(443223、dx xx⎰-31 C x x x x x x +-++----666656711ln 3625676 4、dx e x x 23-⎰ C e e x x x +----22212125、dx x x ⎰+241 C x x x ++-arctan 336、dx xx ⎰22cos sin 1C x x +-cot tan 7、dx ex ⎰-12 C x ex +---)112(128、dx x )arcsin (2⎰ C x x x x ar x +--+2arcsin 12)sin c (229、xdx ⎰3tan C x x++cos ln 2tan 210、⎰-dx x x 123 C x x +-+-13)1(232 11、dx x x 23)(ln ⎰ C x x x x x ++-32ln 8)(ln 4442412、⎰dx x )sin(ln C x x x +-)]cos(ln )[sin(ln 213、dx x f x f ⎰)()(' )(2x f +C 14、dx ex ⎰+211C e e x x +++-+1111ln 2122 15、dx x x ⎰sin C x x x x x +-+-sin )2(6cos )6(2 四、证明题:设)(x f 的原函数)(x F 非负,且1)0(=F ,当x x F x f x 2sin )()(02=≥时,有,试证14sin 412sin )(2+-=x x xx f不定积分练习题1基础题 一.填空题 1.不定积分:⎰=_____x x dx22.不定积分:dx x ⎰-2)2(=______3.不定积分: dx x x x)11(2⎰-=_______ 4.不定积分:dx x ⎰-2)2(=__________5.不定积分:dx xe x)32(⎰+=_______ 6.一曲线通过点)3,e (2,且在任一点处的切线斜率等于该点的横坐标的倒数,则该曲线的方程为____________________7.已知一个函数)x (F 的导函数为2x 11-,且当1x =时函数值为π23,则此函数为_______________ 8.=+⎰x d )x 1x ( ________ 9. 设1()f x x=,则()f x dx '=⎰ 10.如果xe -是函数()f x 的一个原函数,则()f x dx =⎰11. 设21()ln(31)6f x dx x c =-+⎰,则()f x = . 12. 经过点(1,2),且其切线的斜率为2x 的曲线方程为 .13. 已知()21f x x '=+,且1x =时2y =,则()f x = .14. (103sin )xx x dx +-=⎰ .15.222()a x dx +=⎰. 16.3321(1)x x dx x-+-=⎰ . 二.选择题 1、,则设x d x1I 4⎰=I =( ) c x 3 1)D ( c x 3 1)C ( cx 3 1)B ( c x 4)A (3335++-+-+--- 2、的一个原函数为则,设 )x (fx 1 1)x (f 2-=( )()arcsin ()arctan A x B x x 1 x 1 ln 2 1)C (+- x1x 1 ln 2 1)D (-+ 3、函数x 2 cos π的一个原函数为 ( ) (A) x 2 sin 2 ππ (B) x 2 sin 2 ππ- (C )x 2 sin 2ππ (D) x2 sin 2ππ- 4、设f(x) 的一个原函数为F(x), 则⎰=dx )x 2(f ( )(A) F(2x)+ C (B) F( 2 x )+ C (C)C )x 2(F2 1+ (D) 2F( 2 x )+ C 5.设3()lnsin 44f x dx x C =+⎰,则()f x =( )。
(完整版)不定积分习题与答案

不定积分(A)1、求下列不定积分1)⎰2xdx2)⎰xxdx23)dxx⎰-2)2(4)dxxx⎰+2215)⎰⋅-⋅dxxxx325326)dxxxx⎰22sincos2cos7)dxxe x)32(⎰+8)dxxxx)11(2⎰-2、求下列不定积分(第一换元法)1)dxx⎰-3)23(2)⎰-332xdx3)dttt⎰sin4)⎰)ln(lnln xxxdx5)⎰xxdxsincos6)⎰-+xx eedx7)dxxx)cos(2⎰8)dxxx⎰-43139)dxxx⎰3cossin10)dxxx⎰--249111)⎰-122xdx12)dxx⎰3cos13)⎰xdxx3cos2sin14)⎰xdxx sectan315)dxxx⎰+23916)dxxx⎰+22sin4cos3117)dxxx⎰-2arccos211018)dxxxx⎰+)1(arctan3、求下列不定积分(第二换元法)1)dxxx⎰+2112)dxx⎰sin3)dxxx⎰-424)⎰>-)0(,222adxxax5)⎰+32)1(xdx6)⎰+xdx217)⎰-+21xxdx8)⎰-+211xdx4、求下列不定积分(分部积分法)1)inxdxxs⎰2)⎰xdxarcsin3)⎰xdxx ln24)dxxe x⎰-2sin25)⎰xdxx arctan26)⎰xdxx cos27)⎰xdx2ln8)dxxx2cos22⎰5、求下列不定积分(有理函数积分)1)dx xx⎰+332)⎰-++dxxxx1033223)⎰+)1(2xxdx(B)1、一曲线通过点)3,(2e,且在任一点处的切线斜率等于该点的横坐标的倒数,求该曲线的方程。
2、已知一个函数)(xF的导函数为211x-,且当1=x时函数值为π23,试求此函数。
3、证明:若⎰+=c x F dx x f )()(,则)0(,)(1)(≠++=+⎰a cb ax F a dx b ax f 。
大一数学测试题

高等数学(上)模拟试卷一一、 填空题(每空3分,共42分)1、函数lg(1)y x =-的定义域是 ;2、设函数20() 0x x f x a x x ⎧<=⎨+≥⎩在点0x =连续,则a = ; 3、曲线45y x =-在(-1,-4)处的切线方程是 ; 4、已知3()f x dx x C=+⎰,则()f x = ;5、21lim(1)xx x →∞-= ; 6、函数32()1f x x x =-+的极大点是 ;7、设()(1)(2)2006)f x x x x x =---……(,则(1)f '= ;8、曲线x y xe =的拐点是 ;9、21x dx-⎰= ;10、设32,a i j k b i j k λ=+-=-+,且a b ⊥,则λ= ;11、2lim()01x x ax b x →∞--=+,则a = ,b = ;12、311lim xx x-→= ;13、设()f x 可微,则()()f x d e =。
二、 计算下列各题(每题5分,共20分)1、011lim()ln(1)x x x →-+ 2、y =y ';3、设函数()y y x =由方程xye x y =+所确定,求0x dy =; 4、已知cos sin cos x t y t t t =⎧⎨=-⎩,求dydx 。
三、 求解下列各题(每题5分,共20分)1、421x dx x +⎰2、2secx xdx⎰3、40⎰4、2201dx a x +四、 求解下列各题(共18分):1、求证:当0x >时,2ln(1)2x x x +>-(本题8分) 2、求由,,0x y e y e x ===所围成的图形的面积,并求该图形绕x 轴旋转一周所形成的旋转体的体积。
(本题10分)高等数学(上)模拟试卷二一、填空题(每空3分,共42分)1、函数lg(1)y x =-的定义域是 ; 2、设函数sin 0()20xx f x xa x x ⎧<⎪=⎨⎪-≥⎩在点0x =连续,则a = ;3、曲线34y x =-在(1,5)--处的切线方程是 ; 4、已知2()f x dx xC=+⎰,则()f x = ;5、31lim(1)x x x →∞+= ; 6、函数32()1f x x x =-+的极大点是 ; 7、设()(1)(2)1000)f x x x x x =---……(,则'(0)f = ;8、曲线xy xe =的拐点是 ; 9、32x dx-⎰= ;10、设2,22a i j k b i j k λ=--=-++,且a b ,则λ= ;11、2lim()01x x ax b x →∞--=+,则a = ,b = ;12、311lim xx x-→= ;13、设()f x 可微,则()(2)f x d =。
不定积分的典型例题50题答案

例1. 解法1).12)(12(1224+-++=+x x x x x而 +++)12(2x x )1(2)12(22+=+-x x x 所以)121121(21112242dx x x dx x x dx x x ⎰⎰⎰++++-=++ .)]12arctan()12[arctan(211)12()12211)12()12(21)21)22(121)22(1[212222c x x x x d x x d dx x dx x +++-=+++++--=++++-=⎰⎰⎰⎰解法2dxx x x x xx x dx x x ⎰⎰+++-++-=++)12)(12(2)12(1122242.arctan 21)12arctan(211212242c x x dx x xx x dx +++=++++=⎰⎰ 解法3⎰⎰⎰+-=++=++≠22222421)1(11111,0xx x x d dx x x x dx x x x 当 c x x xx x x d +-=+--=⎰21arctan 212)1()1(22,2221arctan 21lim 20π-=-+→x x x ,2221arctan 21lim 20π=--→x x x 由拼接法可有.02221arctan 2100,2221arctan 21112242⎪⎪⎩⎪⎪⎨⎧<+--=>++-=++⎰x cx x x x c x x dx x x ππ 例2.解 将被积函数化为简单的部分分式(*)1)1(1)1()1(222223⋅⋅⋅⋅⋅++++++=+++x DCx x B x A x x x 两边同乘以2)1(+x ,约去1+x 的因子后令1-→x 得 .211)1(2)1(23=+-+-=B 两边同乘以2)1(+x ,对x 求导,再令1-→x ,施以上运算后,右端得A,而左端为.2.2426)1()2(2)1(3lim]12[lim )1()1()1(2[lim 22322123122231=∴=+=++-+=++=++++-→-→-→A x x x x x x x dx d x x x x dx d x x x 在分解式(*)中令,0=x 得,2D B A ++=所以.21-=D 分解式(*)两边同乘以x ,再令,+∞→x 得.1,1-=⇒+=C C A 故有.arctan 21)1ln(21)1(211ln 2]1)1(1[)1()1(2222223c x x x x dxx DCx x B x A dx x x x +-+-+-+=++++++=+++⎰⎰例3.解 令 ,2x u =再用部分分式,則⎰⎰++=++))(1(21)()1(22244u u u dudx x x x x,11)()1(1222+++++=++u D Cu u B u A u u u 两边乘以,u 再令,0→u 得.1=A 两边乘以,1+u 再令,1-→u 得.21-=B 两边乘以,u 再令,+∞→u 得.21,0-=⇒++=C C B A 令.21,1-=⇒=D u.arctan 41)1()1(ln 81arctan 41)1ln(81)1ln(41ln 21arctan 41)1ln(811ln 41ln 21]12121)1(211[21))(1(21)()1(2422824222222244c x x x x c x x x x c u u u u du u u u u u u u dudx x x x x +-++=+-+-+-=+-+-+-=+--++-=++=++∴⎰⎰⎰ 例4828872882815)1(1181)1()1(dx x x dx x x x dx x x ⎰⎰⎰+-+=⋅+=+)1(])1(111[818288++-+=⎰x d x x .)1(81)1ln(8188c x x ++++= 例5. 解 令 ,2tant x =则=-++⎰dx xx xsin cos 1cos 1 .2)sin 1ln(21arctan )1ln(211ln )1111()1)(1(21212111111222222222c x x ct t t dtt t t dtt t dx t t t t t t t ++--=++++--=+++--=-+=+⋅+-+-++-+⎰⎰⎰ 例6dx x x122+⎰⎰+=22421dx x x.1ln 811)12(81))21(ln(161)21(41)21(21)21()21()21(212222222222222c x x x x x c u u u u du u x d x +++-++=+-+--=-=+-+=⎰⎰分部积分例7.25342)2()1(25232121232c x x x dxx x x dx x x ++-=+-=-⎰⎰-分项例8dx x x dx x ]1111[2111224++-=-⎰⎰ .arctan 2111ln 41c x x x ++-+= 例9.dx x x dx x x ⎰⎰+-+=+1111.134132111c x x x dx xdx x ++-+=+-+=⎰⎰例10.⎰⎰⎰---=-+=+)24(cos )24()2cos(1sin 12x x d x dxx dx πππ.)24tan(c x +--=π 例 11c t t dt x xdx tx +=-=-⎰⎰=arcsin 11212⎪⎩⎪⎨⎧-<+>+-=.1,1arcsin 1,1arcsin x c x x c x 例12.解 .2cos 41)2sin 211(c x x dx x J I ++=-=+⎰dx x x x x x dxxx x x x J I ⎰⎰++-=++-=-222)sin (cos )2sin 211)(sin (cos sin cos )2sin 211)(sin (cos.)12ln(sin 412sin 412sin 12cos )2sin 211(c x x dx x xx +++=++=⎰解上面的联立方程可得出.,J I例13. ).(,)1ln(31)1ln(1111111,)21(332arctan 332.1,1111111332322333233略从而可解出可求出令I c x x dx x x dx x dx x x x x dx x x J I c x J I dx x x J dx x x dx x x dx x x x dx x I ++-+=+-+=+-+-=+-=-+-=++=+-+-=+-+=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰例14.)1(12arcsin 12arcsin++=+⎰⎰x d xxdx x x .212arcsin )1(112arcsin1c x xxx dx x x x x ++++=+++=⎰)(分部积分例15.解 令,)21(12,211,12222dt t t t dx t t x t x x x +++=+-=⇒+-=++ .)1212(231212ln 231ln 2])12(23)12(231[2)21(12222222c x x x x x x x x x dt t t t dt t t t t I ++++++++++-+++=+-+-=+++=⎰⎰例16.解 .sin 2cos 5]cos 2sin 5[x x x x +='- 被积函数的分子是x x sin ,cos 的线性组合,故有.1,2,cos )25(sin )25()cos 2sin 5()cos 2sin 5(cos sin 12==⇒-++='-+-=+B A x A B x B A x x B x x A x x 于是.cos 2sin 5ln 2cos 2sin 5)cos 2sin 5()cos 2sin 5(2cos 2sin 5cos sin 12c x x x dx xx x x x x dx x x x x +-+=-'-+-=-+⎰⎰ 例17.解 ⎰⎰⎰-=-+-=+=4cos 13)(cos sin 3sin 2cos 22t dtx x d x xdx t x .cos 2cos 2ln 41]2121[41c xx dt t t ++-=+--=⎰ 例18.⎰⎰+=+x xdxx dx 222cos )2cos 1(cos 21 .3tan arctan 313arctan 313tan 3)(tan 2cos 1)(tan 222c x c t t dtx x d xx d +=+=+=+=+⎰⎰⎰ 例19..)1ln(18189623266332366c x x x x x dx xx x t x +++-+-=⋅⋅⋅=+-=⎰例20..15arctan 21515ln153215c x xx x x x dx x xx t x x+-------+-=⋅⋅⋅=---=--⎰例21..]1ln [arctan 2112sin 22c x x x x x dx tx t +-++=⋅⋅⋅=-+=≤⎰π 例22.,11ln 21211222tan 232c x x x x x dxx tx t +++-+-=⋅⋅⋅=+=<⎰π例23.⋅⋅⋅=+-=⎰t e x x xe e dx232换元后有理函数积分例24..1arcsin arcsin 2c x x x xdx +-+=⎰分部积分例25..)(c e dx e e dx exxx e xe xe +==⎰⎰+例26.”)妙用“1(cos sin 1ln cos sin 1)cos sin 1(cos sin 12cos c x x x x x x d x x xdx ++=++=+⎰⎰例27..)13()(2dx e x x e x x x x +++⎰.])[(32])[()()13(])[(23222322c e x x e x x d e x x e x x e x x x x x e ++=++=∴++='+⎰原式例28..11)1(arctan .)1(arctan 2111arctan22x x c x dx x x +-='+-=+⎰例29.=++-=+⎰⎰xb x a x b x a d a b dxx b x a x22222222222222sin cos )sin cos (1sin cos 2sin .2sin )()sin cos (.sin cos 2222222222222x a b x b x a c x b x a ab -='+++-例30.)ln ()ln (1)ln (ln 1)ln (ln 12222x xx d xx x dxxx x x xdx x x x ---=--=--⎰⎰⎰ .ln ln 1c x x xc xx x +-=+-=例31..1212ln2211)1(22sin 22c xx xx xdxt x +---+-=-+⎰=例32..111)1(22tan 2323c x x dx x x tx ++++=+=⎰例33..313222sec 0422c x a x a dx x a x t a x a +⎪⎪⎭⎫⎝⎛-⋅=-=>⎰例34dt tt t dt t t x dxtx ⎰⎰⎰--=+=-+=22sin 2cos 1cos cos cos 1cos 11.arcsin 112c x x x x ++-+-=例35..ln 212ln 141)1(2)1()2(72717c x x dt t ttx x dxtx +++-=-⋅+=+⎰⎰=例36..13)12(2)431(]43)21[()1(2232121232232c xx x t tdt x dxx x dx tx ++++=+-=++=++⎰⎰⎰=+例37..22)(212)2(2222c e x x dx e x x x e x dx x e x x xx x ++-='+++-=+⎰⎰ 例38..)2ln(201ln 21)2()2(101010910c x x x x dx x x x dx ++-=+=+⎰⎰ 例39..1ln 72ln )2()1()1()1(71076777c x x x x dx x x x x dx x ++-=+-=+-⎰⎰ 例40..)1ln (1)()111(111112c x x nx d x n dx x x x x dx x n n n n n n n n n ++-=+-=+⋅=+⎰⎰⎰-- 例41..)1(121003dx x x ⎰-+9899111003)1(493)1(1331)1(12----=-+=-⎰x x dx x x u x例51. 求,))((dx x b a x ⎰-- 其中.b a < 解 由配方得2,)2())((22a b R b a x R x b a x -=+--=--其中,令,2b a u x ++=则有原式 .))((4)(2)(2arcsin )(41cos sin 22)2sin 412(22cos 1cos 2222222sin 22c x b a x b a x ab b a x a bc t t R t R c t t R dt t R tdt R du u R t R u +--+-+-+--=++=++=+==-=⎰⎰⎰= 例52.设)(x f 有一个原函数,sin xx 求.)(⎰'dx x f x 解 用分部积分法有 (*))()()()(⋅⋅⋅⋅⋅⋅-=='⎰⎰⎰dxx f x xf x xdf dx x f x.sin cos ]sin [])([)(sin )(211xx x x c x x dx x f x f c x x dx x f -='+='=⇒+=⎰⎰ 代入(*)有 1sin sin cos )(c x x x x x dx x f x ---='⎰, 即 .sin 2cos )(c x x x dx x f x +-='⎰。
高级数学测试题

高级数学测试题一、选择题(共20小题,每小题2分,共40分)1. 设函数f(x) = ∫[0,x²] (x + t) dt,其中 x > 0,则 f'(x) =A. 2x + x²B. 2x + 2x³C. 2x + 2x²D. 2x + 2x⁴2. 对于方程组 x - y + z = 3,x + y - z = 1,2x - y + λz = 1,其中λ 为参数,则当λ = 2 时,方程组有无穷多解。
A. 有B. 无C. 无法确定D. 无穷多3. 设函数 f(x) = (x² - 2x)^(2/3),则 f''(x) =A. 4(x - 1) / (3x^(4/3))B. 4(x - 1) / (3(x - 1)^(2/3))C. 4 / (3(x - 1)^(2/3))D. 4 / (3x^(4/3))4. 设 D 是由曲线 y = x⁴和 y = x²所围成的封闭曲线的内部区域面积,则 D =A. 1/3B. 1/5C. 1/6D. 1/85. 设函数 f(x) 在区间 (-∞,∞) 上具有二阶连续导数,且满足 f'(x) = x + e^x,f(0) = 0,若极限lim(x→∞) [f(x) - ax - b] = 0,则 a + b 的值为A. 0B. 1C. 2D. 3...二、填空题(共5小题,每小题4分,共20分)1. 求函数 f(x) = x^3 + 2x^2 - x + 1 的鞍点。
鞍点坐标:(_______, _______)2. 求曲线 y = x^4 - 2x^3 的凸凹区间。
凸区间:(_______, _______)凹区间:(_______, _______)3. 求二重积分∬[D] (2xy - x^2 - y^2) dxdy,其中 D 为区域 {(x, y)| 0 ≤ x ≤ 2, 0≤ y ≤ 1}。
不定积分 计算题

计算题(共 200 小题) 1、⎰⎰+=.d )( , sin d )()(x x f c x x x f n 求设 2、⎰'>+=.d )(),0()(2x x f x x x x f 试求设 3、.d x x ⎰求4、.)( .0,sin ,0)(2的不定积分求 设x f x x x x x f ⎩⎨⎧>≤= 5、已知,求它的原函数.f x x F x ()()=-1 6、.d x x ⎰求 7、⎰-233d x x 求 8、 .,d 2是常数其中求 a x x a ⎰9、.0,,d >⎰a a x e a x x 是常数其中求 10、.d tan csc 22x x x ⋅⎰求11、⎰⋅x x x d cot sec 22求 12、⎰+22d x x 求 13、⎰+82d 2x x求 14、⎰-9d 2x x 求 15、⎰-.63d 2x x 求 16、 ⎰+232d x x 求 17、.d 2432x xx x ⎰-求 18、x x x d ⎰⋅求 19、.d )1(23x x x ⎰+求 20、 .,,d )cosh sinh (均为常数其中求 b a x x b x a ⎰+ 21、⎰x x d cot 2求22、.d 11)(3x x x ⎰++求 23、.d x x x x ⎰求 24、⎰+.d )arccos (arcsin x x x 求 25、[].d )1(cos cos )1(sin sin x x x x x ⎰+++求 26、⎰⋅.d 2sin 22x x 求 27、⎰.d 2cos 22x x 求 28、.d sin 1sin 423x x x ⎰-求 29、⎰+.d )32(2x x x 求 30、.d 3273x x x ⎰--求 31、.d 22222x x x x ⎰-+-求 32、⎰---.d )31)(21)(1(x x x x 求 33、x x x x d )1(21222⎰++求 34、.d 323x xx e x x x ⎰+-求 35、.d )1()1(22x x x x ⎰++求 36、⎰+.d )sec (tan 22x x x 求 37、.d )csc (cot 22x x x +⎰求 38、.d sin sin 2222⎰+x xx x x 求 39、.d 122x xx ⎰+求40、⎰-.d 122x x x 求 41、.d 1322x x x ⎰-+求 42、.d 111422x x x x ⎰--++求 43、 .d 111422x x x x ⎰---+求44、 .d 2cos 1sin 12x xx ⎰-+求 45、.d 1cos sin 122x x x ⎰--求 46、.d cos sin d 22x xx x ⎰求 47、 ⎰++.d 2cos 1cos 12x xx 求 48、.d sin cos 2cos x xx x ⎰-求 49、 ).20(d 2sin 1π≤≤+⎰x x x 求 50、x xx x d sin cos 2cos 22⎰求 51、 ⎰+x x x 2sin 2cos d 求 52、求⎰++++x xx x x x d 13323。