高等数学11-1第二次单元测验试卷答案201212

合集下载

河北衡水中学2011~2012学年度下学期一调考试高三数学试题 全解析(理科 )

河北衡水中学2011~2012学年度下学期一调考试高三数学试题 全解析(理科 )

河北衡水中学2011~2012学年度下学期一调考试高三数学试题 全解析(理科 )本试卷分第I 卷(选择题60分)和第Ⅱ卷(非选择题90分)两部分。

一共6页。

共24题。

本试卷共150分,考试时间120分钟.祝各位考生考试顺利!第I 卷(选择题60分)一、选择题(每小题5分,共60分。

下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.集合{}Z x x x A ∈≤+=,21,{}11,3≤≤-==x x y y B ,则=B A ( D ) A .(]1,∞-B.[]1,1-C.φD.{}1,0,1-2.若z 是复数,且()13=+i z (i 为虚数单位),则z 的值为 ( B )A .i +-3 B.i --3 C.i +3 D.i -33.已知甲、乙两名篮球运动员某十场比赛得分的茎叶图如图所示, 则甲、乙两人在这十场比赛中得分的平均数与方差的大小关系为( D ) A . 乙甲x x < 22x x S S <<乙甲,乙甲 B. 乙甲x x < 22x x S S <>乙甲,乙甲 C. 乙甲x x >22x x S S >>乙甲,乙甲D. 乙甲x x > 22x x S S><乙甲,乙甲4. 一个几何体的三视图如图所示,则该几何体的体积为( C )A .2B .1C .23 D .135.设x ,y 满足36020,3x y x y x y --≤⎧⎪-+≥⎨⎪+≥⎩若目标函数z=ax+y (a>0)的最大值为14,则a=( B ) A .1 B .2C .23D .5396.等差数列{n a }前n 项和为n s ,满足4020s s =,则下列结论中正确的是( D ) A 、30s 是n s 中的最大值 B 、30s 是n s 中的最小值 C 、30s =0 D 、60s =0 7.阅读右面程序框图,任意输入一次(01)x x ≤≤与(01)y y ≤≤,则能输出数对(,)x y 的概率为( A )A .13B .23C .14 D .34乙 甲 8 6 4 3 1 58 6 3 2 4 58 3 4 9 45 01 3 1 6 798.若函数sin()y A x ωϕ=+(0A >,0ω>,||2πϕ<)在一个周期内的图象如图所示,,M N 分别是这段图象的最高点和最低点,且ON OM ⋅=0,(O 为坐标原点)则A ω⋅=( C ) A 、6πB 、712π C 、76π D 、73π 9.已知双曲线221916x y -=,其右焦点为F ,P 其上一点,点M 满足MF =1,0=⋅MP MF ,则MP 的最小值为( B )A 3B 3C 2D 210.设D 是正123PP P ∆及其内部的点构成的集合,点0P 是123PP P ∆的中心,若集合0{|,||||,1,2,3}i S P P D PP PP i =∈≤=,则集合S 表示的平面区域是( D )A . 三角形区域B .四边形区域C . 五边形区域D .六边形区域11.如图,已知平面α⊥平面β,A 、B 是平面α与平面β的 交线上的两个定点,,DA CB ββ⊂⊂,且DA α⊥,CB α⊥,4AD =,8BC =,6AB =,在平面α上有一个动点P ,使得APD BPC ∠=∠,则PAB ∆的面积的最大值是( C )A239 B 536 C 12 D 2412.已知函数()||,()xx af x e a R e=+∈在区间[0,1]上单调递增,则实数a 的取值范围是( C )A . [0,1]a ∈B . ]0,1[-∈a C. [1,1]a ∈- D. ),[],(22+∞⋃--∞∈e e a 第Ⅱ卷( 90分)二、填空题(本大题共4小题,每小题5分,共20分)13. 为了测量一古塔的高度,某人在塔的正西方向的A 地测得塔尖的仰角为45°,沿着A 向北偏东30°前进100米到达B 地(假设A 和B 在海拔相同的地面上),在B 地测得塔尖的仰角为,则塔高为_____ 米5014.已知函数()f x 满足:1(1)4f =,4()()()(),(,)f x f y f x y f x y x y R =++-∈,则(2010)f =____________.12βαA CBP D解:令1y =则4()(1)(1)(1),(,)f x f f x f x x y R =++-∈()(1)(1)f x f x f x ∴=++-∴(1)(2)()f x f x f x +=++ ∴()(2)f x f x =+ ∴(2010)(0)f f =令1y =则1(0)2f =∴1(2010)2f =15.在平面直角坐标系中,定义点),(),,(2211y x Q y x P 之间的“直角距离”为||||),(2121y y x x Q P d -+-=。

福建师大附中11-12学年度下学期高一数学期末模块测试新人教A版

福建师大附中11-12学年度下学期高一数学期末模块测试新人教A版

某某师大附中2011—2012学年度下学期末模块测试高一数学试题本试卷共4页.满分150分,考试时间120分钟.注意事项:将答案填写在答卷纸上,考试结束后只交答案卷.一、选择题:本大题有12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求. 1.sin 300tan 240oo+的值是 A .23-B .23C .321+-D .321+ 2.函数2cos 2y x =+是A .最小正周期为π的偶函数B .最小正周期为π的奇函数C .最小正周期为2π的偶函数D .最小正周期为2π的奇函数 3.已知(2,3)A ,(3,0)B ,且2AC CB =-,则点C 的坐标为 A .(3,4)-B .(4,3)-C .8(,1)3D .8(1,3-4.已知a b a ,2||,1||==与b 的夹角为600,若ka b +与b 垂直,则k 的值为A .4-B .4C .43-.435.若把函数cos y x =的图象上所有点的横坐标缩小到原来的一半(纵坐标不变),然后再把图象向左平移6π个单位,则所得图象对应的函数解析式为 A .1cos(26y x π=+B .1cos()212y x π=+C .cos(2)6y x π=+D .cos(2)3y x π=+6.已知扇形的周长是6cm ,面积是22cm ,则扇形的中心角的弧度数是 A .1 B .4 C .1 或4D .2 或47.若,αβ为锐角,且满足45cos ,cos(),513ααβ=+= 则sin β的值是 A .1665B .3365C .5665D .63658.已知函数sin()y A x B ωϕ=++的一部分图象如图所示,如果2||,0,0πϕω<>>A ,则第14题图A .4=AB .1=ωC .6πϕ=D .4=B9.已知以原点O 为圆心的单位圆上有一质点P ,它从初始位置013()2P 开始,按逆时针方向以角速度1/rad s 做圆 周运动.则点P 的纵坐标y 关于时间t 的函数关系为 A .sin(),03y t t π=+≥B .sin(),06y t t π=+≥ C .cos(),03y t t π=+≥D .cos(),06y t t π=+≥ 10.若(010,)4k k k Z πθ=≤≤∈,则sin cos 1θθ+≥的概率为 A .15B .25C .211D .61111.设()2sin()f x x m ωϕ=+-,恒有()()2f x f x π+=-成立,且(14f π=-,则实数m的值为A .1±B .3±C .-3或1D .-1或312.若两个函数的图象仅经过若干次平移后能够重合,则称这两个函数为“同形”函数.给出下列三个函数:1()22f x x =,2()sin cos f x x x=+,3()2)16f x x π=++,则A .123(),(),()f x f x f x 两两为“同形”函数B .12(),()f x f x 为“同形”函数,且它们与3()f x 不为“同形”函数C .23(),()f x f x 为“同形”函数,且它们与1()f x 不为“同形”函数D .123(),(),()f x f x f x 两两不为“同形”函数二、填空题:本大题有5小题,每小题4分,共20分,把答案填在答卷的相应位置. 13.已知5sin()6x π+=,则2cos()3x π+的值为 *** ; 14.如图,在平行四边形ABCD 中,,,3AB a AD b AN NC ===,则BN = *** (用,a b 表示) ;15.设a =)sin ,23(α,b =31,(cos α,且a ∥b ,则锐角α的大小为 *** ;16.定义在R 上的函数()f x 既是偶函数又是周期函数,若()f x 的最小正周期是2π,且当[0,]4x π∈ 时,()cos f x x =,则()3f π= *** ;17.定义平面向量之间的一种运算“⊗”如下:对任意的向量(,),(,)a m n b p q ==,令a b mq np ⊗=-,给出下面四个判断:①若a 与b 共线,则0a b ⊗=; ② 若a 与b 垂直,则0a b ⊗=;③a b b a ⊗=⊗; ④2222()()||||a b a b a b ⊗+⋅=.其中正确的有 *** (写出所有正确的序号).三、解答题:本大题有6题,共70分,解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分10分)已知||2,||1,(23)(2)9a b a b a b ==⋅+=-. (Ⅰ)求a b 与的夹角θ; (Ⅱ)求向量a 在()a b +上的投影.19.(本小题满分12分)如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α、β,它们的终边分别与单位圆相交于A 、B 两点.已知A 、B 的横坐标分别为102,552.(Ⅰ)求)tan(βα+的值;(Ⅱ)求22sin sin 26cos cos 2αααα++的值.20.(本小题满分12分)已知向量(cos 2,4),(1,cos )a x b x λ=-=,其中,[0,]2R x πλ∈∈.设函数()f x a b =⋅.(Ⅰ)求)(x f 的解析式; (Ⅱ)若()f x 的最小值是23-,求λ的值.21.(本小题满分12分) (Ⅰ)已知:3sin cos 5αβ+=,4cos sin 5αβ-=,求sin()αβ-的值; (Ⅱ)类比(Ⅰ)的过程与方法,将(Ⅰ)中已知条件中两个等式的左边进行适当改变,写出改变后的式子,并求cos()αβ-的值.22.(本小题满分12分)如图,在半径为1,圆心角为6π的扇形OAB 的弧上任取一点C ,作CD OA ,交OB 于点D ,求OCD ∆的最大面积.23.(本小题满分12分)已知函数()cos 2(),(0,0,0)222A A f x x A πωϕωϕ=-+>><<的图象过点(1,2),相邻两条对称轴间的距离为2,且()f x 的最大值为2. (Ⅰ)求()f x 的单调递增区间; (Ⅱ)计算(1)(2)(2012)f f f +++;(Ⅲ)设函数()()1g x f x m =--,试讨论函数()g x 在区间[1,4]上的零点情况.参考答案一、选择题:1-12:BABADCBCADDC 二、填空题: 13.5-.1344a b -+ 15.4π16.2 17. ①④ 三、解答题:18.解: (Ⅰ)22(23)(2)4439a b a b a a b b +=-⋅-=-, 即16439a b -⋅-=∴1a b ⋅=∴1cos 2||||a b a b θ⋅==∵[0,]θπ∈∴3πθ=(Ⅱ)222||27a b a a b b +=+⋅+= ∴||7a b +=,设a 与()a b +的夹角为α∴向量a 在()a b+上的投影为2()()5||cos ||7||||||||7a ab a a b a a b a a a a b a b a b α⋅+⋅++⋅=====+++ 19.解:由条件得102cos =α,552cos =β,∵α,β为锐角, ∴1027cos 1sin 2=-=αα,55cos 1sin 2=-=ββ, 因此7cos sin tan ==ααα,21cos sin tan ==βββ. (1)32171217tan tan 1tan tan )tan(-=⨯-+=-+=+βαβαβα. (2)2222222sin sin 2sin 2sin cos tan 2tan 491436cos cos 27cos sin 7tan 7492αααααααααααα++++====-+--- 20.解:(Ⅰ),cos 42cos )(x x x f λ-=]2,0[π∈x(Ⅱ)∵()cos 24cos f x x x λ=-222(cos )12.x λλ=---]2,0[π∈x∵]2,0[π∈x , ∴.1cos 0≤≤x设cos ,0 1.t x t =≤≤则222()12,0 1.y t t λλ=---≤≤01<'λ当、时,当且仅当min 0,1t y ==-时,这与已知矛盾. 101≤≤''λ当、时,当且仅当2min ,12t y λλ==--时.由已知得23212-=--λ,解得.21=λ 11>'''λ当、时,当且仅当min 1,14t y λ==-时.由已知得2341-=-λ,解得85=λ,这与1>λ相矛盾.综上所述,21=λ为所求. 21.解:(Ⅰ)∵53cos sin =+βα①54sin cos =-βα②①的平方+②的平方,得22(sin cos cos sin )1αβαβ+-=21)sin(-=-∴βα(Ⅱ)可将(Ⅰ)(1)中已知条件改为,3sin sin 5αβ+=,54cos cos =+βα,将两式平方后求和得1)cos cos sin (sin 22=++βαβα21)cos(-=-∴βα22.解:作DE OA ⊥于点E ,CF OA ⊥于点F ,设AOC α∠=,则0π在Rt OCF∆中,sin CFα=,cos OF α= 在Rt ODE ∆中,∴OE α===∴cos EF OFOE αα=-= ∴21111sin (cos )sin cos 2222OCD S CD CF EF CF αααααα∆=⋅=⋅=⋅=1cos 2)1sin 2sin 2cos 244444αααα-=-=+-1sin(2)234πα=+-,06πα<<. ∵06πα<<,所以22333πππα<+<∴当232ππα+=,即12πα=时,OCD S ∆有最大值且为124- 23.解:(Ⅰ)22,4,02224T T T πππωωω==>∴==∴=, 由于()f x 的最大值为2且A>0, ∴ 所以222A A+=即A=2∴()1cos 2()4f x x πϕ=-+,又函数()f x 的图象过点(1,2)则cos 2()1sin 21422,,24024k k k Zπϕϕππϕπϕππϕπϕ+=-∴=∴=+=+∈<<∴=∴()1cos 2()1sin 442f x x x πππ=-+=+ 由22(),222k x k k Z πππππ-≤≤+∈得1414(),2k x k k Z π-+≤≤+∈∴)(x f 的单调增区间是[14,14]().k k k Z -++∈ (Ⅱ)由(Ⅰ)知()1sin2f x x π=+,∴()f x 的周期为4,而2012=4×503 且(1)2,(2)1,(3)0,(4)1f f f f ==== ∴原式45032012=⨯=(Ⅲ)()()1cos()sin 222g x f x m x m x m πππ=--=-+-=-函数()g x 的零点个数即为函数sin2y x π=的图象与直线y m =的交点个数.在同一直角坐标系内作出这两个函数的图象(如下图所示),由图象可知:x1) 当1m >或1m <-时,函数sin 2y x π=的图象与直线y m =无公共点,即函数()g x 无零点;2) 当01m <≤或1m =-时,函数sin2y x π=的图象与直线y m =有一个公共点,即函数()g x 有一个零点; 3) 当10m -<≤时,函数sin2y x π=的图象与直线y m =有两个公共点,即函数()g x 有两个零点.。

河北省衡水中学11-12学年高一下学期二调考试(数学文)

河北省衡水中学11-12学年高一下学期二调考试(数学文)

2011—2012学年度第二学期第二次调研考试高一年级数学(文科)试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。

考试时间120分钟。

第Ⅰ卷(选择题 共60分)注意事项:1.答卷Ⅰ前,考生将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.答卷Ⅰ时,每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

一、 选择题(每小题5分,共60分。

下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1. 下列两个变量之间的关系是相关关系的是 ( )A.正方体的棱长和体积B.单位圆中角的度数和所对弧长C.单产为常数时,土地面积和总产量D.日照时间与水稻的亩产量2.在下列各数中,最小的数是 ( )A 、)9(85B 、)6(210C 、)4(1000D 、)2(111113.阅读右侧程序:如果输入x =2,则输出结果y 为 ( )A .π-5B .-π-5C .3+πD .3-π4.与01303终边相同的角是 ( )A .0763B .0493C .0371-D .047-5. 已知点A (1,2,-1),点C 与点A 关于xOy 面对称,点B 与点A 关于x 轴对称,则|BC |的值为 ( ) A. 2 5 B. 4 C. 2 2 D. 276.图1是某地参加2011年高考的学生身高统计图,从左到右的各长方形表示的学生人数依次记为1021,A A A ,,(如2A 表示身高(单位:cm )在[)150,155内的学生人数).图2是统计图1中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~185cm (含160cm ,不含185cm )的学生人数,那么在流程图中的判断框内应填写的条件是 ( ) A.9i < B.8i < C.7i < D.6i <第3题7.有四个游戏盘面积相等,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是 ( )8.某产品的广告费用x 与销售额y 的统计数据如下表根据上表可得回归方程ˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为( ) A .63.6万元 B .65.5万元 C .67.7万元 D .72.0万元9. 执行如图所示的程序框图,若输出的n =6,则输入整数p 的最大值是( )A.32B.31C.15D.1610.已知圆的方程为08622=--+y x y x 设该圆中过点(3,5)的最长 弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积是 ( )A .610B .620C .630D .640第9题图S=S+2 n-111.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案.使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是 ( )A .②、③都不能为系统抽样B .②、④都不能为分层抽样C .①、④都可能为系统抽样D .①、③都可能为分层抽样12. 对任意实数,a b ,定义运算“*”如下:x x f b a b b a a b a 221log )23(log )().(),(*-=⎩⎨⎧>≤=*则函数 x x x f b a b b a a b a 221log )23(log )().(),(*-=⎩⎨⎧>≤=*则函数的值域为 ( ) A .[)+∞,0 B .(]0,∞- C .)0,32(log 2 D .),32(log 2+∞ 第Ⅱ卷(非选择题 共90分)二、 填空题(每题5分,共20分。

2011-2012学年第一学期期末高二数学(理科)试题及答案

2011-2012学年第一学期期末高二数学(理科)试题及答案

肇庆市中小学教学质量评估 2011—2012学年第一学期统一检测题高二数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在空间中,下列命题正确的是A .垂直于同一平面的两条直线平行B .垂直于同一平面的两个平面平行C .平行于同一直线的两个平面平行D .平行直线的平行投影重合 2.下列是全称命题且是真命题的是A .0,2>∈∀x R xB .0,,22>+∈∀y x R y xC .Q x Q x ∈∈∀2,D .1,20>∈∃x Z x 3.双曲线142522=-y x 的渐近线方程是 A .x y 52±= B .x y 25±= C .x y 254±= D .x y 425±=4.命题“若a >-3,则a >-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为A .1B .2C .3D .45.已知向量)0,1,1(=a ,)2,0,1(-=b ,且b a k +与b a -2互相垂直,则k 的值是A .1B .51C .53D .576.若焦点在x 轴上的椭圆1222=+k y x 的离心率为21,则实数k 等于 A .3 B .32 C .38 D .23 7.若圆02)1(222=-+-++m my x m y x 关于直线01=+-y x 对称,则实数m 的值为A .-1或3B .-1C .3D .不存在8.如图,某几何体的正视图、侧视图和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为A .34B .32C .4D .2二、填空题:本大题共6小题,每小题5分,满分30分.9.用一个平面截半径为25的球,截面面积是225π,则球心到截面的距离为 ▲ .10.若A (-2,3)、B (3,-2)、C (21,m )三点共线,则m 值为 ▲ .11.双曲线14222=-y x 的离心率等于 ▲ . 12.若动点P 在122+=x y 上,则点P 与点Q (0,-1)连线中点的轨迹方程是 ▲ . 13.不等式0)1)((<++x x a 成立的一个充分而不必要条件是12-<<-x ,则a 的取值范围是 ▲ .14.如图,在梯形ABCD 中,AB //CD ,AB =4,CD =2. E 、F 分别为AD 、BC 上点,且EF =3, EF //AB ,则梯形ABFE 与梯形EFCD 的面积 比为 ▲ .三、解答题:本大题共6小题,满分80分. 解答须写出文字说明、证明过程和演算步骤. 15.(本小题满分12分)求满足下列条件的直线的方程:(1)经过点A (3,2),且与直线4x +y -2=0平行;俯视图正视图侧视图A BCDEF(2)经过点B (2,-3),且平行于过点M (1,2)和N (-1,-5)的直线; (3)经过点C (3,0),且与直线2x +y -5=0垂直.16.(本小题满分12分)如图,一个高为H 的三棱柱形容器中盛有水. 若侧面AA 1B 1B 水平放置时,液面恰好过AC 、BC 、A 1C 1、B 1C 1的中点E 、F 、E 1、F 1. 当底面ABC 水平放置时,液面高为多少?17.(本小题满分14分)求与x 轴相切,圆心在直线3x -y =0上,且被直线x -y =0截得的弦长为72的圆的方程.18.(本小题满分14分)如图,棱长为a 的正方体1111D C B A ABCD -中,M 、N 、E 、F 分别是A 1B 1、A 1D 1、B 1C 1、C 1D 1的中点.(1)求证:B 、D 、E 、F 四点共面; (2)求证:平面AMN //平面BEFD ; (3)求点A 1到平面AMN 的距离.19.(本小题满分14分)如图,在长方体ABCD —A 1B 1C 1D 1中,E 、F 分别是棱BC 、CC 1上的点,CF =AB =2CE ,AB :AD :AA 1=1:2:4.(1)求异面直线EF 与A 1D 所成角的余弦值; (2)证明:AF ⊥平面A 1ED ;(3)求二面角A 1—ED —F 的大小的正弦值.111A 1B 120.(本小题满分14分)已知F 1、F 2分别为椭圆C 1:)0(12222>>=+b a bx a y 的上、下焦点,其中F 1也是抛物线C 2:y x 42=的焦点,点M 是C 1与C 2在第二象限的交点,且35||1=MF . (1)求椭圆C 1的方程;(2)已知A (b ,0),B (0,a ),直线 y =kx (k >0)与椭圆C 1相交于E 、F 两点. 求四边形AEBF 面积的最大值.2011—2012学年第一学期统一检测题 高二数学(理科)参考答案及评分标准一、选择题二、填空题9.20 10.2111.3 12.24x y =13.(2,+∞) 14.7:5 三、解答题15.(本小题满分12分)解:(1)由直线4x +y -2=0得直线的斜率为-4, (2分) 所以经过点A (3,2),且与直线4x +y -2=0平行的直线方程为y -2=-4(x -3),即4x +y -14=0. (4分) (2)由已知,经过两点M (1,2)和N (-1,-5)的直线的斜率271125=----=k , (6分) 所以,经过点B (2,-3),且平行于MN 的直线方程为)2(273-=+x y ,即7x -2y -20=0. (8分) (3)由直线2x +y -5=0得直线的斜率为-2, (9分) 所以与直线2x +y -5=0垂直的直线的斜率为21. (10分) 所以,经过点C (3,0),且与直线2x +y -5=0垂直的直线方程为)3(21-=x y ,即x -2y -3=0. (12分)16.(本小题满分12分)解:当侧面AA 1B 1B 水平放置时,水的体积V 等于 四棱柱ABFE —A 1B 1F 1E 1的体积,H S V V ABFE •==梯形四棱柱. (3分)当底面ABC 水平放置时,设水面高为h ,则水的体积h S V ABC •=∆. (6分) 因为E 、F 为AC 、BC 的中点,所以ABC CEF S S ∆∆=41, 所以ABC ABFE S S ∆=43梯形. (8分) 由h S H S ABC ABFE •=•∆梯形,即h S H S ABC ABC •=•∆∆43,得H h 43=. (11分)故当底面ABC 水平放置时,液面高为H 43. (12分)17.(本小题满分14分)解:设所求的圆的方程是)0()()(222>=-+-r r b y a x , (2分) 则圆心到直线x -y =0的距离为2||b a -, (4分)所以222)7()2||(+-=b a r ,即14)(222+-=b a r ① (6分)111因为所求的圆与x 轴相切,所以22b r = ② (8分) 又因为所求圆心在直线3x -y =0上,所以3a -b =0 ③ (10分)联立①②③,解得⎪⎩⎪⎨⎧===,3,3,1r b a 或⎪⎩⎪⎨⎧=-=-=.3,3,1r b a (12分)故所求圆的方程为9)3()1(22=-+-y x 或9)3()1(22=+++y x . (14分)18.(本小题满分14分) (1)证明:如图,连接B 1D 1. 因为E 、F 为B 1C 1、C 1D 1的中点, 所以EF //B 1D 1. (2分) 又因为BD //B 1D 1,所以EF //BD . (3分) 故B 、D 、E 、F 四点共面. (4分) (2)证明:连接EN .因为M 、N 为A 1B 1、A 1D 1的中点,所以MN //B 1D 1.又EF //B 1D 1,所以MN / / EF . (5分) 因为EF ⊂平面BEFD ,所以MN //平面BEFD . (6分) 因为E 、N 为B 1C 1、A 1D 1的中点,所以EN //A 1B 1,且EN =A 1B 1. 又AB //A 1B 1,且AB =A 1B 1,所以NE / / AB ,且NE =AB .所以四边形ABEN 为平行四边行,故AN //BE . (7分) 因为BE ⊂平面BEFD ,所以AN //平面BEFD . (8分) 因为MN ⊂平面AMN ,AN ⊂平面AMN ,且MN ∩AN =N ,所以平面AMN //平面BEFD . (9分) (3)证明:设A 1到平面AMN 的距离为d . 在∆AMN 中,a a a AN AM 254122=+==,a a a MN 22414122=+=, 所以22283162452221a a a a S AMN =-⨯⨯=∆. (11分)A 1因为MN A A AMN A V V 11--=三棱锥三棱锥, (12分)即a a d a ⨯⨯=⨯⨯2281318331, (13分) 解得3a d =,故A 1到平面AMN 的距离为3a. (14分)19.(本小题满分14分)解:以A 为原点,建立如图所示的空间直角坐标系. 设AB =1,依题意得A (0,0,0),A 1(0,0,4), D (0,2,0),E (1,23,0),F (1,2,1). (2分) (1)易得)1,21,0(=EF ,)4,2,0(1-=D A . (3分)所以535225410||||,cos 111-=⨯-+=•>=<D A EF D A EF D A EF , (5分)故异面直线EF 与A 1D 所成角的余弦值为53. (6分)(2)易得)1,2,1(=AF ,)4,23,1(1-=E A ,)4,2,0(1-=D A . (7分)因为04311=-+=•E A AF ,04401=-+=•D A AF , (8分) 所以E A AF 1⊥,D A AF 1⊥. (9分) 又A 1E ⊂平面A 1ED ,A 1D ⊂平面A 1ED ,A 1E ∩A 1D = A 1,所以AF ⊥平面A 1ED . (10分) (3)设平面EFD 的法向量为),,(z y x m =.由)1,21,0(=EF ,)0,21,1(-=ED ,⎪⎩⎪⎨⎧=•=•,0,0m ED m EF得⎪⎪⎩⎪⎪⎨⎧=+-=+,021,021y x z y 解得⎩⎨⎧-=-=.2,z y z x不妨令1-=z , 得)1,2,1(-=m . (11分)由(2)可知,)1,2,1(=AF 为平面A 1ED 的一个法向量. (12分) 于是3266141||||,cos =⨯-+=•>=<AF m AF m AF m , (13分) 从而35,sin >=<AF m . 所以二面角A 1—ED —F 的大小的正弦值为35. (14分)20.(本小题满分14分)解:(1)设)0)(,(000<x y x M .由C 2:y x 42=,得F 1(0,1). (1分) 因为M 在抛物线C 2上,故024y x =. ① (2分) 又35||1=MF ,则3510=+y . ② (3分) 解①②得⎪⎪⎩⎪⎪⎨⎧=-=.32,36200y x (4分) 因为点M 在椭圆上,故1)362()32(2222=-+b a ,即1389422=+ba ③ (5分) 又c =1,则122+=b a ④ (6分)解③④得⎪⎩⎪⎨⎧==.3,422b a 故椭圆C 1的方程为13422=+x y . (7分) (2)不妨设),(11y x E ,),(22y x F ,且21x x <.将kx y =代入13422=+x y 中,可得431222+=k x , (8分) 即4332212+=-=k x x ,所以4332212+=-=k k y y . (9分)由(1)可得2||,3||==OB OA . (10分) 故四边形AEBF 的面积为22223232212221y x y x S S S AEF BEF +=⨯⨯+⨯⨯=+=∆∆. (11分) 所以43341324364334222++•=+++=k kk k k S (12分)因为k k 34432≥+,所以143342≤+k k. (13分)所以62≤S ,当且仅当332=k 时,等号成立. 故四边形AEBF 面积的最大值为62. (14分)。

11-12-1高数(一)期终考试试题答案及评分标准(A)

11-12-1高数(一)期终考试试题答案及评分标准(A)

| | | | | | | |装| | | | |订|| | | | |线| | | | | | | | |防灾科技学院2011~2012学年 第 一 学期期末考试《高等数学(一)》试卷(A ) 使用班级 11级本科 答题时间_120分钟(本试卷理工、财经各专业通用,共三页24道题)一、选择题(本大题共5小题,每题3分,共 15 分。

)1、设22()54,()(1)x x x x x αβ=-+=-,则当1x →时,( D )。

A. ~αβ B. αβ与是同阶无穷小,但不是等价无穷小C.αβ是比高阶的无穷小 D. 低阶的无穷小是比βα2、设2,1(),1ln x xf x x a b x ≤⎧=⎨>+⎩在点1=x 处可导,则,a b 的值为( B )。

A. 0,1a b == B. 1,2a b == C. 1,12a b == D. 1,0a b == 3、设⎰++=dx x x x I sin 1cos ,则I =( D )。

A. 2(1cos )x C ++ B. a r c s i n x x C ++C. l n 1c o s x C ++D. ln sin x x C ++4、在[0,1]上''()0f x >,0)('<x f ,则其在区间[0,1]上为( B )。

A.单调增,凹 B. 单调减,凹 C. 单调增,凸 D. 单调减,凸5.下列反常积分中发散的是( C )。

A. 211dx x +∞-∞+⎰ B. 1+∞⎰C.1dxx⎰D. 1⎰二、 填空题(本大题共5小题,每题3分,共15 分。

)6、n nn n n sin lim3++∞→= 0 ;7、设x x x f ln )1(+=+,则()''=f x 2)1(1--x ;8、已知)(x f 的一个原函数是)tan 1(x x +,⎰='x x f x d )(则C x x +22sec ;9、微分方程y x y 2'=的通解是 3x Ce ;10、用待定系数法求解二阶常系数非齐次线性常微分方程xe x y y y 2//)4(23+=+'-的特解时,所设特解的形式为=*y x e b ax x 2)(+。

河北省衡水中学11-12学年高一数学下学期一调考试 理

河北省衡水中学11-12学年高一数学下学期一调考试 理

2011—2012学年度第二学期第一次调研考试高一年级数学(理科)试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。

考试时间120分钟。

第Ⅰ卷(选择题共60分)注意事项:1.答卷Ⅰ前,考生将自己的某某、某某号、考试科目涂写在答题卡上。

2.答卷Ⅰ时,每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

一、选择题(每小题5分,共60分。

下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.已知}104|{+∈=N x x x A 的公倍数,与是,},20|{+∈==N m m x x B ,则 ( ) A .B A ⊆且B A ≠B .A B ⊆且B A ≠C . B A =D .B A ∈2.已知函数⎩⎨⎧>≤=)0(log )0(3)(2x x x x f x ,那么1[()]8f f 的值为( ) A .27 B .127C .27-D .127- 3.某四棱锥的三视图如图所示,该四棱锥的表面积是 ( ) A.32 B.16+162C.48 D.16322+4.若直线y x b =-与曲线1)2(22=+-y x 有两个不同的公共点,则实数b 的取值X 围为 ( ) A.(22,1)- B.[22,22]-+ C.(,22)(22,)-∞-++∞D.(22,22)-+5.已知直二面角l αβ--,点A α∈,AC l ⊥,C 为垂足,B β∈,BD l ⊥,D 为垂足,若2,1AB AC BD ===,则CD =( )D.16.设)(x f 为定义在R 上的奇函数,当0≥x 时,b x x f x++=22)((b 为常数),则)1(-f =( )A .3 B.1 C.-1 D.-37.设(0,0),(1,1),(4,2)A B C ,若线段AD 是△ABC 外接圆的直径,则点D 的坐标是(). A .(-8,6) B .(8,-6) C .(4,-6) D .(4,-3) 8.如图,M 是正方体1111ABCD A B C D -的棱1DD 的中点,给出命题①过M 点有且只有一条直线与直线AB 、11B C 都相交; ②过M 点有且只有一条直线与直线AB 、11B C 都垂直; ③过M 点有且只有一个平面与直线AB 、11B C 都相交; ④过M 点有且只有一个平面与直线AB 、11B C 都平行. 其中真命题是( )A .②③④ B.①③④ C.①②④ D.①②③ 9.定义新运算“&”与“*”:1&y x y x -=,(1)log x x y y -*=,则函数(&3)1()32xx f x +=*是( )A 、奇函数B 、偶函数C 、非奇非偶函数D 、既是奇函数又是偶函数 10.若点A (2,-3)是直线0111=++y b x a 和0122=++y b x a 的公共点,则相异两点),(11b a 和),(22b a 所确定的直线方程为 ( ) A.0132=--y x B.0123=+-y x C.0132=+-y x D. 0123=--y x 11.在边长为1的菱形ABCD 中,∠ABC=60O,将菱形沿对角线AC 折起,使折起后BD=1,则三棱锥B-ACD 的体积为为( ) A.122 B.121 C.62 D.42B 11M12.已知直线01243:=-+y x l ,若圆上恰好存在两个点P 、Q ,他们到直线l 的距离为1,则称该圆为“完美型”圆。

高等数学统考卷11-12届附答案

高等数学统考卷11-12届附答案

高等数学统考卷 1112届附答案一、选择题(每题1分,共5分)1. 下列函数中,哪个函数是奇函数?A. y = x^3B. y = x^2C. y = x^4D. y = |x|A. 积分的上下限互换,积分值不变B. 被积函数乘以常数,积分值也乘以该常数C. 积分区间可加性D. 积分中值定理3. 下列极限中,哪个是正确的?A. lim(x→0) (sin x) / x = 0B. lim(x→0) (1 cos x) / x^2 = 1C. lim(x→∞) (1 / x) = 0D. lim(x→∞) (x^2 1) / x = 1A. ∫∫(x^2 + y^2) dxdyB. ∫∫xy dxdyC. ∫∫x dxdyD. ∫∫y dxdy5. 下列级数中,哪个是收敛的?A. 1 + 1/2 + 1/3 + 1/4 + …B. 1 1/2 + 1/3 1/4 + …C. 1 + 2/3 + 4/9 + 8/27 + …D. 1 + 1/2 + 1/4 + 1/8 + …二、判断题(每题1分,共5分)1. 高斯公式可以用来计算曲面积分。

()2. 泰勒公式可以用来近似计算函数值。

()3. 无穷小量相乘仍为无穷小量。

()4. 拉格朗日中值定理是罗尔定理的推广。

()5. 偏导数连续必可微。

()三、填空题(每题1分,共5分)1. 函数f(x) = e^x 在x = 0处的导数值为______。

2. 曲线y = x^3 在点(1, 1)处的切线方程为______。

3. 若f(x, y) = x^2 + y^2,则f_x(1, 2) =______。

4. 设A为矩阵,若|A| = 0,则A为______矩阵。

5. 空间曲线r(t) = (cos t, sin t, t) 在t = π/2处的切线方向向量为______。

四、简答题(每题2分,共10分)1. 简述罗尔定理的内容。

2. 解释复合函数求导法则。

3. 举例说明什么是隐函数。

11-12-2高等数学下(通信、电子本科)A卷及标准答案

11-12-2高等数学下(通信、电子本科)A卷及标准答案

2011 - 2012学年第二学期期末考试《高等数学(下)》试卷(A)答卷说明:1、本试卷共6页,四个大题,满分 100分,120分钟完卷。

2、闭卷考试。

3、适用班级:11级通信系、电子系本科各班题号-一--二二三四总分分数评阅人: ____________ 总分人: __________________________、单项选择题(共 10小题,每小题3分,共30分)。

【A 】设有直线L : 口 =丄二二2及平面二:2x y =1,则直线L1 -2 1(A)平行于二 (B) 在二内 (C)垂直于二 (D) 与二斜交【D 】2.锥面z立体在xoy 面的投影为[A l 4.函数z = f (x, y)在点(x 0, y 0)处可微分,则函数在该点1 1【C 】5.将二次积分pdx. f(x,y)dy 转化成先对x ,后对y 的二次积分为(A)必连续 (C)必有极值(D)(B)偏导数必存在且连续偏导数不一定存在(A) (x -1)2 y 2=1 (B) (x-1)2 y 2 乞 1(C)z= 0,(x -1)2y 2 -1(D)z =0,(x_1)2y 2 _1【C 3.设函数z 二z(x, y)由方程e z = e + xyz 确定,则一z的值为(1,0,1)(A) d(B)e (C)(D)11 1 x( A )°dy y f(x, y)dx(B)°dy 0f(x,y)dx( C )1 y0dy 0f(x,y)dx(D) 1 10dy 0f(x,y)dx【D] 6.设L为圆周x22y =1(逆时针方向),则口L(x y)dx (3y -2x)dy( A 3 二(B) 2 二(C) 4 二(D) -3':【D】7.下列级数中,收敛的级数是001(A) ----------- (B)n4 . 2n 1f (3n4 2n(C)1 nn4 1 * n2(D)nm n ■ 1°°(x _1)n 【B] 8.幕级数a(x n丿■的收敛域为心n3n(A) ( -2, 4) (B)[-2,4)(C)[-2,4](D)(-2, 4]【C】9.微分方程y - y = 0满足初始条件y l x出=2的特解为(A) y =e x1( B)xy = e 2x x(C) y = 2e (D) y = e【B] 10.具有特解y1.x .x二e , y2 二xe的二阶常系数齐次线性微分方程是(A) y -2y y = 0(B)y 2y y = 0(C) y y - 2y = 0(D)y - y 2y = 0得分|二、填空题(共5小题,每小题3分,共15分)1. 设两点A(1,2,1)及B (2,1,3),则| AB | = | AB | = •、6 _;向量AB与z轴的夹角为,r则方向余弦COS ;* = ____ . COS f = ----32. 设z = y x,则dz=_dz = y x In yd^xy x^dy.3. 函数f(x, y) =x2y — y2在点P(1,1)处方向导数的最大值为_T5 _____________ .4. 设L是连接(1,0)及(0,1)两点的直线段,则[(x + y)ds=_J2 _______________ .15.函数 展开成X 的幕级数为3 x1.已知曲面Z =x 2 ・y 2-2上一点M (2,1,3),⑴ 求曲面在M 点处的一个法向量;(2) 求曲面在M 点处的切平面及法线方程•2.求函数 f (x, y) = 2(x 「y)「x 2「y 2 的极值.2 2 2 23.平面薄片的面密度为」(x,y)=x y 1,所占的闭区域 D 为圆周x y =1及坐标轴所围成的第一象限部分,求该平面薄片的质量.4.利用高斯公式计算曲面积分(3z 2x)dydz - (y 3 -2xz)dxdz - (3x 2z)dxdy ,其中Z为上半球面z = a 2 -x 2 - y 2及平面z = 0所围立体的整个边界曲面的外侧5.设曲线通过原点,且曲线上任一点 M (x, y)处的切线斜率等于 x - y ,求该曲线的方程.6. 求微分方程y -3y ,2y =e x 的通解.3n7. 判断级数v (-1)n °半是否收敛?如果收敛,是绝对收敛还是条件收敛?心 4四、综合应用题(共2小题,共13分,其中第1题6分,第2题7分).1. (6分)要用钢板造一个体积为4( m 3)长方体无盖容器,应如何选择容器的尺寸,使n 1n z03nx , -3 ::三、计算题(共7小题,每小题6分,共42分)得用料最省?》 2 * 》2. (7分)设在xoy平面有一变力F(x, y) =(x • y2) i (2x^8) j构成力场,(1)证明质点在此力场中移动时,场力所作的功与路径无关 ;(2)计算质点从点 A(1,0)移动到点《高等数学(下)》试卷(A) 第5页 共6页B(2,1)时场力所作的功(1)|ABH<6; COS 63x(2) dz = y Inydx xy x_l dy、2「¥x n ,—3»3n £3三.计算题(每小题6分,共42分).1.(6 分)(1)由 z = x 2y 2 -2 得,Z x =2x,Z y =2y ,曲面在点M (2,1,3)处的一个法n=(-4, -2,1))2分)⑵ 在点M (2,1,3)的切平面方程为4(x-2),2(y-1)-(z-3) =04x 2y-z -7 -0选择题每小题3分共30分)..填空题(每小题3分,共15分).... (2 分) 法x y 42分)线z -3 -1A 二 f xx (1,—1) = —2,B 二 f xy (1,—1) = °,C 二 f yy (1, — 1) = -2,则2AC - B=4 ° , A :: ° , .................................................................................. (2 分)所 以 (-1 为 极 大 值 点 , 极 大 值f (1,—1) =2 ............................................................. (2 分) 3.(6分)平 面 薄 片的 质M 二 J(x, y )dxdy 二(x 2 y 2 1)dxdy .......................... ( 2 分)DD1 o2dr C 1)Z ° - °v/【丄加丄詩彳二3二 ................................ (2分)2 4 2 84.(6 分)所围空间区域 门={( x, y, z ) |0 _ z _ a 2-X 2 - y 2} 由高斯公式,有原式r "耳◎迅)dv0 ex oy cz!!! (3z 2 3y 2 3x 2)dv ............................. ( 2 分)Q2 a=3茁 2sin 「d 「r 2 r 2dr ................................. ( 2 分)0 - 0 02.(6 分)f x =2_2x, f y =-2—2yf x 二 0,占八(2 分)y=°,(2 分)(-1 xy丑1 6=3 2二[-cos J: [ r5]0 a5......................... ( 2 分)5 55.(6分)设所求曲线为y = y(x),由题意得,y = x- y , y(0) = 0,该方程为一阶线性微分方程y・y=x, 其中P( x) 1 Q, x ........................... x .......................... ( 2 分)_p(x)dx |P(x)dx _|dx f dx故通解为y = e [ e Q(x)dx C] =e [ xe dx C] [xe x dx C]二e ▲ (xe x _ e x C)二Ce」x -1(2 分)2分)从而Q(x)二-x,特解y - -xe x, (2 分)y(0)=0 从而所求曲线为6.(6 分)对应的齐次方程y”-3y、2y=0的特征方程为r2-3r•2=0,得特征根则对应的齐次方程的y =C1e x C2e2x2分)对于非齐次方程y ” -3y: 2y二e x, ' =1为r2-3r *2=0的单根,P(x) =1,设其* y特解为y -Q(x)e x,其中Q(x)=ax, a为待定系数,Q(x)满足Q (x) (2' p)Q(x)二P(x)0 (2 1 _3)(a) =17.(6分)由于》(一1)n 4 3n4ny 二C^x C2e2x_xe x.而|im 加=lim匸匕=丄 , 贝U (—2卑1 )收y u n F 4n 4 心4n 敛,................................... ( 3 分)3n从而'•(_ ni i3n )也收敛,且为绝对收心4n敛. ....................................... (3分)四、综合应用题(共2小题,共13分,其中第1题6分,第2题7分).41.(6分)设该容器的长,宽,高为x, y,z,由题意知xyz=4,则z ,容器的表面积xy4 8 8A = xy 2yz 2xz = xy 2(x y) xy , x 0, y 0xy x y分)( 2 分)因实际问题存在最小值,且驻点唯一,所以当x二y = 2( m), z = 1( m)时,容器的表面积最小,从而用料最省. .....................................................................(1分)2.(7 分)证明:(1)P(x, y)=x y2, Q(x, y) = 2xy-8,由于在xoy面内,—=2y Q恒成立,且P连续,® ex cy ex2分)故质点在该力场中移动时场力所作的功与路径无关. ................................... (4分)⑵质点从点A(1,0)移动到点B(2,1)时场力所作的功(与路径无关),路径L可取折线段A > C,C > B,其中点C(2,0),从而(2,1) * (2,1)W F dr Pdx Qdy%,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆大学 高等数学Ⅱ-1-2 课程试卷juan2012 ~2013学年 第 1学期 开课学院: 数学 课程号: 10019565 考试日期: 20121215考试方式:考试时间: 120 分钟一、单项选择题(每小题3分,共15分)1.若lim ()x f x k →∞'=,则lim[()()]x f x a f a →∞+-为【A 】A .kaB .kC .aD .不存在2.若()xf x e -=,则(ln )f x dx x'=⎰【A 】 A .1c x+ B .1c x -+ C .x c + D .x c -+3.曲线221x xy x +=-渐近线的条数为【C 】A .0B .1C .2D .34.极限2lim ln()()x x x x a x b →+∞=-+【C 】 A .0 B .1 C .a b -D .b a -5.设曲线2x y e-=,则其拐点的个数为【B 】A .1B .2C .3D .4二、填空题(每小题3分,共15分) 1.设ln sin y x =,在5[,]66ππ上满足罗尔中值定理中的ξ=2π 2.= ln(x c ++3.若()f x 的一个原函数为tan x x ,则()xf x dx '=⎰ 22t a n s e c x x c x-+ 4.极限011lim ln(1)x x x →⎡⎤-=⎢⎥+⎣⎦ 12 5.曲线2()sin()f x x =,则(6)(0)f= 120-解法1:2()sin(),(0)0f x x f ==2()2cos(),(0)0f x x x f ''==22222()2cos 4sin 2cos 4(),(0)2f x x x x x x f x f ''''=-=-=222()4sin 8()4()12()4(),(0)0f x x x xf x x f x xf x x f x f ''''''''=---=--= (4)2()12()12()8()4()f x f x xf x xf x x f x ''''=----212()20()4()f x xf x x f x '''=---(5)2()12()20()20()8()4()f x f x f x xf x xf x x f x '''''''''=-----232()28()4()f x xf x x f x ''''''=---(6)2(4)()32()28()28()8()4()f x f x f x xf x xf x x f x ''''''''''=-----2(4)60()36()4()f x xf x x f x '''''=---.(6)(0)120f=-解法2:3511sin 3!5!x x x x =-++ 2261011()sin 3!5!f x x x x x ==-++(6)1(0)6!1203!f =-⋅=-三、计算题(一)(每小题8分,共24分)命题人:组题人:审题人:命题时间:教务处制学院 专业、班 年级 学号 姓名公平竞争、诚实守信、严肃考纪、拒绝作弊封线密1.求a ,使函数1()sin sin 33f x a x x =+在3x π=处取得极值,并问3x π=是()f x 的极大值还是极小值,再求其极值。

解:因()cos cos3f x a x x '=+,则1()1032f a π'=-=知2a =,故()2sin 3sin3f x x x ''=--()03f π''=<,从而()3f π=2.计算不定积分(sin cos )cos 2nI x x xdx =+⎰,其中n 为正整数。

解法1:()22(sin cos )cossin nI x x x x dx =+-⎰1(sin cos )(sin cos )n x x d x x +=++⎰ 21(sin cos )2n x x c n +=+++ 解法2:22211(1sin 2)sin 2(1sin 2)22n n I x d x x c n +=+=+++⎰ 解法3:22sin()sin 2()44nn I x x dx ππ⎡⎤=++⎢⎥⎣⎦⎰1122sin()sin()44n nx d x ππ++⎡⎤=++⎢⎥⎣⎦⎰222sin()24nn x c n π+⎡⎤=++⎢⎥+⎣⎦3.计算不定积分3.dx ⎰解法1:令2tan ,arctan ,22x x t x x ππ==-<<,则33238tan 2sec 8tan sec 2sec ttdt t tdt t =⋅=⎰⎰2388(sec 1)sec sec 8sec 3t d t t t c =-=-+⎰313c =- 解法2:32221122x t ==222341412(4)423ut u u udu u du u u c u =--⋅=-=-+⎰⎰313c =-四、计算题(二)(第1至2题每小题8分,第3题9分,共25分) 1.计算积分22(ln )x x dx ⎰。

解法1:2223322111(ln )(ln )(ln )2ln 333x x dx x dx x x x xdx ==-⋅⎰⎰⎰32312(ln )ln ()39x x xd x =-⎰ 3233122(ln )ln 3927x x x x x c =-++ 解法2:令ln ,ux u x e ==,则222223(ln )u u ux x dx e u e du u e du =⋅=⎰⎰⎰2.计算极限1lim.1ln xx x x x x→--+ 解:教材上的例子3.一商家销售某种商品的价格满足关系70.2p x =-(万元/吨),x 为销售量(单位:吨),商品的成本函数是31c x =+(万元)。

(1)若每销售一吨商品,政府要征税t 万元,求该商家获最大利润时的销售量;(2)t 为何值时,政府税收总额最大。

解:(1)总税额T tx =,商品销售总收入为2(70.2)70.2R px x x x x ==-=-利润函数为2()0.2(4)1L x R C T x t x =--=-+--令()0.440L x x t '=-+-=,得10 2.5x t =-,且0.40L ''=-<, 故10 2.5x t =-为利润最大时的销售量。

(2)将10 2.5x t =-代入T tx =,得210 2.5T t t =-令1050dTt dt=-=,得2t =,且2250d T dt =-<故当2t =时,T 最大。

此时,政府税收总额最大。

五、证明题(每小题7分,共21分)1.证明:0x >时,11(1)x e x ++>。

证:令1()(1)ln(1)1f x x x=++-11()ln(1)0f x x x'=+-<所以当0x >时,()f x 单减,从而()()lim ()0x f x f f x →+∞>+∞==。

故11(1)x e x++>。

2.设函数()y f x =在某0x x r -<内有四阶连续的导数,(4)0000()()()0,()0f x f x f x f x ''''''===≠ 。

证明0()f x 为极值。

证法1:由已知(4)0()0fx ≠,不妨设(4)0()0f x >,因()f x 有四阶连续的导数,故由极限的保号性知,存在0δ>,当0(,)x U x δ∈时,有(4)()0f x >。

0(,)x U x δ∈,由泰勒公式:2000001()()()()()()2!f x f x f x x x f x x x '''=+-+- 3(4)400011()()()()3!4!f x x x f x x ξ'''+-+-,其中0(,)U x ξδ∈ (4)40001()()()()4!f x f x x f x ξ=+->所以0()f x 为极小值。

同理可证,(4)0()0f x <时,0()f x 为极大值。

证法2:课堂上所讲方法。

课堂上的证明方法是没有已知()f x 有四阶连续的导数的证明方法,只已知了四阶导数(4)0()0fx ≠。

3.设函数()f x 在[)0+∞,上可导,对(0,)x ∀∈+∞,()0f x k '≥>(k 为一常数)。

证明:存在0M >及0Z >,x Z ∀>有().f x Mx ≥证明:因()f x 在[)0+∞,上可导,故0x ∀> ()(0)()()f x f f x kx x ξ'-=>→+∞→+∞从而()f x →+∞,当x →+∞时,故存在0,Z x Z >∀>,有()0f x >。

x Z ∀>,(2)()()(2)()f x f x f x kx f x kx f x kx ξ'-=≥⇒≥+≥取,22k x M Z =∀>,有()2xf x k Mx ≥⋅=。

相关文档
最新文档