空间向量与立体几何知识总结(高考必备!)
高中数学立体几何与空间向量知识点归纳总结

高中数学立体几何与空间向量知识点归纳总结立体几何与空间向量知识点归纳总结一、立体几何知识点1、柱、锥、台、球的结构特征1) 棱柱的定义:有两个面是对应边平行的全等多边形,其余各面都是四边形,且相邻四边形的公共边都平行,由这些面围成的几何体叫棱柱。
棱柱的侧面都是平行四边形,侧棱平行且长度相等。
若侧棱垂直于底面,则为直棱柱;若底面是正多边形,则为正棱柱。
2) 棱锥的定义:有一个面是多边形,其余各面都是三角形,由这些面围成的几何体叫棱锥。
平行于底面的截面与底面相似,其相似比等于顶点到截面的距离与高的比。
3) 棱台的定义:用平行于底面的平面截棱锥,截面与底面的部分叫棱台。
上下底面平行且是相似的多边形,侧面是梯形,侧棱交于原棱锥的顶点。
4) 圆柱的定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所围成的几何体叫圆柱。
底面是全等的圆,母线与轴平行,轴与底面圆的半径垂直,侧面展开图是一个矩形。
5) 圆锥的定义:以直角三角形的一条直角边为旋转轴,旋转一周所围成的几何体叫圆锥。
底面是一个圆,母线交于圆锥的顶点,侧面展开图是一个扇形。
6) 圆台的定义:以直角梯形的垂直于底边的腰为旋转轴,旋转一周所围成的几何体叫圆台。
上下底面是两个圆,侧面母线交于原圆锥的顶点,侧面展开图是一个扇环形。
7) 球体的定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形围成的几何体叫球。
球的截面是圆,球面上任意一点到球心的距离等于半径。
2、柱体、锥体、台体的表面积与体积1) 几何体的表面积为各个面的面积之和。
2) 特殊几何体表面积公式:直棱柱侧面积=底面周长×高圆锥侧面积=π×底面半径×母线正棱台侧面积=(上底+下底+侧棱)×高/2圆柱侧面积=2π×底面半径×高正棱锥侧面积=(底面周长1+底面周长2+侧棱)×高/2圆台侧面积=(上底半径+下底半径)×母线×π/2圆柱表面积=2π×底面半径×(底面半径+高)圆锥表面积=π×底面半径×(底面半径+母线)圆台表面积=π×(上底半径²+下底半径²+上底半径×下底半径×(上底半径-下底半径)/母线)3) 柱体、锥体、台体的体积公式:直棱柱体积=底面积×高圆柱体积=底面积×高=π×底面半径²×高圆锥体积=底面积×高/3=π×底面半径²×高/3圆台体积=底面积×高/3=(上底半径²+下底半径²+上底半径×下底半径)×高/3圆台的体积公式为V=(S+S'+√(SS'))h/3,其中S和S'分别为圆台的上下底面积,h为圆台的高。
空间向量与立体几何知识总结(高考必备!)

y k iA(x,y,z)O jxz 空间向量与立体几何一、空间直角坐标系的建立及点的坐标表示空间直角坐标系中的坐标:如图给定空间直角坐标系和向量a ,设,,i j k(单位正交基底)为坐标向量,则存在唯一的有序实数组123(,,)a a a ,使123a a i a j a k =++,有序实数组123(,,)a a a 叫作向量a在空间直角坐标系O xyz -中的坐标,记作123(,,)a a a a =.在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使OA xi yj zk =++,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标.二、空间向量的直角坐标运算律(1)若123(,,)a a a a = ,123(,,)b b b b =, 则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=--- ,123(,,)()a a a a R λλλλλ=∈,112233//,,()a b a b a b a b R λλλλ⇔===∈,(2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。
(3)//a b b a λ⇔= 112233()b a b a R b aλλλλ=⎧⎪⇔=∈⎨⎪=⎩三、空间向量直角坐标的数量积1、设b a ,是空间两个非零向量,我们把数量><b a b a ,cos ||||叫作向量b a ,的数量积,记作b a ⋅,即b a ⋅=><b a b a ,cos |||| 规定:零向量与任一向量的数量积为0。
空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1 (2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB =OA +AB =a +b ; BA =OA -OB =a -b ; O P =λ a (λ∈R )运算律:⑴加法交换律:a +b =b +a⑵加法结合律:(a +b ) +c =a +(b +c )⑶数乘分配律:λ(a +b ) =λa +λb运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a 平行于b(2)共线向量定理:空间任意两个向量a,记作a //b 。
、b (b ≠0),a//b存在实数λ,使a=λb。
(3)三点共线:A 、B 、C 三点共线AB =λACOC =x OA +y OB (其中x +y =1) (4)与a共线的单位向量为±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量a , b 不共线,p 与向量a , b 共面的条件是存在实数x , y 使p =xa +yb 。
(3)四点共面:若A 、B 、C 、P 四点共面AP =x AB +y AC个唯一的有序实数组x , y , z ,使p =xa +yb +zc 。
若三向量a , b , c 不共面,我们把{a , b , c }叫做空间的一个基底,a , b , c 叫做基向量,5. 空间向量基本定理:如果三个向量a , b , c 不共面,那么对空间任一向量p ,存在一OP =x OA +y OB +z OC (其中x +y +z =1)空间任意三个不共面的向量都可以构成空间的一个基底。
高中数学空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。
(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a 共线的单位向量为aa ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a //。
(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a 共线的单位向量为aa ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性 2。
空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3。
共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,平行于,记作b a//。
(2)共线向量定理:空间任意两个向量、(≠),//存在实数λ,使=λ。
(3)三点共线:A 、B 、C 三点共线〈=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a 共线的单位向量为aa ±4。
共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,与向量,a b 共面的条件是存在实数,x y 使p xa yb =+.(3)四点共面:若A 、B 、C 、P 四点共面〈=>AC y AB x AP += 〈=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++.若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示.同向等长的有向线段表示同一或相等的向量 (2)向量具有平移不变性 2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)运算律:⑴加法交换律:a b b a⑵加法结合律:(a b ) c a (b c)⑶数乘分配律:(a b )a b运算法则:三角形法则、平行四边形法则、平行六面体法则3. 共线向量。
(1) 如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a 平行于b ,记作a//b 。
(2) 共线向量定理:空间任意两个向量 a 、b ( b 丰0 ), a//b 存在实数入,使a =A b 。
(3) 三点共线:A 、B 、C 三点共线<=>ABACi i■.1<=> OC xOA yOB (其中( y 1)—*■一a (4)与a共线的单位向量为 —a4. 共面向量(1) 定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2) 共面向量定理:如果两个向量 a,b 不共线,p 与向量a,b 共面的条件是存在实数 x, y 使uOw A go购Bgorarap xa yba- r b r b rb •7d3a d 3a3a2aR(3)四点共面:若A 、B 、c 、P 四点共面<=> AP xAB yAC<=>OP xOA yOB zOC (其中 x y z 1)r ,r r r5. 空间向量基本定理:如果三个向量 a,b,C 不共面,那么对空间任一向量 P ,存在一个唯一的有r i r r 1 r r 1 r若三向量a,b,c 不共面,我们把{a,b,c }叫做空间的一个基底,a,b,c 叫做基向量,空间任意 三个不共面的向量都可以构成空间的一个基底。
立体几何和空间向量综合知识点(高中数学)

立体几何与空间向量一.空间几何体的体积与表面积:1.简单几何体的侧面积、体积及相关性质: 棱柱、棱锥、台体的表面积:柱体、椎体、台体的侧面积:h c S h c c S ch S '=''+==21,)(21,锥侧台侧柱侧(其中c c ',分 别为上下底面周长,h 为高,h '为斜高或母线长)圆柱的表面积 :222r rl S ππ+=; 圆锥的表面积:2r rl S ππ+=;圆台的表面积:22R Rl r rl S ππππ+++=(r,R 分别为上下底面圆的半径); 球的表面积:24R S π=; 扇形的面积:222121360r lr R n S απ===扇形(其中l 表示弧长,r 表示半径,α表示弧度) 空间几何体的体积柱体的体积:h S V ⨯=底;锥体的体积:h S V ⨯=底31; 台体的体积:h S S S S V ⨯+⋅+=)(31下下上上 ;球体的体积:334R V π=。
2.空间几何体直观图斜二测画法要领: 横相等,竖减半,倾斜45°,面积为原来的42,平行关系不变。
3.棱锥的平行截面的性质:如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似 相似比等于顶点到截面的距离与顶点到底面的距离之比; 它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;4.立体几何中常见模型的性质: 长方体:(1)长方体从一个顶点出发的三条棱长分别为a,b,c ,则体对角线长为222c b a ++,全面积为2ab+2abc+2ac ,体积V=abc 。
(2)已知长方体的体对角线与过同一顶点的三条棱所成的角分别为γβα,,,则有1cos cos cos 222=++γβα或2sin sin sin 222=++γβα。
(3)长方体外接球的直径是长方体的体对角线长222c b a ++。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
zk ,有序实数组(,x 在空间直角坐标系O xyz -中的坐标,记作(A x 叫纵坐123,b a b a λλ⇔===2)若11(,A x y 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。
)//a b b ⇔=)R
设b a ,是空间两个非零向21a a x =⋅=+2
(AB x ==
12)(x y y -+-cos ||||
b a b ⋅.空间向量数量积的性质:
cos ,a e <>.②0a b a b ⊥⋅=.③2
||a a a =⋅. 、运算律
a b b ⋅=⋅; ②)(a ⋅λ四、直线的方向向量及平面的法向量
b =
④解方程组,取其中的一组解即可。
存在有序实数对μλ,使AB =n ⊥
六、计算角与距离
1、求两异面直线所成的角
已知两异面直线b a ,,,,,A B a C D b ∈∈,则异面直线所成的角θ为:cos AB CD AB CD
θ•=
例题
【空间向量基本定理】
例1.已知矩形ABCD ,P 为平面ABCD 外一点,且PA ⊥平面ABCD ,M 、N 分别为PC 、PD 上的点,且M 分成定比2,
N 分PD 成定比1,求满足
的实数x 、y 、z 的值。
]
分析;结合图形,从向量出发,利用向量运算法则不断进行分解,直到全部向量都用
、
、
表示出来,
即可求出x 、y 、z 的值。
如图所示,取PC 的中点E ,连接NE ,则。
点评:选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的一项基本功,要结合已知和所求,观察图形,联想相关的运算法则和公式等,就近表示所需向量。
再对照目标,将不符合目标要求的向量当作新的所需向量,如此继续下去,直到所有向量都符合目标要求为止,这就是向量的分解。
有分解才有组合,组合是分解的表现形式。
空间向量基本定理恰好说明,用空间三个不共面的向量组可以表示出空间任意一个向量,
而且a,b,c 的系数是惟一的。
)
【利用空间向量证明平行、垂直问题】
例2.如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E 是PC 的中点,作EF ⊥PB 于点F 。
(1)证明:PA 方形ABCD —中,E 、F 分别是,的中点,求:
(1)异面直线AE与CF所成角的余弦值;
(2)二面角C—AE—F的余弦值的大小。
:
点评:(1)两条异面直线所成的角可以借助这两条直线的方向向量的夹角求得,即。
(2)直线与平面所成的角主要可以通过直线的方向向量与平面的法向量的夹角求得,即或
(3)二面角的大小可以通过该二面角的两个面的法向量的夹角求得,它等于两法向量的夹角或其补角。
【用空间向量求距离】
例4.长方体ABCD—中,AB=4,AD=6,,M是A1C1的中点,P在线段BC上,且|CP|=2,Q是DD1的中点,求:
(1)异面直线AM与PQ所成角的余弦值;
(2)M到直线PQ的距离;
[
(3)M到平面AB1P的距离。
本题用纯几何方法求解有一定难度,因此考虑建立空间直角坐标系,运用向量坐标法来解决。
利用向量的模和夹角求空间的线段长和两直线的夹角,在新高考试题中已多次出现,但是利用向量的数量积来求空间的线与线之间的夹角和距离,线与面、面与面之间所成的角和距离还涉及不深,随着新教材的推广使用,这一系列问题必将成为高考命题的一个新的热点。
现列出几类问题的解决方法。
(1)平面的法向量的求法:设,利用n与平面内的两个向量a,b垂直,其数量积为零,列出两个三元一次方程,联立后取其一组解。
(2)线面角的求法:设n是平面的一个法向量,AB是平面的斜线l的一个方向向量,则直线与平面所成
角为n
AB n AB ⋅•=
θθsin 则
(3)二面角的求法:①AB ,CD 分别是二面角
的两个面内与棱l 垂直的异面直线,则二面角的大小为。
②设分别是二面角的两个平面
的法向量,则
就是二面角的平
面角或其补角。
&
(4)异面直线间距离的求法:是两条异面直线,n 是的公垂线段AB 的方向向量,又C 、D 分别是上
的任意两点,则。
(5)点面距离的求法:设n 是平面
的法向量,AB 是平面
的一条斜线,则点B 到平面
的距离为。
(6)线面距、面面距均可转化为点面距离再用(5)中方法求解。
练习:
1.若等边ABC ∆的边长为23,平面内一点M 满足12
63
CM CB CA =
+,则MA MB •=_________ ;
2.在空间直角坐标系中,已知点A (1,0,2),B(1,-3,1),点M 在y 轴上,且M 到A 与到B 的距离相等,则M 的
坐标是________。
、
3.(本小题满分12分) 如图,在
五
面
体
ABCDEF
中
,
FA
⊥
平面ABCD,
AD ⊥
1
2
⊥PAC ⊥ABC ABC ∆AC ,,E F O PA PB AC 16AC =10PA PC ==G OC //FG BOE ABO ∆M FM ⊥BOE M OA OB 图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上.
(Ⅰ)求证:平面AEC PDB ⊥平面; (Ⅱ)当2PD AB =
且E 为PB 的中点时,求AE 与
平面PDB 所成的角的大小.
学科组长审核:教学主任审核:。