最新整理八、食品生物化学重要知识点汇编只是分享

合集下载

生物化学重点知识归纳总结

生物化学重点知识归纳总结

生物化学重点知识归纳总结生物化学这门学科,说白了就是研究生命体内那些神奇的小分子和化学反应的过程。

乍一听,可能有点儿让人头大,毕竟科学这个东西啊,说不定一下子就让你掉进了一个高深莫测的坑里。

不过,别担心,咱们今天轻松一点儿,聊聊那些“看不见摸不着”的小东西,看看它们是怎么支撑我们活蹦乱跳的,嘿嘿。

咱得提到一个词——代谢。

代谢是什么?简单来说,就是咱们身体里发生的所有化学反应,它们让你吃的饭变成能量,又让你用不完的废物排出去。

代谢就像是咱们身体里的一个“厨师”,不停地做饭、换菜,把各种原料(食物)变成能用的“菜”,再把剩下的厨余垃圾处理掉。

不信你想想,每天吃那么多东西,肚子都不炸了,得靠这些“反应”把它们转化成能用的能量,否则我们早就成了“吃货”终结者了。

好啦,咱们不说代谢那么深奥的东西了,今天聊的重点是那些微小的“角色”,它们可是整个生物化学过程的主角。

比如,咱们每个人身体里都有一种叫做酶的东西,它们就像是每个反应的“小老板”。

这些酶可厉害了,它们催化各种化学反应,让那些反应能顺利进行。

没有酶,化学反应就像是没有油的机器,根本转不起来。

你可以把酶想象成是你厨房里最得力的助手,没有它,饭菜肯定做不好。

酶有的负责分解食物,分解得快得很;有的负责合成新的物质,什么都能搞定。

哎呀,要是没有酶,咱们早就饿死了。

说到酶,那就不得不提到ATP了。

ATP是什么?它其实是咱们身体里的“能量货币”。

你想,咱们不就是吃饭、睡觉、玩耍,每个动作都需要能量嘛,而ATP就是提供这种能量的“银行”。

它一旦给你提供了能量,立马就变成了ADP,之后再去充电变回ATP,循环往复,能量不断供应,咱们才能继续嗨。

想象一下,如果没有ATP,咱们做事可就像没电的手机,啥也干不了,岂不尴尬?不仅如此,咱们体内的各种大分子也是生物化学的重要组成部分。

比如蛋白质、脂肪、碳水化合物这些。

蛋白质就像是身体里的建筑工人,啥都能修、能建。

身体的肌肉、器官、酶,基本上都离不开蛋白质。

食品生物化学复习资料(新整合)

食品生物化学复习资料(新整合)

1.名词解释、选择及填空:食品生物化学:研究食品的组成、结构、性能和加工、贮运过程中的化学变化以及食品成分在人体内代谢的科学。

糖类(carbohydrates)物质:是含多羟醛或多羟酮类化合物及其缩聚物和某些衍生物的总称。

构象:指一个分子中,不改变共价键结构,仅靠单键的旋转或扭曲而改变分子中基团在空间的排布位置,而产生不同的排列方式。

变旋现象:在溶液中,糖的链状结构和环状结构(α、β)之间可以相互转变,最后达到一个动态平衡,称为变旋现象。

常见二糖及连接键:蔗糖(α-葡萄糖—(1,2)-β果糖苷键);麦芽糖(葡萄糖-α—1,4-葡萄糖苷键);乳糖(葡萄糖-β—1,4半乳糖苷键);纤维二糖(β-葡萄糖-(1,4)-β—葡萄糖苷键)脂类:是生物细胞和组织中不溶于水,而易溶于乙醚、氯仿、苯等非极性溶剂中,主要由碳氢结构成分构成的一大类生物分子。

脂类主要包括脂肪(甘油三酯,占95%左右)和一些类脂质(如磷脂、甾醇、固醇、糖脂等)顺式脂肪酸与反式脂肪酸:顺式脂肪酸:氢原子都位于同一侧,链的形状曲折,看起来象U型反式脂肪酸:氢原子位于两侧,看起来象线形皂化作用与皂化值:皂化作用:当将酰基甘油与酸或碱共煮或脂酶作用时,都可发生水解,当用碱水解时称为皂化作用。

皂化值:完全皂化1g甘油三酯所需KOH的mg数为皂化值。

酸败及酸值:油脂在空气中暴露过久即产生难闻的臭味,这种现象称为酸败。

中和1g油脂中游离脂肪酸所消耗KOH的mg数称为酸值,可表示酸败的程度。

卤化作用及碘值:油脂中不饱和键可与卤素发生加成反应,生成卤代脂肪酸,这一作用称为卤化作用。

100g油脂所能吸收的碘的克数称为碘值。

乙酰化与乙酰化值:油脂中含羟基的脂肪酸可与醋酸酐或其它酰化剂作用形成相应的酯,称为乙酰化。

1g乙酰化的油脂分解出的乙酸用KOH中和时所需KOH的mg数即为乙酰化值。

核酸:以核苷酸为基本组成单位的生物大分子,携带和传递遗传信息。

DNA脱氧核糖核酸RNA核糖核酸核酸的组成单位是核苷酸。

食品生化知识点总结大全

食品生化知识点总结大全

食品生化知识点总结大全一、食品成分与组成1. 碳水化合物碳水化合物是食物的主要能量来源,包括单糖、双糖和多糖。

单糖最简单的碳水化合物,包括葡萄糖、果糖和半乳糖等。

双糖由两个单糖分子组成,如蔗糖、乳糖和麦芽糖等。

多糖是由多个单糖分子通过糖苷键连接而成,如淀粉和纤维素等。

2. 蛋白质蛋白质是构成生物体的重要物质,由氨基酸通过肽键连接而成。

食品中的蛋白质主要包括动物蛋白和植物蛋白,如肌肉、乳制品、豆类和谷物等。

3. 脂类脂类是食品中的重要营养成分,包括脂肪和油脂。

脂肪是动植物组织中的能量储备物质,同时也是细胞膜的主要组成部分。

油脂是植物种子中的脂类,广泛用于食品加工和烹饪。

4. 矿物质食品中的矿物质主要包括钙、铁、锌、镁等,是人体维持正常生理机能所必需的物质,参与酶的构成和活性,维持水盐平衡等。

5. 维生素维生素是人体必需的有机化合物,参与人体的代谢活动。

食品中的维生素主要包括水溶性维生素和脂溶性维生素,如维生素C、维生素B族和维生素A、维生素D等。

6. 酶酶是生物体内参与代谢活动的蛋白质,能够催化化学反应。

食品中的酶可分为内源酶和外源酶,对食品加工和贮藏有着重要作用。

二、食品生化反应1. 氧化反应氧化反应是食品加工和贮藏过程中常见的化学反应,主要包括脂质氧化和色素氧化。

脂质氧化会导致食品变质,产生不饱和脂肪酸氧化产物和恶臭物质。

色素氧化则会导致食品颜色的变化,产生氧化褐变和氧化红变等现象。

2. 水解反应水解反应是食品加工和消化过程中常见的化学反应,主要包括淀粉水解、蛋白质水解和脂肪水解。

淀粉水解可产生麦芽糖和葡萄糖等糖类,蛋白质水解可产生氨基酸,脂肪水解可产生甘油和脂肪酸。

3. 缩合反应缩合反应是食品加工过程中的化学反应,主要包括糖的缩合和酚类物质的缩合。

糖的缩合反应可产生焦糖和糖类的焦化产物,酚类物质的缩合反应可产生酚醛类化合物,影响食品的口感和色泽。

4. 氨基酸脱羧反应氨基酸脱羧反应是蛋白质加工和熟化过程中的化学反应,主要产生氨和酮酸,影响食品的风味和臭味。

生物化学知识点总整理

生物化学知识点总整理

生物化学知识点总整理生物化学是研究生物体化学组成和生命过程中化学变化规律的一门科学。

它是生命科学领域的重要基础学科,对于理解生命现象、疾病发生机制以及药物研发等方面都具有重要意义。

以下是对生物化学一些重要知识点的总整理。

一、生物大分子1、蛋白质蛋白质的组成:蛋白质由氨基酸通过肽键连接而成。

氨基酸有 20 种,分为必需氨基酸和非必需氨基酸。

蛋白质的结构:包括一级结构(氨基酸的线性排列顺序)、二级结构(如α螺旋、β折叠等)、三级结构(整条肽链的三维空间构象)和四级结构(多个亚基的组合)。

蛋白质的性质:具有两性解离、胶体性质、变性和复性等。

蛋白质的功能:催化、运输、调节、免疫防御、结构支持等。

2、核酸核酸的分类:包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。

DNA 的结构:双螺旋结构,由两条反向平行的多核苷酸链围绕同一中心轴构成。

RNA 的种类:信使 RNA(mRNA)、转运 RNA(tRNA)和核糖体 RNA(rRNA)。

核酸的功能:DNA 是遗传信息的携带者,RNA 参与遗传信息的表达和调控。

3、糖类单糖:如葡萄糖、果糖、半乳糖等,是最简单的糖类。

寡糖:由 2 10 个单糖分子组成,如蔗糖、麦芽糖等。

多糖:包括淀粉、糖原、纤维素等,具有储存能量和构成结构的作用。

4、脂质脂肪:由甘油和脂肪酸组成,是生物体储存能量的重要形式。

磷脂:构成生物膜的重要成分。

固醇:如胆固醇,参与细胞膜的组成和激素的合成。

二、酶1、酶的概念:酶是具有催化作用的生物大分子,大多数是蛋白质。

2、酶的特性:高效性、专一性、可调节性和不稳定性。

3、酶的作用机制:通过降低反应的活化能来加速反应的进行。

4、影响酶活性的因素:温度、pH、底物浓度、酶浓度、抑制剂和激活剂等。

三、生物氧化1、生物氧化的概念:物质在生物体内进行的氧化分解过程,最终生成二氧化碳和水,并释放能量。

2、呼吸链:由一系列电子传递体组成,包括 NADH 呼吸链和FADH2 呼吸链。

(完整版)生物化学知识点重点整理

(完整版)生物化学知识点重点整理

(完整版)生物化学知识点重点整理1.生物化学的概述生物化学是研究生物体内化学组成、结构、功能和变化的学科,是生物学和化学的交叉学科。

它研究的内容包括生物大分子(蛋白质、核酸、多糖和脂质)、酶、代谢、信号传导等生物体内的化学过程和物质的转化。

生物化学的研究对于理解生命的机理和病理过程具有重要意义。

2.蛋白质结构与功能蛋白质是生物体中最重要的生化分子之一,它们具有结构多样性和功能多样性。

蛋白质的结构包括四级结构:一级结构是氨基酸的线性序列;二级结构是氨基酸间的氢键形成的α螺旋和β折叠;三级结构是螺旋和折叠的空间结构;四级结构是多个多肽链的组合形成的复合体。

蛋白质的功能包括催化酶活性、调节信号传导、结构支架等。

3.核酸结构与功能核酸是生物体中的遗传物质,包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。

DNA是双螺旋结构,由磷酸二酯键连接的脱氧核苷酸组成。

RNA是单链结构,由磷酸二酯键连接的核苷酸组成。

核酸的功能包括存储遗传信息、传递遗传信息和调控基因表达。

4.代谢与能量转化代谢是生物体内的化学反应过程,包括合成反应和分解反应。

合成反应是通过合成物质来维持生物体的正常生理功能;分解反应是通过分解物质来提供能量。

能量转化是代谢过程中最重要的一环,包括能量的捕获、传递和释放。

生物体通过代谢和能量转化来获取能量、转化能量和维持生命活动。

5.酶的催化机制酶是生物体内催化反应的生物分子,能够加速化学反应的速率,降低反应的活化能。

酶的催化机制包括底物识别、底物结合、酶底物复合物的形成、催化反应和生成产物。

酶的催化过程中涉及到酶活性位点的氨基酸残基和底物之间的相互作用。

6.信号传导与细胞通讯细胞内和细胞间的信号传导是维持生物体内稳态和调节机体功能的重要手段。

信号传导包括外部信号的接受、内部信号的传递和效应的产生。

细胞间的信号传导有兴奋性传导和化学信号传导两种方式。

7.糖的分类与代谢糖是生物体内最重要的能量源,也是合成生物大分子的前体。

食品生物化学重点

食品生物化学重点

一、绪论1.生物化学的概念;2.生物化学研究的内容、酶在生物化学中的地位;3.静态生物化学、动态生物化学的区别;二、静态生物化学部分1.糖类化学:1)糖的定义;2)有代表性的单糖、寡糖的名称;3)单糖的两种对映异构体的名称、单糖的环状结构中,含呋喃型吡喃型区别;4)糖的结构异构现象和糖的立体异构现象的区别;5)区别直链淀粉、支链淀粉、纤维素的连接键;6)同聚多糖和杂聚多糖的区别;7)概念:旋光、变旋性、构型、构象;2.脂类化学:1)油脂的皂化值、油脂的酸值;2)生物膜的概念、结构、模型理论;3.蛋白质化学:1)凯氏定氮的原理;2)8种必需氨基酸;3)蛋白质的一级结构、二级结构、超二级结构的概念、二级结构最主要的两种结构方式、四级结构的特点;4)蛋白质具有两性电离性质、等电点地概念;5)蛋白质的变性和稳定性;4.核酸化学:1)核酸的水解产物及各级水解产物;2)嘌呤、嘧啶的种类及在DNA和RNA中的区别;3)核苷酸的连接键;4)核酸的变性与复性;5)有关RNA的概念、RNA的二级结构;6)环核苷酸的代表物;5.酶化学、维生素:1)酶的概念、特点;2)酶的影响因素中底物浓度和PH的影响;3)酶的抑制(竞争性与非竞争性);4)水溶性和脂溶性维生素区别及代表种类;三、动态生物化学部分1.糖代谢:1)糖酵解、厌氧发酵的概念;2)糖酵解产能;3)三羧酸途径中关键的酶的名称和产生位置;4)三羧酸途径中产ATP的步骤、三羧酸途径中几次脱羧、脱氢反应;5)糖异生作用;6)糖代谢各途径之间联系(包括糖酵解、糖异生、磷酸戊糖途径、糖原合成和分解这几条途径的联系);2.脂类代谢:1)脂肪肝产生;2)酮体的概念、脂肪酸的合成过程;3)脂肪酸彻底氧化产物;3.氨基酸和蛋白质代谢、核酸代谢:1)一碳单位的概念、代谢的生理学意义;2)生物体内氨基酸脱氨基的主要方式;3)嘌呤核苷酸从头合成时的关键物质;4.生物氧化:呼吸链的顺序、生物氧化的概念。

食品生物化学复习资料

食品生物化学复习资料食品生物化学是一门关于食品成分和组成的科学,由于近年来人们对健康饮食的要求越来越高,因此这门学科受到了更多的关注。

在此,我们为大家提供一些食品生物化学的复习资料,以便大家能够更好地了解这门学科。

一、碳水化合物碳水化合物是人体必需的营养物质,它们是身体的主要能量来源。

碳水化合物的主要来源是谷物、薯类、糖果和甜食等。

碳水化合物的分类是单糖、双糖和多糖。

二、蛋白质蛋白质是人体组织和细胞的构建单位,也是许多生物化学反应的催化剂。

它们由氨基酸组成,主要存在于肉类、奶制品、豆类、坚果等。

蛋白质分为20种不同的氨基酸,其中有9种人体无法自行合成,必须摄入。

三、脂肪脂肪是身体所需要的重要营养物质,它们是身体储存能量的主要来源。

脂肪的主要来源是植物油、动物油、坚果和种子等。

脂肪的分类为饱和脂肪、不饱和脂肪和转化脂肪。

四、维生素维生素是人体必需的微量营养物质,它们为正常生理功能的维持提供必要的物质基础。

维生素的主要来源包括蔬菜、水果、奶制品、动物肝脏、鱼类等。

维生素分类为脂溶性和水溶性维生素。

五、矿物质矿物质是身体必需的微量元素,它们参与了很多生理功能。

矿物质的主要来源是蔬菜、水果、坚果、动物肝脏和海鲜等。

矿物质的分类为微量元素和宏量元素。

六、水水是人体不可或缺的物质,因为人体成分有七成是水分。

水参与了许多生理活动,如细胞功能、体温调节、水泡等等。

建议每天饮用8杯水。

以上是一些食品生物化学的复习资料,学生们可以根据这些知识点进行系统学习和复习。

随着社会的发展,人们对食品的要求越来越高,因此了解食品生物化学是非常重要的。

未来,我们应继续深入研究这一领域的知识,为人类的健康生活作出贡献。

生物化学重点知识归纳

生物化学重点知识归纳第一章绪论1.生物化学的发展过程大致分为三阶段:叙述生物化学、动态生物化学和机能生物化学。

2.生物化学研究的内容大体分为三部分:①生物体的物质组成及生物分子的结构与功能②代谢及其调节③基因表达及其调控第二章糖类化学1.糖类通常根据能否水解以及水解产物情况分为单糖、寡糖和多糖。

2.单糖的分类:①按所含C原子的数目分为:丙糖、丁糖......②按所含羰基的特点分为:醛糖和酮糖。

3.葡萄糖既是生物体内最丰富的单糖,又是许多寡糖和多糖的组成成分。

4.甘油醛是最简单的单糖。

5.两种环式结构的葡萄糖:6.核糖和脱氧核糖的环式结构:(见下图)7.单糖的重要反应有成苷反应、成酯反应、氧化反应、还原反应和异构反应。

8.蔗糖是自然界分布最广的二糖。

9.多糖根据成分为:同多糖和杂多糖。

同多糖又称均多糖,重要的同多糖有淀粉、糖原、纤维素等;杂多糖以糖胺聚糖最为重要。

10.淀粉包括直链淀粉和支链淀粉。

糖原分为肝糖原和肌糖原。

11.糖胺聚糖包括透明质酸、硫酸软骨素和肝素。

第三章脂类化学1. 亚油酸、α亚麻酸和花生四烯酸是维持人和动物正常生命活动所必必需的脂肪酸,是必需脂肪酸。

2. 类花生酸是花生四烯酸的衍生物,包括前列腺素、血栓素和白三烯。

3. 脂肪又称甘油三酯。

下图是甘油三酯、甘油和脂肪酸的结构式:1. 皂化值:水解1克脂肪所消耗KOH的毫克数。

皂化值越大,表示脂肪中脂肪酸的平均分子量越小。

6.磷脂根据所含醇的不同分为甘油磷脂和鞘磷脂。

7.糖脂包括甘油糖脂和鞘糖脂。

8.类固醇是胆固醇及其衍生物,包括胆固醇、胆固醇脂、维生素D、胆汁酸和类固醇激素等。

9.胆汁酸有游离胆汁酸和结合胆汁酸两种形式。

10.类固醇激素包括肾上腺皮质激素(如醛固酮、皮质酮和皮质醇)和性激素(雄激素、雌激素和孕激素)。

11.肾上腺皮质激素具有升高血糖浓度和促进肾脏保钠排钾的作用。

其中皮质醇对血糖的调节作用较强,而对肾脏保钠排钾的作用很弱,所以称为糖皮质激素;醛固酮对水盐平衡的调节作用较强,所以称为盐皮质激素。

食品生物化学知识点大一

食品生物化学知识点大一食品生物化学是食品科学与工程专业的重要基础课程之一,主要涉及食品成分、食品加工及储藏时的物质变化等方面的内容。

以下是大一学习食品生物化学时需要了解的一些重要知识点:一、食物成分1. 碳水化合物:包括单糖、双糖和多糖,是人类主要的能量来源。

2. 脂肪:由甘油与脂肪酸组成,提供能量并帮助维持体温,同时是脂溶性维生素的载体。

3. 蛋白质:由α-氨基酸组成,是构成细胞和组织的基本单位。

4. 维生素:包括水溶性维生素和脂溶性维生素,对人体的生理功能起重要作用。

5. 矿物质:包括铁、锌、钙等,参与多种生命活动和维持正常机体功能。

6. 水:是构成细胞和组织的基本成分,是维持各种生命活动所必需的物质。

二、食物加工与营养1. 食物的储藏与保鲜:食物保存时需注意防止氧化、腐败和细菌滋生等问题,利用冷藏、冷冻、脱水等方法进行储藏与保鲜。

2. 食物加工过程中的物质变化:如淀粉糊化、蛋白质变性、糖类焦糖化等。

3. 食品的味觉和风味:主要取决于食物中的味觉物质和香气物质。

4. 色泽与光感:食物的颜色对其口感和食欲产生重要影响。

三、食品生物化学分析方法1. 常用的食品分析方法:如光度法、比色法、浊度法、色谱法、质谱法等。

2. 食品质量评价:包括感官评价和定量化学分析两种方法。

四、食品添加剂与食品安全1. 食品添加剂的作用与分类:如防腐剂、甜味剂、酸度调节剂等。

2. 食品安全与毒素:了解食品中可能存在的毒素,并了解其毒性和安全使用标准。

五、食品生物化学在食品加工中的应用1. 面粉加工:了解小麦淀粉糊化的过程与原理。

2. 糖果加工:了解糖果制作过程中糖类焦糖化反应的原理。

3. 肉制品加工:了解脂肪氧化和蛋白质变性对肉制品质量的影响。

六、食品添加剂与食品工程1. 食品色素与颜色稳定性:了解食品色素的分类、性质和稳定性。

2. 食品香味剂与香气稳定性:了解食品香精的种类、特性和香气稳定性。

以上是大一学习食品生物化学时需要了解的一些重要知识点,希望可以对你的学习有所帮助。

食品生物化学总结

食品生物化学总结食品生物化学是一门研究食品的化学组成、结构、性质、代谢以及它们在食品加工、储存和营养方面的作用的学科。

它涉及到生物化学、化学、营养学、微生物学等多个领域的知识,对于理解食品的本质、保障食品安全和提高食品质量具有重要意义。

食品的化学组成是食品生物化学的基础。

食品主要由碳水化合物、蛋白质、脂肪、维生素、矿物质和水等成分组成。

碳水化合物是人体能量的主要来源,包括单糖、双糖和多糖等。

单糖如葡萄糖和果糖,是细胞直接利用的能量形式;双糖如蔗糖和乳糖,在消化过程中被分解为单糖吸收;多糖如淀粉和纤维素,淀粉是人类重要的能量储备,而纤维素虽然不能被人体消化,但对于促进肠道蠕动和维持肠道健康具有重要作用。

蛋白质是构成生物体的重要物质,在食品中具有多种功能。

它们不仅是人体组织的构建材料,还参与了许多生理过程。

食品中的蛋白质根据其来源和性质不同,具有不同的营养价值。

例如,动物蛋白通常含有所有必需氨基酸,被称为完全蛋白;而植物蛋白往往缺乏某些必需氨基酸,需要通过合理搭配来满足人体需求。

蛋白质在食品加工过程中会发生变性、水解等变化,这些变化会影响食品的口感、质地和营养价值。

脂肪是另一种重要的营养成分,提供了高能量密度。

脂肪分为饱和脂肪、不饱和脂肪和反式脂肪。

饱和脂肪过量摄入可能增加心血管疾病的风险,而不饱和脂肪,特别是多不饱和脂肪中的ω-3 和ω-6 脂肪酸,对人体健康有益。

脂肪在食品中不仅提供口感和风味,还能帮助脂溶性维生素的吸收。

维生素和矿物质虽然在食品中的含量相对较少,但对人体健康却至关重要。

维生素分为水溶性维生素(如维生素 C 和 B 族维生素)和脂溶性维生素(如维生素 A、D、E 和 K)。

矿物质包括常量元素(如钙、镁、钠等)和微量元素(如铁、锌、铜等)。

它们在人体的新陈代谢、免疫功能、神经系统等方面发挥着不可或缺的作用。

食品的代谢过程是一个复杂而精细的体系。

食物在进入人体后,经过消化、吸收、运输和利用等一系列过程,将其中的营养成分转化为能量和生物分子,以维持生命活动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

扬州大学2017年攻读硕士学位研究生入学考试试题重要知识点汇编(食品生物化学)第一章生物化学的的概念生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,是研究生命的化学本质的科学。

它是介于化学、生物学及物理学之间的一门边缘学科。

二、生物化学的发展1.静态生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。

2.动态生物化学阶段:是生物化学蓬勃发展的时期。

就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。

3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。

三、生物化学研究的主要方面1.生物体的物质组成、结构与功能:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。

通过对生物大分子结构的理解,揭示结构与功能之间的关系。

2.物质代谢与调控:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。

其中,中间代谢过程在细胞内进行的,是最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。

5.遗传信息的传递与表达:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。

四、学习生物化学的方法第二章蛋白的结构与功能重点:蛋白质的性质与结构难点:蛋白质的空间结构教法::课件第一节蛋白质是生命的物质基础一蛋白质是构成生命的物质基础二蛋白质的生物学功能1.生物催化作用2.代谢调控作用3.免疫防御作用4.运输及储存作用5.运动作用6.生物膜功能及受体作用7.其它作用三:蛋白质的分类1根据生物学功能分:酶、抗体、运输蛋白、激素等2:根据化学组成成分分类:简单蛋白:仅由aa构成结合蛋白:简单蛋白与其它生物分子的结合物,糖蛋白(共价)、脂蛋白(非共价)3:根据分子形状分类:球蛋白:长/宽≤3~4,血红蛋白纤维蛋白:长/宽>10,血纤蛋白、丝蛋白第二节蛋白质的分子组成一、蛋白质的元素组成:C (50%-56%) H (6%-8%) O (19%-24%) N (13%-19%)S (0%-4%)其中氮的含量稳定15%-17%,平均为16%,通过测定物质的含氮量可测蛋白质的含量。

粗蛋白=含氮量ⅹ6、25二、组成蛋白质的基本单位———氨基酸(一)氨基酸的结构特点:都有一个氨基和一个羧基且连在同一个碳原子上。

RNH2 ----C-----COOHH(二)氨基酸的分类:1、根据R基团的化学结构:脂肪族氨基酸、芳香族氨基酸、杂环族氨基酸2、根据R基团的酸碱性分为:中性氨基酸、酸性氨基酸、碱性氨基酸3、根据R基团的带电性质分为:疏水性氨基酸、带电荷极性氨基酸、不带电荷的极性氨基酸。

(三) 氨基酸的理化性质1、一般性质:2、化学性质:(1)氨基酸的两性电离与等电点两性电解质:在同一分子中带有性质相反的酸、碱两种解离基团的化合物,称为两性电解质。

等电点:在一定的PH溶液中,氨基酸带正、负电荷为零,净电荷为零,此时溶液的PH值为该氨基酸的等电点。

(2)氨基酸分子之间头脱水生成肽(3)呈色反应:印三酮反应、羰氨反应第三节蛋白质的分子结构一蛋白质的一级结构蛋白质的一级结构是指肽链中氨基酸排列顺序二蛋白质的空间结构1 蛋白质的二级(Secondary)结构是指肽链的主链在空间的排列,或规则的几何走向、旋转及折叠。

它只涉及肽链主链的构象及链内或链间形成的氢键。

二级结构的常见类型α-右手螺旋、β-折叠、无规卷曲、U型回折。

2 蛋白质的三级结构(Tertiary Structure)是指在二级结构基础上,肽链的不同区段的侧链基团相互作用在空间进一步盘绕、折叠形成的包括主链和侧链构象在内的特征三维结构。

维系这种特定结构的力主要有氢键、疏水键、离子键和范德华力等。

尤其是疏水键,在蛋白质三级结构中起着重要作用。

3 蛋白质的四级结构蛋白质的四级结构(Quaternary Structure)是指由多条各自具有一、二、三级结构的肽链通过非共价键连接起来的结构形式;各个亚基在这些蛋白质中的空间排列方式及亚基之间的相互作用关系。

这种蛋白质分子中,最小的单位通常称为亚基或亚单位Subunit,它一般由一条肽链构成,无生理活性;维持亚基之间的化学键主要是疏水力。

由多个亚基聚集而成的蛋白质常常称为寡聚蛋白;三 .蛋白质的结构与功能的关系<1>每一种蛋白质都具有特定的结构,也具有特定的功能。

<2>蛋白质的结构决定了蛋白质的功能。

<3>蛋白质的功能直接由其高级结构(构象)决定。

例子,蛋白质的变性现象。

<4>蛋白质的一级结构决定高级结构(构象),因此,最终决定了蛋白质的功能。

例子,人工合成胰岛素,A、B链分别合成,等比例混合后就有活性。

而生物合成胰岛素则是先合成一条长肽链,形成正确的二硫键,而后再剪去中间的C肽才形成胰岛素的。

草图显示。

第四节蛋白质的理化性质1:两性离解和等电点:在等电点时(Isoelectric point pI),蛋白质的溶解度最小,在电场中不移动。

在不同的pH环境下,蛋白质的电学性质不同。

在等电点偏酸性溶液中,蛋白质粒子带负电荷,在电场中向正极移动;在等电点偏碱性溶液中,蛋白质粒子带正电荷,在电场中向负极移动。

这种现象称为蛋白质电泳(Electrophoresis)。

蛋白质在等电点pH条件下,不发生电泳现象。

利用蛋白质的电泳现象,可以将蛋白质进行分离纯化。

2:蛋白质的高分子性质:由于蛋白质的分子量很大,它在水中能够形成胶体溶液。

蛋白质溶液具有胶体溶液的典型性质,如丁达尔现象、布郎运动等。

由于胶体溶液中的蛋白质不能通过半透膜,因此可以应用透析法将非蛋白的小分子杂质除去。

蛋白质胶体溶液的稳定性与它的分子量大小、所带的电荷和水化作用有关。

改变溶液的条件,将影响蛋白质的溶解性质在适当的条件下,蛋白质能够从溶液中沉淀出来。

3:蛋白质的沉淀:可逆沉淀:在沉淀过程中,结构和性质都没有发生变化,在适当的条件下,可以重新溶解形成溶液,所以这种沉淀又称为非变性沉淀。

一般是在温和条件下,通过改变溶液的pH或电荷状况,使蛋白质从胶体溶液中沉淀分离。

(可逆沉淀是分离和纯化蛋白质的基本方法,如等电点沉淀法、盐析法和有机溶剂沉淀法等。

)不可逆沉淀:在蛋白质的结构和性质,产生的蛋白质沉淀不可能再重新溶解于水强烈沉淀条件下,不仅破坏了蛋白质胶体溶液的稳定性,而且也破坏了。

由于沉淀过程发生了蛋白质的结构和性质的变化,所以又称为变性沉淀。

4:蛋白质变性:蛋白质的性质与它们的结构密切相关。

某些物理或化学因素,能够破坏蛋白质的结构状态,引起蛋白质理化性质改变并导致其生理活性丧失。

这种现象称为蛋白质的变性(denaturation)。

变性蛋白质通常都是固体状态物质,不溶于水和其它溶剂,也不可能恢复原有蛋白质所具有的性质。

所以,蛋白质的变性通常都伴随着不可逆沉淀。

引起变性的主要因素是热、紫外光、激烈的搅拌以及强酸和强碱等。

5:蛋白质的紫外吸收:大部分蛋白质均含有带芳香环的苯丙氨酸、酪氨酸和色氨酸。

这三种氨基酸的在280nm 附近有最大吸收。

因此,大多数蛋白质在280nm 附近显示强的吸收。

利用这个性质,可以对蛋白质进行定性鉴定。

6:蛋白质的颜色反应:可以用来定量定性测定蛋白质双缩脲反应:红色,λm=540nm黄色反应:与HNO3的反应,生成硝基苯,呈黄色。

皮肤遇到HNO3的情况,白→黄→橙黄。

米伦氏反应:与HgNO3 或HgNO2的反应,呈黄色,原理同上。

与乙醛酸的反应:红色,Trp的吲哚基的特定反应。

坂口反应:红色,Arg的胍基的反应。

福林反应:蓝色,是Tyr的酚基与磷钼酸和磷钨酸的反应。

印三酮反应:紫红色Pauly反应:樱红色,His的咪唑基双缩脲反应、印三酮反应、福林-酚试剂反应第三章酶点:酶的结构和酶催化作用的特点课时安排:共用4学时酶是活细胞产生的一类具有催化功能的生物分子,所以又称为生物催化剂Biocatalysts 。

绝大多数的酶都是蛋白质。

酶催化的生物化学反应,称为酶促反应Enzymatic reaction。

在酶的催化下发生化学变化的物质,称为底物substrate。

第一节酶分子的组成与结构一、酶分子的组成:根据酶的组成情况,可以将酶分为两大类:单纯蛋白酶:它们的组成为单一蛋白质.结合蛋白酶:某些酶,例如氧化-还原酶等,其分子中除了蛋白质外,还含有非蛋白组分.结合蛋白酶的蛋白质部分称为酶蛋白,非蛋白质部分包括辅酶及金属离子(或辅因子cofactor)。

酶蛋白与辅助成分组成的完整分子称为全酶。

单纯的酶蛋白无催化功能.全酶=酶蛋白+辅助因子酶蛋白决定反应的专一性,辅助因子决定反应的性质。

二、几种重要的辅酶与辅助因子:见维生素一章三、酶分子的空间结构与酶活性中心酶分子上具有一定空间构象的部位,该部位化学基团集中,直接参与将底物转变为产物的反应过程,这一部位就称为酶的活性中心。

参与构成酶的活性中心的化学基团,有些是与底物相结合的,称为结合基团,有些是催化底物反应转变成产物的,称为催化基团,这两类基团统称为活性中心内必需基团。

在酶的活性中心以外,也存在一些化学基团,主要与维系酶的空间构象有关,称为酶活性中心外必需基第二节酶催化作用的特点一、酶和一般催化剂的共性1,用量少而催化效率高;2,它能够改变化学反应的速度,但是不能改变化学反应平衡。

3,酶能够稳定底物形成的过渡状态,降低反应的活化能,从而加速反应的进行。

二、酶催化作用特性1:高效性。

酶的催化作用可使反应速度提高106 -1012倍。

例如:过氧化氢分解2H2O2 ——→ 2H2O + O2用Fe+ 催化,效率为6*10-4 mol/mol.S,而用过氧化氢酶催化,效率为6*106 mol/mol.S。

用a-淀粉酶催化淀粉水解,1克结晶酶在65°C条件下可催化2吨淀粉水解。

2:酶的专一性 Specificity又称为特异性,是指酶在催化生化反应时对底物的选择性(1) 反应专一性酶一般只能选择性地催化一种或一类相同类型的化学反应。

(2) 底物专一性一种酶只能作用于某一种或某一类结构性质相似的物质。

? 结构专一性绝对专一性:有些酶对底物的要求非常严格,只作用于一个特定的底物。

这种专一性称为绝对专一性(Absolute specificity)。

相对专一性:有些酶的作用对象不是一种底物,而是一类化合物或一类化学键。

这种专一性称为相对专一性(Relative Specificity)。

包括族(group)专一性。

如b-葡萄糖苷酶,催化由b-葡萄糖所构成的糖苷水解,但对于糖苷的另一端没有严格要求,和键(Bond)专一性。

相关文档
最新文档