运动控制系统 复习知识点总结
运动控制系统总结

• 转速反馈系数
U
* nm
nmax
(3-6)
• 电流反馈系数
U
* im
I dm
(3-7)
• 两个给定电压的最大值U*nm和U*im由设计 者选定。
3.2 转速、电流反馈控制直流调速系统 的数学模型与动态过程分析
3.2.1 转速、电流反馈控制直流调速系统的动态数学模型
图3-5 双闭环直流调速系统的动态结构图
运动控制系统总结
第1章 绪论
什么是运动控制系统
• 运动控制系统是以机械运动的驱动设备— —电动机为控制对象,以控制器为核心, 以电力电子功率变换装置为执行机构,在 自动控制理论的指导下组成的电气传动自 动控制系统。
运动控制系统及其组成
直流调速系统
直流电动机的数学模型简单,转矩易 于控制。
换向器与电刷的位置保证了电枢电流 与励磁电流的解耦,使转矩与电枢电流成 正比。
• δ大ma。x与M1成反比。转速愈低,M1愈小,误差率愈
T法测速
• T法测速是测出旋转编码器两个输出脉冲之间的间隔 时间来计算转速,又被称为周期法测速。
• 准确的测速时间是用所得的高频时钟脉冲个数M2 计算出来的,即 Tt M 2 / f0 ,
• 电动机转速为
n 60 60 f0 ZTt ZM 2
(2-80)
• T(M法2-测1)速时的转分速辨的率变定化义量为,时钟脉冲个数由M2变成
Q 60 f0 60 f0
60 f0
Z (M 2 1) ZM 2 ZM 2 (M 2 1)
(2-81)
• 综合式(2-80)和式(2-81),可得
Q Zn2 60 f0 Zn
(2-82)
• T法测速的分辨率与转速高低有关,转速越低,Q 值越小,分辨能力越强。
运动控制系统考试简答题

绪论1、运动控制系统:以机械运动的驱动设备——电动机为控制对象,以控制器为核心,以电力电子功率变换装置为执行机构,在自动控制理论的指导下组成的电气传动自动控制系统。
工作原理:通过控制电动机的转矩、转速和转角,将电能转换为机械能,实现运动机械的运动要求。
2、分类(1)按被控量分:以转速为被控量的系统——调速系统以角位移或直线位移为被控量的系统——位置随动(伺服)系统。
(2)按驱动电机的类型分:直流电机带动生产机械——直流传动系统交流电机带动生产机械——交流传动系统(3)按控制器类型分:以模拟电路构成的控制器——模拟控制系统以数字电路构成的控制器——数字控制系统(4)按控制系统中闭环的多少分:单环、双环、多环控制系统3、运动控制系统的功率放大与变换装置:一方面按控制量的大小将电网中的电能作用于电动机上,调节电动机的转矩大小,另一方面按电动机的要求把恒压恒频的电网供电转换成电动机所需的交流电或直流电;4、反抗性恒转矩负载不是转矩作用方向和运动方向相反吗?那为什么n>0时T>0,n<0时T<0?答:n>0,T>0 和n<0,T<0意味着电机目前处于正转电动和反转电动状态,这个和负载转矩没有关系。
第二章转速反馈控制的直流调速系统1、直流电动机的稳态转速调节转速方法Φ-=eKIRUn2、直流电动机点数两端的平均电压 三种改变输出平均电压的调制方法:(1)T 不变,变 ton —脉冲宽度调制(PWM)(2)ton 不变,变 T —脉冲频率调制(PFM)(3)ton 和 T 都可调,改变占空比—混合调制(两点式控制)。
当负载电流或电压低于某一最小值,开关器件导通,当高于某一最大值时,使开关器件关断。
3、UPE 是由电力电子器件组成的变换器,其输入接三组(或单相)交流电源,输出为可控的直流电压,控制电压为Uc 。
UPE 变换器的器件选择:中、小容量系统,多采用IGBT 或P-MOSFET 构成较大容量系统,采用GTO 、IGCT 电力电子开关器件特大容量系统,则常用晶闸管触发与整流装置4、 系统稳态参数计算例: 用线性集成电路运算放大器作为电压放大器的转速负反馈闭环直流调速系统如图1-28所示,s s ond ρU U T t U ==5、PID调节器的类型和功能比例微分(PD):由PD调节器构成的超前校正,可提高系统的稳定裕度,并获得足够的快速性, 但稳态精度可能受到影响;比例积分(PI):由PI调节器构成的滞后校正,可以保证稳态精度,却是以对快速性的限制来换取系统稳定的;比例积分微分(PID):PID调节器实现的滞后—超前校正则兼有二者的优点,可以全面提高系统的控制性能,但具体实现与调试要复杂一些。
运动控制系统 复习知识点总结讲课稿

1 运动控制系统的任务是通过对电动机电压、电流、频率等输入电量的控制,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。
(运动控制系统框图)2. 运动控制系统的控制对象为电动机,运动控制的目的是控制电动机的转速和转角,要控制转速和转角,唯一的途径就是控制电动机的电磁转矩,使转速变化率按人们期望的规律变化。
因此,转矩控制是运动控制的根本问题。
第1章可控直流电源-电动机系统内容提要相控整流器-电动机调速系统直流PWM变换器-电动机系统调速系统性能指标1相控整流器-电动机调速系统原理2.晶闸管可控整流器的特点(1)晶闸管可控整流器的功率放大倍数在104以上,其门极电流可以直接用电子控制。
(2)晶闸管的控制作用是毫秒级的,系统的动态性能得到了很大的改善。
晶闸管可控整流器的不足之处晶闸管是单向导电的,给电机的可逆运行带来困难。
晶闸管对过电压、过电流和过高的du/dt与di/dt都十分敏感,超过允许值时会损坏晶闸管。
在交流侧会产生较大的谐波电流,引起电网电压的畸变。
需要在电网中增设无功补偿装置和谐波滤波装置。
3.V-M系统机械特4.最大失控时间是两个相邻自然换相点之间的时间,它与交流电源频率和晶闸管整流器的类型有关。
5.(1)直流脉宽变换器根据PWM变换器主电路的形式可分为可逆和不可逆两大类(2)简单的不可逆PWM变换器-直流电动机系统(3)有制动电流通路的不可逆PWM-直流电动机系统(4)桥式可逆PWM变换器(5)双极式控制的桥式可逆PWM变换器的优点双极式控制方式的不足之处(6)直流PWM变换器-电动机系统的能量回馈问题”。
(7)直流PWM调速系统的机械特性6..生产机械要求电动机在额定负载情况下所需的最高转速和最低转速之比称为调速范围,用字母D来表示(D的表达式)当系统在某一转速下运行时,负载由理想空载增加到额定值时电动机转速的变化率,称为静差率s。
运动控制复习资料整理

运动控制复习资料整理运动控制是机械工程领域中一个重要的研究方向,它涉及到控制系统和机械系统的结合,用于实现精确的运动控制。
具体而言,运动控制涵盖了运动控制算法、控制器设计、运动控制系统模型、传感器和执行器选择以及运动规划等方面的内容。
本文将从这些方面对运动控制的基础知识进行复习资料的整理,帮助读者回顾和加深对运动控制的理解。
一、运动控制算法1. PID控制算法:PID控制算法是最常用的一种运动控制算法,它通过比较设定值和实际值的误差,计算出一个控制量来调节系统的输出。
PID控制算法包括比例项、积分项和微分项,它们分别用来调节系统的静态响应、消除误差累积和改善动态响应。
2. 模糊控制算法:模糊控制算法是一种基于模糊逻辑的控制算法,它能够处理系统模型不确定或复杂的情况。
模糊控制算法通过定义模糊集合和相应的规则,实现对系统状态的模糊描述和控制决策。
3. 最优控制算法:最优控制算法是一种通过优化目标函数,寻找系统最优控制策略的算法。
最优控制算法包括动态规划、最优化和线性二次型控制等方法,它们能够在满足系统限制条件的前提下,最大化或最小化目标函数。
二、控制器设计1. 传统控制器设计:传统控制器设计通常基于数学模型和系统理论,通过建立数学模型和分析系统特性,设计出合适的控制器参数。
传统控制器设计方法包括根轨迹法、频域法和状态空间法等。
2. 自适应控制器设计:自适应控制器设计是一种根据系统的变化自动调整控制器参数的方法,它能够应对系统参数变化、外界干扰和建模误差等情况。
自适应控制器设计方法包括模型参考自适应控制和模型无关自适应控制等。
三、运动控制系统模型1. 开环模型:开环模型是指没有反馈控制的运动控制系统模型,它只根据输入信号直接控制输出信号,缺乏对系统误差的修正。
2. 闭环模型:闭环模型是指具有反馈控制的运动控制系统模型,它通过对输出信号进行反馈比较,根据误差信号调节控制量,使得输出信号稳定在设定值附近。
运动控制系统复习要点

三复习纲要直流拖动系统(掌握)控制系统课程贯穿着一个基本方法:理论联系实际来分析问题解决问题。
具体来说就是系统思想和模型化、工程化方法。
本书的基本结构是以学科历史发展过程或者说实际问题为逻辑起点,而一般的理论课程如物理、数学实际上是与科研实际过程相反的,以学习者的知识结构为逻辑起点,从定义、概念、定律再到定理。
这是因为理论的发展意味着概念的创新。
而控制系统是一门技术理论课程,它是从技术角度来总结的。
正因为是技术角度出发的,具有综合性和实践性的特点。
所以对学习者来说,必须具备一定的实践基础和专业理论基础。
而对初学者来说,表现出有一定的难度是不奇怪的,而且,每一部分内容都仅是打下基础,深入的细节方面的知识,需要更进一步地查阅其它书籍和资料,从另一方面来看,这也给大家留下了自学和实践的空间。
从电压平衡方程式,导出调速方法,从反馈控制原理和静态参数的要求导出闭环控制系统;从静态与动态性能的矛盾分析了P调节器和I调节器,发展到PI调节器;从单闭环的调速系统无法控制起、制动动态电流,导出了带饱和非线性的PI调节器构成双闭环的系统结构,而双闭环的结构可以说交直流电动机控制的基本结构;从单向开关的晶闸管不能实现反转和回馈制动导出了可逆系统结构,又从可逆系统引起的环流问题导出有环流和无环流控制策略;再从调压调速的限制和宽调速范围的要求引出带弱磁控制的非独立弱磁控制系统。
问题一步一步深化。
但思考问题的出发点是电压平衡方程式,磁链平衡方程式,转矩平衡方程式,再加半导体开关的特性导致的电力电子电路中的特殊问题(也就是电力电子技术),同时分析时用到了电路和电机中的基本概念如输入功率、输出功率、转差功率、功率因数、效率、损耗等等。
1闭环控制静差率与调速范围重点掌握可控直流电源VM系统的主要问题直流脉宽调速系统的主要问题单闭环稳态分析PI调节器2 双闭环稳态数学模型及动态性能分析非典型系统的典型化弱磁控制实验电路模拟式PI调节器,过电流保护电路3 数字控制(了解)数字测速数字PI调节器及其设计方法4 可逆系统(掌握)5 变压调速及其软起动器(了解)6.1 VVVF 控制方式(掌握)机械特性比较三段式控制6.2 PWM 模式spwm chbpwm svpwm (了解)6.3 变频器的主要类型(了解)6.4 标量控制系统转速开环转速闭环转差频率控制(一般掌握)6.5 矢量控制原理坐标变换转子磁链定向(一般掌握)6.6 矢量控制系统直接矢量控制间接矢量控制转子磁链估计和观测(理解)6.7 直接转矩控制定子磁链的估计和观测(理解)7 串级调速系统(高效率低功率因数)(掌握)双馈调速的5种工况串级调速的工作原理起动停车顺序转子整流电路的特点及对机械特性的影响串级调速系统的功率因数及其改进方案双馈调速系统(了解)8 同步电动机变频调速(了解)特点及其类型他控变频(转速开环,交交变频,气隙磁场定向)自控变频(无刷直流,永磁同步电动机)四复习要点1直流电动机调压可获得恒转矩调速。
运动控制知识点总结

10.调速系统的静差率指标应以最低速时所能达到的数值为准,即一个调速系统 的调速范围,是指在最低速时还能满足所需静差率的转速可调范围。 11.开环系统机械特性和比例控制闭环系统静特性的关系: ①闭环系统静特性可以比开环系统机械特性硬的多 ②闭环系统的静差率比开环系统小得多 ③如果所要求的静差率一定,则闭环系统可以大大提高调速范围 总结来说:比例控制的直流调速系统可以获得比开环控制调速系统硬的多 的稳态特性,从而保证一定静差率的要求下,能够提高调速范围,为此,需设 置电压放大器和转速检测装置。 12.比例控制的变换直流调速系统是一种基本的反馈控制系统,它具有以下三个 基本规律: ①比例控制的反馈控制是被调量有静差的控制系统 ②反馈控制的作用是:抵抗扰动,服从给定 ③系统精度依赖于给定和反馈检测的精度 反馈控制系统具有良好的抗扰性能,它能有效地抑制一切被负反馈环所包 围的前向通道上的扰动作用,但对于给定作用惟命是从。 13.积分控制可以使系统在无静差的情况下保持恒速运行,实现无静差调速 14.比例调节器的输出只取决于输入偏差的现状,而积分调节器的输出则包含了 输入偏差的全部历史 15.比例积分控制器:比例部分能迅速响应控制作用,积分部分则最终能消除稳 态误差 16.旋转编码器分绝对式和增量式,绝对式常用于检测转角,增量式常用于检测 转速
自动 F1207 班复习资料
整理人:申思远
温梦珂
26. 典型Ⅰ型系统跟随性好,典型Ⅱ型抗扰性好 27.双闭环直流调速系统的调节器设计方法:先内环后外环 先从电流环(内环)开始,对其进行必要的变换和近似处理,然后根据电 流环的控制要求把它校正成哪一类典型系统,再按照控制对象确定电流调节器 的类型,最后按动态性能指标要求确定电流调节器的参数。电流环设计完成后, 把电流环等效成速度环的一个环节,按照同样的方法设计速度环。 在设计时需增加必要的电流滤波、转速滤波和两个给定信号的滤波环节。 28.控制对象的工程近似处理方法: ①高频小惯性环节的近似处理 ②高阶系统的降阶近似处理 ③低频段大惯性环节的近似处理 上述三种方法了解其过程和近似条件 29.交流拖动控制系统主要应用于下述三个方面: ①一般性能调速和节能调速 ②高新能的交流调速系统和伺服系统 ③特大容量、极高转速的交流调速 30.从能量转换的角度看,转差功率是否增大,能量是被消耗还是得到利用,是 评价调速系统效率高低的标志。从这点出发,可以把异步电机调速系统分为三 类: ①转差功率消耗型调速系统 定子降电压调速和绕线转子电动机转子串电阻调速属于这一类 ②转差功率馈送型调速系统 绕线转子异步电动机串级调速属于这一类 ③转差功率不变型调速系统 变压变频调速、变极对数调速属于这一类 31.异步电动机变压变频调速 ①基频以下调速 当异步电动机运行在基频(额定频率)以下时,如果磁通太弱,没有充 分利用铁心,是一种浪费;如果磁通太大,又会是铁心饱和,从而导致过大的
最新运动控制系统-复习知识点总结

1运动控制系统的任务是通过对电动机电压、电流、频率等输入电量的控制,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。
(运动控制系统框图)2.运动控制系统的控制对象为电动机,运动控制的目的是控制电动机的转速和转角,要控制转速和转角,唯一的途径就是控制电动机的电磁转矩,使转速变化率按人们期望的规律变化。
因此,转矩控制是运动控制的根本问题。
第1章可控直流电源-电动机系统内容提要相控整流器-电动机调速系统直流PWM变换器-电动机系统调速系统性能指标1相控整流器-电动机调速系统原理2•晶闸管可控整流器的特点(1 )晶闸管可控整流器的功率放大倍数在104以上,其门极电流可以直接用电子控制。
(2 )晶闸管的控制作用是毫秒级的,系统的动态性能得到了很大的改善。
晶闸管可控整流器的不足之处晶闸管是单向导电的,给电机的可逆运行带来困难。
晶闸管对过电压、过电流和过高的du/dt与di/dt都十分敏感,超过允许值时会损坏晶闸管。
在交流侧会产生较大的谐波电流,引起电网电压的畸变。
需要在电网中增设无功补偿装置和谐波滤波装置。
3.V-M系统机械特4•最大失控时间是两个相邻自然换相点之间的时间,它与交流电源频率和晶闸管整流器的类型有关。
5.(1)直流脉宽变换器根据PWM变换器主电路的形式可分为可逆和不可逆两大类(2)简单的不可逆PWM变换器-直流电动机系统(3 )有制动电流通路的不可逆PWM-直流电动机系统(4 )桥式可逆PWM变换器(5)双极式控制的桥式可逆PWM变换器的优点双极式控制方式的不足之处(6)直流PWM变换器-电动机系统的能量回馈问题”。
(7)直流PWM调速系统的机械特性6..生产机械要求电动机在额定负载情况下所需的最高转速和最低转速之比称为调速范围,用字母D来表示(D的表达式)当系统在某一转速下运行时,负载由理想空载增加到额定值时电动机转速的变化率,称为静差率SoD与s的相互约束关系对系统的调速精度要求越高,即要求s越小,则可达到的D必定越小。
控制机构知识点总结

控制机构知识点总结控制机构是指用于控制系统中的执行机构和操纵元件,它通过运动传递、能量传递和信息传递等手段,对执行元件进行运动保护、行程调节、力矩平衡或信息反馈,从而实现对系统输出量的调节控制。
一、控制机构的分类根据其功能和结构特点,控制机构可以分为:1. 执行机构:用于实现对系统输出量的调节和控制,可以按照能量类型分为液压、气动、电动和机械执行机构。
2. 操纵元件:用于对执行机构进行控制操作,并将人的意图转化为执行机构的动作信号,主要包括手柄、按钮、开关、面板、指示器等。
二、控制机构的设计原则和要求设计控制机构应考虑以下原则和要求:1. 灵活性:能够适应多种控制要求,包括连续控制、步进控制、组合控制等。
2. 稳定性:能够保持输出量稳定,避免振动、波动和失控的情况。
3. 精度:能够准确地控制输出量,满足系统的控制精度要求。
4. 快速性:能够迅速响应控制指令并实现控制动作,保证系统的快速性能和动态响应能力。
5. 可靠性:能够长时间稳定运行,避免故障和停机的发生。
6. 经济性:结构简单、成本低、运行维护方便。
三、执行机构的工作原理和特点1. 液压执行机构:利用液体传递动力和控制信号,具有工作平稳、迅速、输出功率大和可靠性高等特点,适用于大功率和大扭矩的运动控制。
2. 气动执行机构:利用气体传递动力和控制信号,具有结构简单、动态性能好、无电火花和无污染等特点,适用于低功率和速度要求不高的运动控制。
3. 电动执行机构:利用电动机作为动力源,具有结构紧凑、控制精度高、速度范围广和适应性强等特点,适用于精密位置控制和速度控制。
4. 机械执行机构:利用机械结构传递动力,具有结构简单、传动效率高、成本低等特点,适用于一些简单的运动控制。
四、操纵元件的类型和特点1. 手柄:通过手的动作来控制输出量,操作简单直观,适用于需要频繁手工操作的场合。
2. 按钮:通过手指的按压来控制输出量,操作方式多样化,适用于需要进行手动切换和调节的场合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 运动控制系统的任务是通过对电动机电压、电流、频率等输入电量的控制,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。
(运动控制系统框图)2. 运动控制系统的控制对象为电动机,运动控制的目的是控制电动机的转速和转角,要控制转速和转角,唯一的途径就是控制电动机的电磁转矩,使转速变化率按人们期望的规律变化。
因此,转矩控制是运动控制的根本问题。
第1章可控直流电源-电动机系统内容提要相控整流器-电动机调速系统直流PWM变换器-电动机系统调速系统性能指标1相控整流器-电动机调速系统原理2.晶闸管可控整流器的特点(1)晶闸管可控整流器的功率放大倍数在104以上,其门极电流可以直接用电子控制。
(2)晶闸管的控制作用是毫秒级的,系统的动态性能得到了很大的改善。
晶闸管可控整流器的不足之处晶闸管是单向导电的,给电机的可逆运行带来困难。
晶闸管对过电压、过电流和过高的du/dt与di/dt都十分敏感,超过允许值时会损坏晶闸管。
在交流侧会产生较大的谐波电流,引起电网电压的畸变。
需要在电网中增设无功补偿装置和谐波滤波装置。
3.V-M系统机械特4.最大失控时间是两个相邻自然换相点之间的时间,它与交流电源频率和晶闸管整流器的类型有关。
5.(1)直流脉宽变换器根据PWM变换器主电路的形式可分为可逆和不可逆两大类(2)简单的不可逆PWM变换器-直流电动机系统(3)有制动电流通路的不可逆PWM-直流电动机系统(4)桥式可逆PWM变换器(5)双极式控制的桥式可逆PWM变换器的优点双极式控制方式的不足之处(6)直流PWM变换器-电动机系统的能量回馈问题”。
(7)直流PWM调速系统的机械特性6..生产机械要求电动机在额定负载情况下所需的最高转速和最低转速之比称为调速范围,用字母D来表示(D的表达式)当系统在某一转速下运行时,负载由理想空载增加到额定值时电动机转速的变化率,称为静差率s。
D与s的相互约束关系对系统的调速精度要求越高,即要求s越小,则可达到的D必定越小。
当要求的D越大时,则所能达到的调速精度就越低,即s越大,所以这是一对矛盾的指标。
第二章闭环控制的直流调速系统内容提要⏹转速单闭环直流调速系统⏹转速、电流双闭环直流调速系统调节器的设计方法1.异步电动机从定子传入转子的电磁功率可分成两部分:一部分是机械轴上输出的机械功率;另一部分是与转差率成正比的转差功率。
.异步电动机按调速性能分类第一类基于稳态模型,动态性能要求不高,例如转速开环的变压变频调速系统和转速闭环的转差频率控制系统。
而另一类则基于动态模型,动态性能要求高,例如矢量控制系统和直接转矩控制系统。
同步电动机的调速:同步电动机的转差率恒为零,从定子传入的电磁功率全部变为机械轴上输出的机械功率,只能是转差功率不变型的调速系统。
同步电动机的调速只能通过改变同步转速来实现,由于同步电动机极对数是固定的,只能采用变压变频调速。
2.反馈控制的基本思想3.开环与闭环调速系统的区别:1差率约束下,闭环系统的调速范围为开环系统的(1+K)倍4.反馈控制规律5..电流截止负反馈。
6.积分控制规律和比例控制规律的区别在于:。
7.在阶跃输入作用之下,比例调节器的输出可以立即响应,而积分调节器的输出只能逐渐地变化,调速系统一般应具有快与准的性能,即系统既是静态无差又具有快速响应的性能。
实现的方法是把比例和积分两种控制结合起来,组成比例积分调节器(PI)。
8..对于经常正、反转运行的调速系统,应尽量缩短起、制动过程的时间,完成时间最优控制。
即在过渡过程中始终保持转矩为允许的最大值,使直流电动机以最大的加速度加、减速。
到达给定转速时,立即让电磁转矩与负载转矩相平衡,从而转入稳态运行。
9.(1)双闭环直流调速系统起动过程的转速和电流波(2)双闭环系统在起、制动过程中,电流闭环起作用,保持电流恒定,缩小系统的过渡过程时间。
一旦到达给定转速,系统自动进入转速控制方式,转速闭环起主导作用,而电流内环则起跟随作用,使实际电流快速跟随给定值(转速调节器的输出),以保持转速恒定。
(3)系统的静特性当转速调节器不饱和时表现出来的静特性是转速双闭环系统的静特性,表现为转速无静差;转速调节器饱和时表现出来的静特性是电流单闭环系统的静特性,表现为电流无静差,电流给定值是转速调节器的限幅值。
(4)转速调节器的作用归纳为电流调节器的作用归纳为10 香农(Shannon)采样定理规定:如果随时间变化的模拟信号的最高频率为fmax ,只要按照f>2fmax采样频率进行采样,则取出的样品序列就可以代表(或恢复)模拟信号11.常用的阶跃响应跟随性能指标有上升时间、超调量和调节时间,12.为了使系统对阶跃给定无稳态误差,不能使用0型系统,至少是Ⅰ型系统;当给定是斜坡输入时,则要求是Ⅱ型系统才能实现无稳态误差。
两种系统的比较⏹典型I型系统和典型Ⅱ型系统在稳态误差上有区别。
⏹典型I型系统在跟随性能上可以做到超调小,但抗扰性能稍差。
⏹典型Ⅱ型系统的超调量相对较大,抗扰性能却比较好。
⏹这些是设计时选择典型系统的重要依据。
电流调节器的设计(采用I 型系统)设计分为以下几个步骤:1.电流环结构图的简化简化内容⏹忽略反电动势的动态影响⏹等效成单位负反馈系统⏹小惯性环节近似处理2.电流调节器结构的选择3.电流调节器的参数计算4.电流调节器的实现设计举例:1.电流环的设计① 确定时间常数整流装置滞后时间常数T s电流滤波时间常数T oi电流环小时间常数之和T i②选择电流调节器结构⏹ 要保证稳态电流无差,可按典型I 型系统设计电流调节器。
⏹ 电流环控制对象是双惯性型的,用PI 型电流调节器。
③计算电流调节器参数电流调节器超前时间常数电流环开环增益K IACR 的比例系数Ki④校验近似条件电流环截止频率满足晶闸管整流装置传递函数的近似条件:满足忽略反电动势变化对电流环动态影响的条件:满足电流环小时间常数近似处理条件12. 异步电动机T 型等效电路异步电动机简化等效电路27(A) 异步电动机的机械特性28.变压变频调速是改变同步转速的一种调速方法,同步转速随频率而变化基频以下调速原理:恒压频比控制:基频以上调速28基频以下电流补偿控制:基频以下运行时,采用恒压频比的控制方法具有控制简便的优点,但负载的变化将导致磁通的改变,因此采用定子电流补偿控制,根据定子电流的大小改变定子电压,可保持磁通恒定。
e T s 1n 1em T m s 0小结:A.恒压频比控制最容易实现,它的变频机械特性基本上是平行下移,硬度也较好,能够满足一般的调速要求,低速时需适当提高定子电压,以近似补偿定子阻抗压降B.恒定子磁通、恒气隙磁通和恒转子磁通的控制方式均需要定子电流补偿,控制要复杂一些。
C.恒定子磁通和恒气隙磁通的控制方式虽然改善了低速性能。
但机械特性还是非线性的,产生转矩的能力仍受到限制。
D.恒转子磁通的控制方式,可以得到和直流他励电动机一样的线性机械特性,性能最佳。
29.异步电动机变频调速需要电压与频率均可调的交流电源,常用的交流可调电源是由电力电子器件构成的静止式功率变换器,一般称为变频器。
间接变频:先将恒压恒频的交流电整成直流电,再将直流电逆变成电压与频率均可调的交流,直接变频;将恒压恒频的交流电直接变换为电压与频率均可调的交流电,无需中间直流环节30.交-直-交变频器主回路结构图~、宽度按一定规律变化的脉冲序列,用这样的高频脉冲序列代替期望的输出电压31.以频率与期望的输出电压波相同的正弦波作为调制波(Modulation wave),以频率比期望波高得多的等腰三角波作为载波(Carrier wave),当调制波与载波相交时,由它们的交点确定逆变器开关器件的通断时刻,从而获得高度相等、宽度按正弦规律变化的脉冲序列,这种调制方法称作正弦波脉宽调制(Sinusoidal pulse Width Modulation,简称SPWM)32.三相PWM逆变器双极性SPWM波形34 电流跟踪PWM (CFPWM ,Current Follow PWM )的控制方法是:在原来主回路的基础上,采用电流闭环控制,使实际电流快速跟随给定值,在稳态时,尽可能使实际电流接近正弦波形,这就能比电压控制的SPWM 获得更好的性能。
它是以正弦波电流为控制目标的4-13电流滞环跟踪控制的A 相原理-12d +2dU --*A i A i h 2A 1VD 4VD 1VT 4VT HBC图4-14 电流滞环跟踪控制时的三相电流波形与相电压PWM波形电流跟踪控制的精度与滞环的宽度有关,同时还受到功率开关器件允许开关频率的制约。
当环宽选得较大时,开关频率低,但电流波形失真较多,谐波分量高;如果环宽小,电流跟踪性能好,但开关频率却增大了。
实际使用中,应在器件开关频率允许的前提下,尽可能选择小的环宽35.把逆变器和交流电动机视为一体,以圆形旋转磁场为目标来控制逆变器的工作,这种控制方法称作“磁链跟踪控制”,磁链轨迹的控制是通过交替使用不同的电压空间矢量实现的,所以又称“电压空间矢量PWM(SVPWM,Space Vector PWM)控制”。
图4-17 旋转磁场与电压空间矢量的运动轨迹图4-18 电压矢量圆轨迹(2)零矢量的插入有效地解决了定子磁链矢量幅值与旋转速度的矛盾。
(3).按空间矢量的平行四边形合成法则,用相邻的两个有效工作矢量合成期望的输出矢量,这就是电压空间矢量PWM(SVPWM)的基本思想。
所谓等效是指在一个开关周期内,产生的定子磁链的增量近似相等。
通常以开关损耗较小和谐波分量较小为原则,安排基本矢量和零矢量的作用顺序,一般在减少开关次数的同时,尽量使PWM输出波型对称,以减少谐波分量。
(4)零矢量集中的实现方法按照对称原则,将两个基本电压矢量的作用时间、平分为二后,安放在开关周期的首端和末端,把零矢量的作用时间放在开关周期的中间,并按开关次数最少的原则选择零矢量。
(5)零矢量分布的实现方法将零矢量平均分为4份,在开关周期的首、尾各放1份,在中间放两份,将两个基本电压矢量的作用时间、平分为二后,插在零矢量间。
按开关损耗较小的原则,选取零矢量(6)会根据要求判别期望定子磁链的轨迹P161(8)SVPWM的实现(7)SVPWM控制模式的特点36.转差频率控制的基本思想若能够保持气隙磁通不变,且在s值较小的稳态运行范围内,异步电动机的转矩就近似与转差角频率成正比。
也就是说,在保持气隙磁通不变的前提下,可以通过转差角频率来控制转矩,这就是转差频率控制的基本思想。
第5章内容提要⏹异步电动机动态数学模型⏹异步电动机按转子磁链定向的矢量控制系统⏹异步电动机按定子磁链控制的直接转矩控制系统⏹直接转矩控制系统与矢量控制系统的比较1.异步电动机是一个高阶、非线性、强耦合的多变量系统。