方向导数和梯度
合集下载
方向导数与梯度公式关系

方向导数与梯度公式关系方向导数和梯度是微积分中两个常用的概念,它们之间的关系可以用以下公式表示:方向导数 = 梯度 / 权重其中,梯度是指目标函数对变量的导数,权重是指变量的系数。
具体来说,假设我们有一个线性回归模型$$y = x"beta + epsilon$$其中$y$是输出变量,$x$是输入变量,$beta$是模型的参数,$epsilon$是噪声。
那么,$beta$的梯度可以表示为:$$frac{partial}{partial beta}left(frac{y}{x"beta}ight) = frac{partial y}{partial beta}x" - frac{partial x"}{partial beta}frac{y}{x"beta} = frac{y"beta - x"betay}{x"beta}$$其中,$frac{partial y}{partial beta}$表示$beta$对$y$的导数,$frac{partial x"}{partial beta}$表示$x"beta$对$x$的导数。
现在,如果我们想要计算$beta$的方向导数,可以使用上述公式:$$frac{partial}{partial beta}left(frac{y}{x"beta}ight) = frac{y"beta - x"beta y}{x"beta} = frac{y"}{x"}beta - frac{x"}{x"}beta = frac{y-x"beta"}{x"}$$其中,$beta" = x"(beta)$。
因此,$beta$的方向导数可以通过计算它与其他变量的差来得到。
方向导数和梯度

方向导数和梯度
本节的研究目的
研究标量场的变化率。最大变化率?
本节的研究内容
一、方向导数 二、梯度
一、方向导数
1. 方向导数的定义
l
P
P0
l
u lim u lim u(P) u(P0 )
l l PP0 P0
P P0
l
方向导数:表示标量场中 u(P)在给定点处沿某一方
向 l 的变化率。
一、方向导数
方向导数:表示标量场中 u(P)在给定点处沿某一方
向 l 的变化率。
u u cos u cos u cos
l x
y
z
函数 u(P) 从给定点出发有无穷多个变化方向,其 中哪个方向的变化率最大?
最大变化率是多少?
一、方向导数
u u cos u cos u cos
l x
y
z
令:
g
u x
ex
u y
ey
u z
ez
el
ex
cos
ey
cos
ez
cos
u l
g
el
g el cos(g, el ) g cos(g, el )
cos(g, el ) 1
u g 方向导数取得最大值
l
二、梯度
gradu
u x
ex
u y
ey
u z
ez
梯度小结:
1. 标量场的梯度是一个矢量,是空间坐导数;
3. 梯度的方向为该点方向导数最大的方向;
二、梯度
gradu
u x
ex
u y
ey
u z
ez
梯度小结:
4. 梯度描述标量场中任一点函数值在该点附近增 减性质的量,沿着梯度的方向,函数值增加或 减小得最快;
本节的研究目的
研究标量场的变化率。最大变化率?
本节的研究内容
一、方向导数 二、梯度
一、方向导数
1. 方向导数的定义
l
P
P0
l
u lim u lim u(P) u(P0 )
l l PP0 P0
P P0
l
方向导数:表示标量场中 u(P)在给定点处沿某一方
向 l 的变化率。
一、方向导数
方向导数:表示标量场中 u(P)在给定点处沿某一方
向 l 的变化率。
u u cos u cos u cos
l x
y
z
函数 u(P) 从给定点出发有无穷多个变化方向,其 中哪个方向的变化率最大?
最大变化率是多少?
一、方向导数
u u cos u cos u cos
l x
y
z
令:
g
u x
ex
u y
ey
u z
ez
el
ex
cos
ey
cos
ez
cos
u l
g
el
g el cos(g, el ) g cos(g, el )
cos(g, el ) 1
u g 方向导数取得最大值
l
二、梯度
gradu
u x
ex
u y
ey
u z
ez
梯度小结:
1. 标量场的梯度是一个矢量,是空间坐导数;
3. 梯度的方向为该点方向导数最大的方向;
二、梯度
gradu
u x
ex
u y
ey
u z
ez
梯度小结:
4. 梯度描述标量场中任一点函数值在该点附近增 减性质的量,沿着梯度的方向,函数值增加或 减小得最快;
高数 方向导数与梯度

机动 目录 上页 下页 返回 结束
f f f f cos cos cos 方向导数公式 l x y z f f f 令向量 G , , x y z 0 l (cos , cos , cos ) f Gl 0 G cos( G ,l0 ) ( l0 1) l 当 l 0与 G 方向一致时 , 方向导数取最大值: f G max l 方向:f 变化率最大的方向 这说明 G : 模 : f 的最大变化率之值
, y) 在点 P(x, y) 处的梯度 同样可定义二元函数 f (x
f f f f grad f i j , x y x y
说明: 函数的方向导数为梯度在该方向上的投影.
2. 梯度的几何意义
机动 目录 上页 下页 返回 结束
z f( x ,y ) 对函数 z f ( x , y ) , 曲线 在 xoy 面上的 z C * 称为函数 f 的等值线 . 影 L :f( x ,y ) C
朝 x 增大方向的方向导数.
解:将已知曲线用参数方程表示为 x x y x2 1 1 ,4 ) 它在点 P 的切向量为 ( 1 ,2 x )x 2( 4 1 cos cos , 17 17
y
P
2x
o
1
4 z 60 6 xy 1 2 ( 3 x 2 y ) 17 17 l P (2 , 3) 17
, y) 在点 P • 二元函数 f (x (x , y) 沿方向 l (方向角为
, )的方向导数为
f f f f f sin cos cos cos x y l x y
f f f f cos cos cos 方向导数公式 l x y z f f f 令向量 G , , x y z 0 l (cos , cos , cos ) f Gl 0 G cos( G ,l0 ) ( l0 1) l 当 l 0与 G 方向一致时 , 方向导数取最大值: f G max l 方向:f 变化率最大的方向 这说明 G : 模 : f 的最大变化率之值
, y) 在点 P(x, y) 处的梯度 同样可定义二元函数 f (x
f f f f grad f i j , x y x y
说明: 函数的方向导数为梯度在该方向上的投影.
2. 梯度的几何意义
机动 目录 上页 下页 返回 结束
z f( x ,y ) 对函数 z f ( x , y ) , 曲线 在 xoy 面上的 z C * 称为函数 f 的等值线 . 影 L :f( x ,y ) C
朝 x 增大方向的方向导数.
解:将已知曲线用参数方程表示为 x x y x2 1 1 ,4 ) 它在点 P 的切向量为 ( 1 ,2 x )x 2( 4 1 cos cos , 17 17
y
P
2x
o
1
4 z 60 6 xy 1 2 ( 3 x 2 y ) 17 17 l P (2 , 3) 17
, y) 在点 P • 二元函数 f (x (x , y) 沿方向 l (方向角为
, )的方向导数为
f f f f f sin cos cos cos x y l x y
方向导数与梯度

f f cos f cos f cos
l x
y
z
机动 目录 上页 下页 返回 结束
2. 梯度
二元函数
在点
处的梯度为
grad f ( fx , f y )
三元函数
在点
处的梯度为
grad f f , f , f x y z
机动 目录 上页 下页 返回 结束
练习
1. 设函数 (1) 求函数在点 M ( 1, 1, 1 ) 处沿曲线
x
y
o( )
故
f l
lim f
0
f cos f cos
x
y
机动 目录 上页 下页 返回 结束
二元函数 f ( x, y)
f f cos f cos
l x
y
其中 , 为方向l的方向角
特别:
• 当 l 与 x 轴同向 0, 时,有 f f
2
l x
• 当 l 与 x 轴反向 , 时,有 f f
max f G
l
这说明
G:
方向:f 变化率最大的方向 模 : f 的最大变化率之值
机动 目录 上页 下页 返回 结束
1. 定义
向量 G 称为函数 f (P) 在点 P 处的梯度 (gradient),
记作grad f , 即
f , f , f x y z
同样可定义二元函数
在点P(x, y) 处的梯度
故 gradu(1,1,2) (5, 2, 1) 5i 2 j 12k
在
P0
(
3 2
,
1 2
,0)
处梯度为
0.
内容小结
1. 方向导数
• 二元函数
方向导数与梯度 PPT

Δ y 0
y
其中 xρcoα,syρcoβs
Pl
ρ|P0P|
(x)2(y)2,
P0
el
y
x
o
x
2º方向导数的几何意义
过点P0 沿l 作垂直于 z=f(x, y)
Tl
xOy 面的平面,该平面
M•
与曲面 z = f (x, y)的交线
在曲面上相应点M 处的 切线MTl(若存在)关于l 方向的斜率:
l( x 0 ,y 0 ) ρ 0
ρ
注 1º方向导数的其他形式:
f l( x 0 ,y 0 ) ρ l 0 i f m ( x 0 ρ cα , o y 0 ρ s ρ cβ o ) f( s x 0 ,y 0 )
lim f(xΔ x,yΔ y)f(x,y)
Δ x 0
(Δ x)2(Δ y)2
f limf(P)f(P) l P P PP
(Pl)
lif m ( x ρ cα ,o y ρ c sβ , o z ρ c sγ ) o f ( x s ,y ,z )
ρ 0
ρ
l 0 ifm (x x ,y y ,z z ) f(x ,y ,z )
(2) 用公式 定理8.9 若f( 函 x ,y )在 数 P 0 (x 0 点 ,y 0 ) 处 可微 ,
则函数在该点沿任一方向 e l 的方向导数存在 ,
且 其 证有f 由 c中 函f o x fα l( 数x (,sx0 c0, ,fy yo 0(0 )β x) ,s为 yx f )e x l在( 的 f x y 点0 ( ,x y P0 0 0方 , ) 可y c 0 ) 微 α 向 ,o y . 得 f o y ( 余 s ( ρ x ) 0 oy,Py 弦 00 ) c xPeβ l o , ylx s
方向导数和梯度

2
n f f max || g || x l i 1 i
2 ,
1
这里的 n 维向量 g 实际上就是下面要讨论的梯度。
定义 7.5.2 量
设 f 是 R n 中区域 D 上的数量场,如果 f 在 P0 D 处可微,称向
f f f x , x ,, x 2 n 1
f ( P) f ( P0 ) || P0 P ||
f x1
f lim ||P0 P||0 x 1
x1
P0
|| P0 P ||
f xn
xn
P0
|| P0 P ||
o(|| P0 P ||) || P0 P ||
cos 1
最大值,此最大值即梯度的范数 || gradf || 。这就是说,沿梯度方向,函数值增加 最快。同样可知,方向导数的最小值在梯度的相反方向取得,此最小值即
|| gradf || ,从而沿梯度相反方向函数值的减少最快。
例 7.5.2
设在空间直角坐标系的原点处有一个点电荷 q ,由此产生一个静
电场,在点 ( x, y, z) 处的电位是
f 在 (0,0) 点沿方向 l || l || (cos , sin )( 为 l 与 x 轴正向的夹角)的方向导数为
f (0 t || l || cos , 0 t || l || sin ) f (0, 0) f lim l t 0 || tl || 2 cos sin 2 lim 2 cos sin 2 。 t 0 cos 2 sin 2
f g g gradf f gradg ,其中 g 0 ; g2
8-7 方向导数与梯度

z
z f ( x, y)
G
F
M0
E
o p
x
0
y
p
z l
l
是用过射线l且垂直于xoy面的半平面
P0
截曲面z f ( x , y )所得曲线在点M 0处的半 切线M 0 N相对于射线l的斜率.
二、方向导数的计算
定理:如果z f ( x , y )在点( x0 , y0 )可微,那 么函数在该点沿任一方 向的方向导数都存在. 且
{ f x , f y , f z } gradf
M
f ( x, y, z ) C
第七节 方向导数与梯度
要点:
f 方向导数的定义: l
p0
lim
沿l
f ( p) f ( p0 ) p0 p
p p0
lim
0
z
f 意义: f . p0 反映函数 在点 p0沿方向l的瞬时变化率 l 方向导数与偏导数的联系与区别.
2 2
的方向导数最大?
解: 梯度向量 grad z { z , z } ( 0 ,1) x y { 2 x , 2 y } ( 0 ,1 )
z
z x2 y2
{0,2}
o
x
(0,1) {0,2}
y
{1,0}
z x 2 y 2在点(0,1)沿着梯度向量{0,}方向 2 (即y轴正向)的方向导数最 大, 最大值为 . 2
o z z 梯度向量 grad z { , } ( 0 ,1) x x y {2 x ,2 y } ( 0,1) {0,2}
2 2
8.5 方向导数与梯度

§8.5 方向导数与梯度
一 方向导数 二 梯度
一 方向导数
1 定义
定义1 设函数
f ( x , y ) 在点 P0 ( x 0 , y 0 )
的某个邻域内有
定义,设 l 是一单位向量,记为 l
P P0
cos , cos .
y
若极限
lim
f ( P ) f ( P0 ) PP 0
lim
0
f ( x 0 cos , y 0 cos ) f ( x 0 , y 0 )
则称此极限值为 f ( x , y ) 在点 P0 处 存在,
沿方向 l 的方向导数, 记为
f l
P0
P
。
o
P0
x
注:
f x
P0
存在
f ( x, y )
在点 P0 处沿 x 轴正方向
) (2)
4 3 3
.
例3 设 n 是椭球面 2 x 2 3 y 2 z 2 处的内法向量,求u 的方向导数。 解
u x 6x z 6x 8y
2 2
6
在点 P (1, 1, 1)
6x 8y
2
2
z
在点 P 处沿方向 n
,
u x
P ( 1 ,1 , 1 )
grad f
2 x 3 , 4 y 2 , 6 z ,
5 , 2 , 12 .
grad f
P
2 x 3 , 4 y 2 , 6 z (1,1, 2 )
(2) f ( x , y , z ) 在点 P 处沿梯度方向的方向导数是
一 方向导数 二 梯度
一 方向导数
1 定义
定义1 设函数
f ( x , y ) 在点 P0 ( x 0 , y 0 )
的某个邻域内有
定义,设 l 是一单位向量,记为 l
P P0
cos , cos .
y
若极限
lim
f ( P ) f ( P0 ) PP 0
lim
0
f ( x 0 cos , y 0 cos ) f ( x 0 , y 0 )
则称此极限值为 f ( x , y ) 在点 P0 处 存在,
沿方向 l 的方向导数, 记为
f l
P0
P
。
o
P0
x
注:
f x
P0
存在
f ( x, y )
在点 P0 处沿 x 轴正方向
) (2)
4 3 3
.
例3 设 n 是椭球面 2 x 2 3 y 2 z 2 处的内法向量,求u 的方向导数。 解
u x 6x z 6x 8y
2 2
6
在点 P (1, 1, 1)
6x 8y
2
2
z
在点 P 处沿方向 n
,
u x
P ( 1 ,1 , 1 )
grad f
2 x 3 , 4 y 2 , 6 z ,
5 , 2 , 12 .
grad f
P
2 x 3 , 4 y 2 , 6 z (1,1, 2 )
(2) f ( x , y , z ) 在点 P 处沿梯度方向的方向导数是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f y tan f x
要点: 1)点 P 在 D 上的任一向量 2)如果存在一 L 方向的射线,则可以引入方向导数 与梯度的关系 2) 三元函数 u f ( x , y , z )
gradf ( x , y , z )
f f f i j k y z x
3) 对于三元函数 u
f ( x, y, z )
f f ( x x, y y ) f ( x, y ) lim l 0
f f cos cos cos l x y z
2、 梯度 1) 二元函数 z f ( x , y ) 在平面区域 D 内具有一阶连续偏导数,则对于每一点 P∈D,都可以定出一个向量:
= gradf ( x , y ) e = gradf ( x , y ) cos[ gradf ( x , y ), e ]
f 上式表示方向导数 l
影。 由梯度的定义可知:
即为梯度在射线 L 上的投
gradf ( x , y )
(
f 2 f 2 ) ( ) x x
f 0 则 x 轴到梯度的转角正切为: 如果 x
距离( (x) (y) )的比值,当 P 沿着 L 趋向 P 点时,
2 2
这个比值的极限存在,则这个极限为函数 z f ( x , y ) 在点 P 延 L 方向的方向导数,记作:
f l
f f ( x x, y y ) f ( x, y ) lim 且: l 0
方向导数和梯度
1、 方向导数
1) 定义:
现在讨论 z
f ( x , y ) 所确定的空间曲面在一点 P 沿
L
某一方向的变化率问题。
P
ρ △y φ P △x
设函数 z f ( x , y ) 在 P 点的某一邻域内有定义, 自 P 点引 出射线 L,设 X 轴到射线的转角为φ,并设另一点
P( x x, y y ) 为 L 上的一点, 考虑函数的增量与 P 和 P
f f i j x y
这个向量称作函数在 P 点的梯度,记作:
f f gradf ( x , y ) i j y x
如果设 e cos i sin j 是与 L 方向相同的单位向 量,则由方向导数的计算公式可知:
f f f f f cos sin = { , } (cos , sin ) l x y x y
2) 定理 如果函数 z
f ( x , y ) 在点 P(x , y )是可微分的,
f sin y
那末函数在该点延任一方向 L 的方向导数为:
f f cos l x
其中 为 x 轴到 L 的转角。 要点:
1、 起点 P(x , y ) 2、 在 P 可微 3、 延 P 指向 L 的转角
要点: 1)点 P 在 D 上的任一向量 2)如果存在一 L 方向的射线,则可以引入方向导数 与梯度的关系 2) 三元函数 u f ( x , y , z )
gradf ( x , y , z )
f f f i j k y z x
3) 对于三元函数 u
f ( x, y, z )
f f ( x x, y y ) f ( x, y ) lim l 0
f f cos cos cos l x y z
2、 梯度 1) 二元函数 z f ( x , y ) 在平面区域 D 内具有一阶连续偏导数,则对于每一点 P∈D,都可以定出一个向量:
= gradf ( x , y ) e = gradf ( x , y ) cos[ gradf ( x , y ), e ]
f 上式表示方向导数 l
影。 由梯度的定义可知:
即为梯度在射线 L 上的投
gradf ( x , y )
(
f 2 f 2 ) ( ) x x
f 0 则 x 轴到梯度的转角正切为: 如果 x
距离( (x) (y) )的比值,当 P 沿着 L 趋向 P 点时,
2 2
这个比值的极限存在,则这个极限为函数 z f ( x , y ) 在点 P 延 L 方向的方向导数,记作:
f l
f f ( x x, y y ) f ( x, y ) lim 且: l 0
方向导数和梯度
1、 方向导数
1) 定义:
现在讨论 z
f ( x , y ) 所确定的空间曲面在一点 P 沿
L
某一方向的变化率问题。
P
ρ △y φ P △x
设函数 z f ( x , y ) 在 P 点的某一邻域内有定义, 自 P 点引 出射线 L,设 X 轴到射线的转角为φ,并设另一点
P( x x, y y ) 为 L 上的一点, 考虑函数的增量与 P 和 P
f f i j x y
这个向量称作函数在 P 点的梯度,记作:
f f gradf ( x , y ) i j y x
如果设 e cos i sin j 是与 L 方向相同的单位向 量,则由方向导数的计算公式可知:
f f f f f cos sin = { , } (cos , sin ) l x y x y
2) 定理 如果函数 z
f ( x , y ) 在点 P(x , y )是可微分的,
f sin y
那末函数在该点延任一方向 L 的方向导数为:
f f cos l x
其中 为 x 轴到 L 的转角。 要点:
1、 起点 P(x , y ) 2、 在 P 可微 3、 延 P 指向 L 的转角