正余弦定理应用举例(二)

合集下载

余弦定理和正弦定理的应用

余弦定理和正弦定理的应用

余弦定理和正弦定理的应用余弦定理和正弦定理是初中数学中非常重要的定理,它们在解决三角形相关问题时起到了至关重要的作用。

在本文中,我将为大家详细介绍余弦定理和正弦定理的应用,并通过实例来说明它们的实用性和重要性。

一、余弦定理的应用余弦定理是用来求解三角形的边长或角度的定理。

它的数学表达式为:c² = a²+ b² - 2abcosC,其中a、b、c为三角形的边长,C为夹角。

1. 求解三角形的边长假设我们已知一个三角形的两边和它们之间的夹角,想要求解第三边的长度。

这时,我们可以利用余弦定理来解决这个问题。

例如,已知一个三角形的两边长分别为5cm和8cm,夹角为60°,我们可以利用余弦定理来计算第三边的长度。

根据余弦定理,我们可以得到c² = 5² + 8² - 2×5×8×cos60°,即c² = 25 + 64 -80cos60°。

进一步计算可得c² = 89 - 80cos60°,再开方可得c ≈ 2.92cm。

因此,这个三角形的第三边长约为2.92cm。

2. 求解三角形的角度除了求解边长外,余弦定理还可以用来求解三角形的角度。

例如,已知一个三角形的三边长分别为3cm、4cm和5cm,我们可以利用余弦定理来计算它的夹角。

根据余弦定理,我们可以得到cosC = (3² + 4² - 5²) / (2×3×4),即cosC = (9 + 16 - 25) / 24。

计算可得cosC = 0,因此C的值为90°。

通过以上两个例子,我们可以看到余弦定理在求解三角形边长和角度时的实用性和重要性。

它为我们解决各种三角形相关问题提供了有力的工具。

二、正弦定理的应用正弦定理是用来求解三角形的边长或角度的定理。

【创新设计】2022-2021学年高二数学人教B版必修5学案:1.2 应用举例(二)

【创新设计】2022-2021学年高二数学人教B版必修5学案:1.2 应用举例(二)

1.2 应用举例(二)[学习目标] 1.利用正、余弦定理解决生产实践中的有关角度的测量问题.2.能够运用正、余弦定理解决力学或几何方面的问题.[学问链接] 有人说物理学科中的题实质上是数学的应用题,事实上学习物理离不开数学,数学在物理学中的应用格外广泛,本节课我们来争辩正、余弦定理在测量方面,及在物理中的力学、平面几何方面的应用.要点一 测量角度问题例1 如图在海岸A 处发觉北偏东45°方向,距A处(3-1)海里的B 处有一艘走奉命以103私船.在A 处北偏西75°方向,距A 处2海里的C 处的我方缉私船海里/时的速度追截走私船,此时走私船正以10海里/时的速度,从B 处向北偏东30°方向逃跑.问:缉私船应沿什么方向行驶才能最快截获走私船?并求出所需时间.解 设缉私船应沿CD 方向行驶t 小时,才能最快截获(在D 点)走私船,则CD =103t 海里,BD =10t 海里. 在△ABC 中,由余弦定理, 得BC 2=AB 2+AC 2-2AB ·AC ·cos A =(3-1)2+22-2(3-1)·2·cos 120°=6, ∴BC =6(海里). 又∵BC sin A =AC sin ∠ABC,∴sin ∠ABC =AC ·sin A BC =2·sin 120°6=22,∴∠ABC =45°,∴B 点在C 点的正东方向上, ∴∠CBD =90°+30°=120°.在△BCD 中,由正弦定理,得BD sin ∠BCD =CDsin ∠CBD ,∴sin ∠BCD =BD ·sin ∠CBD CD =10t ·sin 120°103t=12.∴∠BCD =30°,∴缉私船应沿北偏东60°的方向行驶,又在△BCD 中,∠CBD =120°,∠BCD =30°,∴∠CDB =30°,∴BD =BC ,即10t = 6. ∴t =610小时≈15分钟. ∴缉私船应沿北偏东60°的方向行驶,才能最快截获走私船,大约需要15分钟.规律方法 航海问题是解三角形应用问题中的一类很重要的问题,解决这类问题肯定要搞清方位角,再就是选择好不动点,然后依据条件,画出示意图,转化为三角形问题.跟踪演练1 甲船在A 点发觉乙船在北偏东60°的B 处,乙船以每小时a 海里的速度向北行驶,已知甲船的速度是每小时3a 海里,问甲船应沿着什么方向前进,才能最快与乙船相遇? 解 如图所示.设经过t 小时两船在C 点相遇,则在△ABC 中,BC =at 海里,AC =3at 海里, B =90°+30°=120°,由BC sin ∠CAB =ACsin B 得:sin ∠CAB =BC sin B AC =at ·sin 120°3at =323=12.∵0°<∠CAB <90°,∴∠CAB =30°. ∴∠DAC =60°-30°=30°.所以甲船应沿着北偏东30°的方向前进,才能最快与乙船相遇. 要点二 正、余弦定理在几何中的应用例2 如图所示,半圆O 的直径为2,A 为直径延长线上的一点,OA =2,B 为半圆上任意一点,以AB 为一边作等边三角形ABC ,问:点B 在什么位置时,四边形OACB 面积最大?解 设∠AOB =α,在△ABC 中,由余弦定理, 得AB 2=12+22-2×2cos α=5-4cos α,α∈(0,π),于是,四边形OACB 的面积为S =S △AOB +S △ABC=12OA ·OB ·sin α+34AB 2=12×2×1×sin α+34(5-4cos α) =sin α-3cos α+543=2sin(α-π3)+543.由于0<α<π,所以当α-π3=π2,α=56π,即∠AOB =56π时,四边形OACB 面积最大.规律方法 利用正弦定理和余弦定理来解题时,要学会审题及依据题意画示意图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.跟踪演练2 如图所示,在△ABC 中,已知BC =15,AB ∶AC =7∶8,sin B =437,求BC边上的高AD 的长.解 在△ABC 中,由已知设AB =7x ,AC =8x ,x >0, 由正弦定理得7x sin C =8xsin B .∴sin C =7x sin B 8x =78×437=32.∴C =60°(C =120°舍去,否则由8x >7x ,知B 也为钝角,不合要求). 由余弦定理得(7x )2=(8x )2+152-2×8x ×15cos 60°, ∴x 2-8x +15=0,解得x =3或x =5. ∴AB =21或AB =35,在△ABD 中,AD =AB sin B =437AB ,∴AD =123或20 3.1.已知两座灯塔A ,B 与海洋观看站C 的距离相等,灯塔A 在观看站C 的北偏东40°,灯塔B 在观看站C 的南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东10°D .南偏西10°答案 B解析 如图,因△ABC 为等腰三角形,所以∠CBA =12(180°-80°)=50°,60°-50°=10°,故选B.2.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危急区,城市B 在A 的正东40 km 处,B 城市处于危急区内的时间为( ) A .0.5 h B .1 h C .1.5 h D .2 h 答案 B解析 设A 地东北方向上点P 到B 的距离为30 km ,AP =x . 在△ABP 中,PB 2=AP 2+AB 2-2AP ·AB cos A , 即302=x 2+402-2x ·40cos 45°, 化简得x 2-402x +700=0. 设该方程的两根为x 1,x 2,则|x 1-x 2|2=(x 1+x 2)2-4x 1x 2=400,|x 1-x 2|=20,即P 1P 2=20,故t =P 1P 2v =2020=1.故选B.3.一艘海轮从A 处动身,以40 n mile/h 的速度沿南偏东40°方向直线航行,30 min 后到达B 处,在C 处有一座灯塔,海轮在A 处观看灯塔,其方向是南偏东70°,在B 处观看灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( ) A .10 2 n mile B .10 3 n mile C .20 2 n mile D .20 3 n mile答案 A解析 如图所示,由已知条件可得,∠CAB =30°, ∠ABC =105°,AB =40×12=20(n mile).∴∠BCA =45°.∴由正弦定理可得AB sin 45°=BCsin 30°.∴BC =20×1222=102(n mile).4.如图,在四边形ABCD 中,AC 平分∠DAB ,∠ABC =60°,AC =6,AD =5,S △ADC =152,则AB =________.答案 43解析 在△ADC 中,已知AC =6,AD =5,S △ADC =152,则由S △ADC =12·AC ·AD ·sin ∠DAC ,求得sin ∠DAC =12,即∠DAC =30°,∴ ∠BAC =30°.而∠ABC =60°,故△ABC 为直角三角形; ∵ AC =6,∴ AB =AC cos 30°=632=4 3.1.在求解三角形中,我们可以依据正弦函数的定义得到两个解,但作为有关现实生活的应用题,必需检验上述所求的解是否符合实际意义,从而得出实际问题的解. 2.解三角形的应用题时,通常会遇到两种状况:(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之.(2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先争辩,再逐步在其余的三角形中求出问题的解.一、基础达标1.从高出海平面h m 的小岛看正东方向有一只船俯角为30°,看正南方向有一只船俯角为45°,则此时两船间的距离为 ( )A .2h m B.2h m C.3h m D .22h m 答案 A解析 如图所示,BC =3h m ,AC =h m ,∴AB =3h 2+h 2=2h (m).2.甲船在岛B 的正南A 处,AB =10 km ,甲船以每小时4 km 的速度向正北航行,同时,乙船自B 动身以每小时6 km 的速度向北偏东60°的方向驶去.当甲、乙两船相距最近时,它们所航行的时间是( ) A.1507分钟 B.157小时 C .21.5分钟 D .2.15分钟答案 A解析 设行驶x h 后甲到点C ,乙到点D , 两船相距y km ,则∠DBC =180°-60°=120°. ∴y 2=(10-4x )2+(6x )2-2(10-4x )·6x cos 120° =28x 2-20x +100=28(x -514)2-257+100∴当x =514小时=1507分钟,y 2有最小值.∴y 最小.3.已知A 船在灯塔C 北偏东80°处,且A 船到灯塔的距离为2 km ,B 船在灯塔C 北偏西处40°,A ,B 两船间的距离为3 km ,则B 船到灯塔的距离为________ km. 答案6-1解析 由题意知,∠ACB =80°+40°=120°,AC =2,AB =3,设B 船到灯塔的距离为x ,即BC =x .由余弦定理可知AB 2=AC 2+BC 2-2AC ·BC cos120°,即9=4+x 2-2×2x ×(-12),整理得x 2+2x -5=0,解得x =-1-6(舍去)或x =-1+ 6.4.在平行四边形中,AC =65,BD =17,周长为18,则平行四边形面积是________. 答案 16解析 设两邻边AD =b ,AB =a ,∠BAD =α,则a +b =9,a 2+b2-2ab cos α=17,a 2+b 2-2ab cos(180°-α)=65. 解得:a =5,b =4,cos α=35,∴S ▱ABCD =ab sin α=16.5.两座灯塔A 和B 与海洋观看站C 的距离都等于a km ,灯塔A 在观看站C 的北偏东20°,灯塔B 在观看站C 的南偏东40°,则灯塔A 与灯塔B 的距离为________km. 答案3a解析 由于灯塔A 在观看站C 的北偏东20°,灯塔B 在观看站C 的南偏东40°,所以∠ACB =120°.又由于AC 和BC 的距离都是a km ,由余弦定理,得AB 2=a 2+a 2-2×a ×a ×cos 120°=3a 2,所以A ,B 的距离是3a km.6.某地出土一块类似三角形刀状的古代玉佩(如右图),其一角已破损,现测得如下数据:BC =2.57 cm ,CE =3.57 cm ,BD =4.38 cm ,B =45°,C =120°.为了复原,请计算原玉佩两边的长(结果精确到0.01 cm).解 如下图所示,将BD ,CE 分别延长相交于一点A ,在△ABC 中,已知BC 的长及角B 与角C ,可以通过正弦定理求AB ,AC 的长.将BD ,CE 分别延长相交于一点A ,在△ABC 中,BC =2.57 cm ,B =45°,C =120°, A =180°-(B +C )=180°-(45°+120°)=15°.∵BC sin A =AC sin B ,∴AC =BC sin B sin A =2.57sin 45°sin 15°. 利用计算器算得AC ≈7.02(cm). 同理,AB ≈8.60(cm).答 原玉佩两边的长分别约为7.02 cm,8.60 cm.7.如图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 6 n mile ,在A 处看灯塔C 在货轮的北偏西30°,距离为8 3 n mile ,货轮由A 处向正北航行到D 处时,再看灯塔B 在货轮的南偏东60°. 求:(1)A 处与D 处的距离;(2)灯塔C 与D 处的距离.解 (1)在△ABD 中,∠ADB =60°,B =45°.由正弦定理得AD =AB sin Bsin ∠ADB =126×2232=24(n mile).所以A 处与D 处的距离为24 n mile.(2)在△ADC 中,由余弦定理得CD 2=AD 2+AC 2-2AD ·AC ·cos 30°.解得:CD =83(n mile).即灯塔C 与D 处的距离为8 3 n mile. 二、力量提升8.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°的方向上,与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后到达N 处,又测得灯塔在货轮的东北方向,则货轮的速度为________海里/时. 答案 20(6-2) 解析 由题意,得∠SMN =45°,∠SNM =105°,∠NSM =30°. 由正弦定理得MN sin 30°=MSsin 105°.∴MN =MS sin 30°sin 105°=106+24=10(6-2)(海里).则v 货=20(6-2) (海里/时).9.某渔船在航行中不幸遇险,发出呼叫信号,我海军舰艇在A 处获悉后,马上测出该渔船在方位角为45°,距离为10海里的C 处,并测得渔船正沿方位角为105°的方向,以10海里/时的速度向小岛B 靠拢,我海军舰艇马上以103海里/时的速度前去营救,求舰艇的航向和靠近渔船所需的时间. 解 如图所示,设所需时间为t 小时, 则AB =103t 海里,CB =10t 海里,在△ABC 中,依据余弦定理,则有 AB 2=AC 2+BC 2-2AC ·BC cos 120°,可得(103t )2=102+(10t )2-2×10×10t cos 120°, 整理得2t 2-t -1=0,解得t =1或t =-12(舍去).即舰艇需1小时靠近渔船,此时AB =103(海里),BC =10(海里), 在△ABC 中,由正弦定理得BC sin ∠CAB =ABsin 120°,所以sin ∠CAB =BC sin 120°AB =10×32103=12,所以∠CAB =30°,所以舰艇航行的方位角为75°.10.为保障高考的公正性,高考时每个考点都要安装手机屏蔽仪,要求在考点四周1千米处不能收到手机信号,检查员抽查青岛市一考点,在考点正西约1.732千米有一条北偏东60°方向的大路,在此处检查员用手机接通电话,以每小时12千米的速度沿大路行驶,问最长需要多少分钟检查员开头收不到信号,并至少持续多长时间该考点才算合格?解 如图所示,考点为A ,检查开头处为B , 设大路上C ,D 两点到考点的距离为1千米. 在△ABC 中,AB =3≈1.732(千米),AC =1(千米), ∠ABC = 30°,由正弦定理sin ∠ACB =sin 30°AC ·AB =32,∴∠ACB =120°(∠ACB =60°不合题意), ∴∠BAC =30°,∴BC =AC =1(千米), 在△ACD 中,AC =AD ,∠ACD =60°, ∴△ACD 为等边三角形,∴CD =1(千米). ∵BC12×60=5,∴在BC 上需5分钟,CD 上需5分钟. 所以最长需要5分钟检查员开头收不到信号,并持续至少5分钟才算合格.11.某工厂生产产品后,留下大量中心角为60°,半径为R 的扇形边角料,现要利用边角料,从中剪裁出矩形毛坯,要求矩形面积尽可能大,请问如何裁剪?解 如图所示,矩形有两个顶点在半径OA 上,设∠AOP =θ, 则PM =R sin θ,∵扇形中心角为60°, ∴∠PQO =120°.在△OPQ 中,由正弦定理, 得OP sin 120°=PQsin (60°-θ),即PQ =23R sin(60°-θ). ∴矩形MPQR 的面积为 S 1=PM ·PQ =23R 2sin θsin(60°-θ), sin θsin(60°-θ)=sin θ(32cos θ-12sin θ) =32sin θcos θ-12sin 2 θ =34sin 2θ-1-cos 2θ4 =34sin 2θ+14cos 2θ-14=12sin(2θ+30°)-14, 当sin(2θ+30°)=1时,取得最大值14,即θ=30°时,sin θsin(60°-θ)≤14.此时S 1=23R 2sin θsin(60°-θ)≤36R 2,故θ=30°时,S 1取最大值36R 2,由θ=30°确定P 点,通过做平行线不难确定出另三点. 三、探究与创新12.现有一块直径为30 cm 的圆形钢板,需截去直径分别为20 cm,10 cm 的圆形钢板各一块,现需在剩余的钢板中再截出同样大小的圆形钢板两块,问这两块钢板的半径最大为多少?解 如图,设⊙A ,⊙B 分别是直径为20 cm 和10 cm 的圆,⊙D 是直径为30 cm 的圆,则⊙A ,⊙B 相外切且与⊙D 内切,再设最终截下的两个最大的圆为⊙C ,⊙E ,则它们与⊙A ,⊙B 相外切,且与⊙D 相内切,连接AB 、AC 、BC 、CD .设⊙C 的半径为r ,在△ABC 中,AB =15,AC =10+r , BC =5+r ,AD =5,CD =15-r , 由余弦定理得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC=152+(10+r )2-(5+r )22×15×(10+r )=30+r 30+3r .在△ADC 中,cos ∠DAC =AD 2+AC 2-CD 22AD ·AC=52+(10+r )2-(15-r )22·5·(10+r )=5r -10r +10.故30+r30+3r =5r -10r +10,整理得7r 2+40r -300=0, ∴r =307或r =-10(舍去).所以在剩余的钢板中还可以截出半径最大为307cm 的同样大小的圆形钢板两块.。

运用正弦定理和余弦定理等知识和方法解决三角形

运用正弦定理和余弦定理等知识和方法解决三角形
1.在△ABC中,A=60°,a=4 ,b=4 ,则B等于( )
A.45°或135°B.135°C.45°D.以上答案都不对
2.在△ABC中,角A、B、C的对边分别为a、b、c,若(a2+c2-b2)tanB= ac,则角B的值为( )
A. B. C. 或 D. 或
授课问题设置
例1如图,△ACD是等边三角形,△ABC是等腰直角三角形,∠ACB=90°,BD交AC于E,AB=2.
预习检测
1、与解斜三角形有关的公式
(1)正弦定理和余弦定理:
= =
; ; ;
对公式及公式的变形要记熟,要清楚这些公式能解决那些问题.
(2)求面积公式的其他公式:
; 是 内切圆的半径);
2R2sinAsinBsinC(R为外接圆半径); .
(3)两角和与差的正弦余弦正切公式,二倍角公式等要在解题中会熟练运用.
整理,得b2+c2-a2=bc,∴cosA= = .∵0<A<π,∴A= .
(2)∵S△ABC= bcsinA= ,即 bcsin = ,
∴bc=3.①
∵a2=b2+c2-2bccosA,∴b2+c2=6,②
由①②得b=c= ,∴△ABC为等边三角形.
规律总结:通过此例题可使学生明确,利用正弦定理和余弦定理进行边角的互化,进而求角或边的大小.已知三角形中的边角关系式,判断三角形的形状,可考虑用正玄余弦定理化边为角或化角为边,在进行三角恒等变换求出三个角之间的关系式,然后给予判定,.
章节
1.2应用举例
课题
应用举例(二)
学习目标
1.能够ቤተ መጻሕፍቲ ባይዱ用正弦定理和余弦定理等知识和方法解决三角形中的有关边长角度面积等问题.
2.通过例题讲解和实践提高分析问题、解决问题的能力。

正余弦定理的应用举例

正余弦定理的应用举例

正余弦定理的应用举例正、余弦定理的应用举例(1)知识梳理一、解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解二.测量的主要内容是求角和距离,教学中要注意让学生分清仰角、俯角、张角、视角和方位角及坡度、经纬度等概念,将实际问题转化为解三角形问题.三.解决有关测量、航海等问题时,首先要搞清题中有关术语的准确含义,再用数学语言(符号语言、图形语言)表示已知条件、未知条件及其关系,最后用正弦定理、余弦定理予以解决.典例剖析题型一距离问题例 1.如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲船的北偏西方向的处,此时两船相距海里,当甲船航行分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里,问乙船每小时航行多少海里?解:如图,连结,由已知,,,又,是等边三角形,,由已知,,,在中,由余弦定理,..因此,乙船的速度的大小为(海里/小时).答:乙船每小时航行海里.题型二高度问题例2、在某点B处测得建筑物AE的顶端A的仰角为,沿BE方向前进30m,至点C处测得顶端A的仰角为2,再继续前进10m至D点,测得顶端A的仰角为4,求的大小和建筑物AE的高。

解法一:(用正弦定理求解)由已知可得在ACD中,AC=BC=30,AD=DC=10,ADC=180-4,=。

sin4=2sin2cos2cos2=,得2=30=15,在RtADE中,AE=ADsin60=15答:所求角为15,建筑物高度为15m解法二:(设方程来求解)设DE=x,AE=h在RtACE中,(10+x)+h=30在RtADE中,x+h=(10)两式相减,得x=5,h=15在RtACE中,tan2==2=30,=15答:所求角为15,建筑物高度为15m解法三:(用倍角公式求解)设建筑物高为AE=x,由题意,得BAC=,CAD=2,AC=BC=30m,AD=CD=10m在RtACE中,sin2=------①在RtADE中,sin4=,----②②①得cos2=,2=30,=15,AE=ADsin60=15答:所求角为15,建筑物高度为15m评析:根据题意正确画出图形是解题的关键,同时要把题意中的数据在图形中体现出来。

第06课时(正余弦定理的应用(2))

第06课时(正余弦定理的应用(2))

1.四边形ABCD是半径为R的圆内接矩形,求矩形ABCD面积的最大值.2.已知一个直角三角形的周长为2,求其斜边长的最小值.例题剖析例1 如图,半圆O的直径为2,A为直径延长线上的一点,2OA,B为半圆上任意=一点,以AB为一边作等边ABC∆,问点B在什么位置时,四边形OACB的面积最大?P PRCQ PRCQ 的面积最大.例3 某工厂生产主要产品后,留下大量中心角为 60,半径为a 的扇形边角料,现要废物利用,从中剪裁下矩形毛坯,有两种方案.所图所示: 方案(1):让矩形的一边在扇形的一条半径上; 方案(2): 让矩形的一边与弦AB 平行.试问:哪种裁法能得到最大面积的矩形,求出最大值.课堂小结正余弦定理在实际问题中的应用;建立三角函数模型.ABQRD CTSOBA(2)ABC(1)课后训练班级:高一( )班 姓名:____________一 基础题1.ABC ∆中,角C B A ,,的对边分别为c b a ,,,那么A b B a cos cos +等于( ) A .C cos 2B .C sin 2C .2b a + D . c2.在ABC ∆中,3:2:1::=C B A ,则=c b a :: ( ) A .3:2:1B .5:4:3C .2:3:1D .4:3:23.在ABC ∆中,若ABC ∆的面积为S ,且22)(2c b a S -+=,则=c tan ___________. 二 提高题4.把一根长为cm 30的木条锯成两段,分别作钝角三角形ABC 的两边AB 和BC ,且︒=∠120ABC ,如何锯断木条,才能使第三条边AC 最短.5.如图,已知A ∠为定角,Q P ,分别在A ∠的两边上,PQ 为定长,当Q P ,处于什么位置时,APQ ∆的面积最大?AQP6.在ABC ∆中,已知01cos 2=-B ,48=ac ,2=-c a ,求b .三 能力题7.ABC ∆内以O 为圆心,1为半径的圆,且0543==+OC OB OA ,(1)求OA ·OB ,OB ·OC ,OC ·OA ; (2)求ABC S ∆.8.在ABC ∆中,已知3π=A ,3=a ,求证:ABC ∆为正三角形时其周长取得最大值.。

正弦定理余弦定理应用举例

正弦定理余弦定理应用举例

正弦定理、余弦定理应用举例一、距离问题1.xkm 后,他向右转150,然后朝新方向走3km ,结果他离出发点某人向正东方向走恰好3km ,那么x 的值为【】A.3B.23C.23或3D.32.如图,为了测量某障碍物两侧A、 B 间的距离,给定下列四组数据,测量时应当用数据【】A., a, bB.,, aC.a,b,D.,, b两座灯塔A 与B与海洋观察站C的距离都等于 a km ,灯塔A在观察站C的北偏东3.20 ,灯塔B在观察站C的南偏东 40,则灯塔 A 与灯塔 B 的距离为【】A. a kmB.3a kmC. 2a kmD. 2a km4.海上有 A、B 两个小岛相距10海里,从A 岛望 C岛和 B岛成60的视角,从B岛望 C 岛和 A岛成75的视角,则B、 C 的距离是 __________________5.一船向正北航行,看见正西方向有相距10 海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西 60的方向上,另一灯塔在船的南偏西75 方向上,则这艘船的速度是每小时___________________6.如右图所示,设 A 、B 两点在河的两岸,一测量者在 A 所在的河岸边选定一点 C ,测出 AC 的距离为 50m ,ACB45 , CAB105后,就可以计算 A 、 B 两点间的距离为 ___________7.一船以 24 km / h的速度向正北方向航行,在点 A 处望见灯塔 S 在船的北偏东30 方向上,15min后到点B处望见灯塔在船的北偏东65 方向上,则船在点B时与灯塔S的距离是__________km.(精确到 0.1km )18.如图,我炮兵阵地位于地面 A 处,两观察所分别位于地面点 C 和 D 处,已知 CD=6000m.ACD 45,ADC75,B 处时测得BCD 30 , BDC 15目标出现于地面求炮兵阵地到目标的距离。

(结果保留根号)A45600075C D3015B2二、高度问题1.在一幢 20m 高的楼顶测得对面一塔吊的仰角为60 ,塔基的俯角为45 ,那么这座塔吊的高是【】3 )m B. 20(13) m C.10( 6 2 )m D. 20(6 2 )mA.20(132.在地面上点 D 处,测量某建筑物的高度,测得此建筑物顶端 A 与底部 B 的仰角分别为60 和 30 ,已知建筑物底部高出地面 D 点 20m,则建筑物高度为【】A.20mB.30mC. 40mD.60m3.如图所示,在山根 A 处测得山顶 B 的仰角CAB 45 ,沿倾斜角为 30 的山坡向山顶走1000 米到达 S 点又测得山顶仰角DSB 75 ,则山高BC为【】A.500 2mB. 200mC.1000 2mD. 1000m4.从某电视塔的正东方向的 A 处,测得塔顶仰角为60 ;从电视塔的西偏南30 的B处,测得塔顶仰角为45 ,A、B两点间的距离是35m,则此电视塔的高度是【】4900 m D.35mA. 5 21mB.10mC.135.j 江岸边有一炮台高30m,江中有两条船,由炮台顶部测得俯角分别为45 , 30 ,而且两条船与炮台底部连线成30 角,则两船相距【】A.10 3mB.100 3mC. 203mD.30m6.一船以每小时15km 的速度向东航行,船在 A 处看到一个灯塔M 在北偏东60方向,行驶4h 后,船到达 B 处,看到这个灯塔在北偏东15 方向,这时船与灯塔的距离为_____km37.甲、乙两楼相距20 米,从乙楼底望甲楼顶的仰角为60 ,从甲楼顶望乙楼顶的俯角为30 ,则甲、乙两楼的高分别是______________8.地平面上一旗杆设定为OP,为测得它的高度h,在地平线上取一基线AB, AB=200m ,在 A 处测得 P 点的仰角为OAP 30 ,在B处测得P点的仰角OBP 45 ,又测得AOB 60 ,求旗杆的高度h4。

余弦定理和正弦定理的应用

余弦定理和正弦定理的应用

余弦定理和正弦定理的应用余弦定理和正弦定理是解决三角形问题中常用的数学定理。

它们可以帮助我们求解三角形的边长、角度和面积等。

本文将分别介绍余弦定理和正弦定理的应用,并通过实例来说明它们的具体使用方法。

一、余弦定理的应用余弦定理是一个用来描述三角形边长和夹角之间关系的定理。

在任意三角形ABC中,假设边长分别为a、b、c,而对应的夹角为A、B、C,则余弦定理可以表示为:c² = a² + b² - 2ab·cosC1. 求解三角形边长假设我们已知一个三角形的两个边长a和b,以及它们夹角C的大小。

我们可以通过余弦定理来求解第三个边长c。

例如,已知三角形ABC中,边AB的长度为5,边AC的长度为8,而夹角B的大小为60度。

按照余弦定理,我们可以用下式来计算边BC的长度:BC² = AB² + AC² - 2·AB·AC·cosB代入具体数值,即可求得:BC² = 5² + 8² - 2·5·8·cos60°BC² = 25 + 64 - 80·0.5BC² = 89 - 40BC² = 49BC = √49 = 7因此,边BC的长度为7。

2. 求解三角形夹角在某些情况下,我们已知三角形的三个边长,但需要求解其中一个夹角的大小。

余弦定理同样可以解决这个问题。

例如,已知三角形ABC的边长分别为a=4、b=7、c=9。

我们想要求解夹角C的大小。

根据余弦定理,我们可以得到:c² = a² + b² - 2ab·cosC代入具体数值,我们可以得到:9² = 4² + 7² - 2·4·7·cosC81 = 16 + 49 - 56·cosC16 + 49 - 81 = 56·cosC-16 = 56·cosCcosC = -16 / 56 = -0.2857由于余弦函数的定义域为[-1, 1],该结果无解,即无法构成三角形。

正弦定理与余弦定理的应用

正弦定理与余弦定理的应用

正弦定理与余弦定理的应用正弦定理和余弦定理是中学数学中重要的几何定理,它们在解决三角形相关问题时起着关键作用。

本文将以实际例子为基础,详细介绍正弦定理和余弦定理的应用。

一、正弦定理的应用正弦定理是解决三角形边长和角度之间关系的重要工具。

它的表达式为:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$,其中$a$、$b$、$c$分别为三角形的边长,$A$、$B$、$C$为对应的角度。

例子一:已知三角形$ABC$中,$AB=5$,$BC=8$,$\angle B=45^\circ$,求$\angle A$和$\angle C$的大小。

解析:根据正弦定理可得:$\frac{5}{\sin A}=\frac{8}{\sin 45^\circ}$。

通过求解可得$\sin A=\frac{5\sin 45^\circ}{8}$,进而得到$\angle A=\sin^{-1}\left(\frac{5\sin 45^\circ}{8}\right)$。

同理,可以求得$\angle C=180^\circ-\angle A-\angle B$。

通过计算可得$\angle A\approx 28.07^\circ$,$\angle C\approx106.93^\circ$。

例子二:已知三角形$ABC$中,$AB=6$,$BC=9$,$\angle A=30^\circ$,求$AC$的长度。

解析:根据正弦定理可得:$\frac{6}{\sin 30^\circ}=\frac{AC}{\sin C}$。

通过求解可得$\sin C=\frac{AC\sin 30^\circ}{6}$,进而得到$AC=\frac{6\sin C}{\sin30^\circ}$。

由于$\sin C=\sin (180^\circ-\angle A-\angle B)$,可以通过计算得到$AC\approx 10.39$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

首页
引入 进行 小结 作业
教学过程
EXIT
2013年6月9日星期日
公式 : 1 1 1 S ab sin C ac sin B bc sin A 教学过程 2 2 2
引入 进行 小结 作业
例2、在ABC中, 根据下列条件, 求三角形 2 的面积S (精确到0.1cm ).
茅盾中学 沈晓强
茅盾中学

首页
首页
引入 进行 小结 作业
教学过程
§ 1.2 应用举例(二)
EXIT
2013年6月9日星期日
茅盾中学 沈晓强
茅盾中学

引入
例1、如图, 一艘海轮从A出发, 沿北偏东750的方向 航行67.5nmile后到达海岛B, 然后从B出发, 沿北偏 东320的方向航行54.0nmile后到达海岛C.如果下次 航行直接从A出发到达C , 此船应该沿怎样的方向 航行, 需要航行多少距离(角度精确到0.10 , 距离精 确到0.01nmile ).
EXIT 证明三角形中的边角关系恒等式 : 全部转 化为边的关系, 或者全部转化为角的关系.
2013年6月9日星期日
茅盾中学 沈晓强
茅盾中学

结束
首页
引入 进行 小结 作业
教学过程
EXIT
2013年6月9日星期日

新课
首页 例3、在ABC中, 求证 : 2 2 2 2 a b sin A sin B ; 教学过程 (1) 2 2 c sin C
引入 进行 小结 作业
(2)a b c 2(bc cos A ca cos B ab cos C ).
2 2 2
(1)已知a 14.8cm, c 23.5cm, B 148.5 ;
0
EXIT
(2)已知B 62.7 , C 65.8 , b 3.16cm;
0 0
(3)已知a 41.4cm, b 27.3cm, c 38.7cm.
2013年6月9日星期日
茅盾中学 沈晓强
茅盾中学
相关文档
最新文档