甘肃省兰州第一中学2016-2017学年高一上学期期中考试

合集下载

甘肃省兰州市第一中学2017届高三上学期期中考试英语试题及答案

甘肃省兰州市第一中学2017届高三上学期期中考试英语试题及答案

兰州一中2016-2017-1学期高三年级期中考试试题英语说明:本试卷分第I卷(选择题) 和第II卷(非选择题) 两部分,满分120分,考试时间100分钟。

答案写在答题卡上,交卷时只交答题卡。

第I卷第一部分阅读理解(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的四个选项(A、B、C和D)中,选出最佳选项。

AWith hospitals and nursing homes tending to thousands of patients every year accidents can and do happen. These incidents whether they are through carelessness or otherwise, can leave patients feeling powerless. That’s not the case.“There is growing public awareness. People are feeling t hey have more rights and they have tools in hand to make a complaint,” said Ralph Montano, spokesman for the California Department of Public Health, which regulates hospitals and long-term care facilities in the state.That department received more than 6000 complaints about hospitals in 2007; in the most recent year statistics are available. The complaints can be about mixed-up lab results, medicine errors, foreign objects left in a patient during surgery or a host of other topic.Similarly, the California department of Aging received 43,000 nursing home complaints in 2014. Some said patient abuse or neglect of patients; others reported missing items. And some commented on the quality of the food.But finding the channels through them to put forward a complaint can be tiring and time consumption. Many consumers simply don’t bother, and some become lost in the system. Whether the complaint is against a hospital or a long-term care facility, the process is similar—and many people can help, including the facility’s staff, insurance company representatives and state regulators.If you want to make a complaint while in the hospital, Patti Harvey, vice president of quality and patient care services for Kaiser Permanente in Southern California, recommends talking with the bedside nurse. If that doesn’t work, you can talk with other people higher in the chain of command, up to the hospital administrator. If the problem isn’t still taken care of—say you disagree with your treatment plan or have a problem with your doctor—member service offices at each hospital can help address your concerns.1. Why are there more complaints from patients?A. Because there are more departments to deal with complaints.B. Because in the hospital there are more accidents than before.C. Because it’s convenient for people to put forward complaints.D. Because hospitals have more and more rights.2. Many consumers don’t make a complaint because __________.A. complaints are bad for a long-term care facilityB. few accidents happenC. many complaints are lostD. it takes time to make a complaint3. The last paragraph mainly tells us _________.A. to solve problems with the hospital quicklyB. something about Patti HarveyC. how to make complaints in the hospitalD. we should say we disagree with the treatment plan4. Who can help if you complain against a hospital or a long-term care facility?A. Jack—a representative of an insurance company.B. Peter—a medical officer from the government.C. Rudy—a headmaster of a medical university.D. Tom—a teacher of a medical school.BAn 80-year-old man was sitting on the sofa in his house along with his 45-year-old highly educated son. Suddenly a crow perched on the tree near their window.The father asked his son, “What is this?”The son replied, “It is a crow.”After a few minutes, the father asked his son the second time, “What is this?”The son said, “Father, I have just now told you. It is a crow! ”After a little while, the old father agai n asked his son the third time, “What is this?”“It’s a crow, a crow, a crow!” said the son loudly.A little after, the father again asked his son the fourth time, “What is this?”This time the son shouted at his father, “Why do you keep asking me the same question again and again? ‘ IT IS A CROW’. Are you not able to understand this?”A little later the father went to his room and came back with an old diary, which he had kept since his son was born. On opening a page, he asked his son to read that page. When the son read it, the following words were written in the diary:“Today my little son aged three was sitting with me on the sofa, when a crow was sitting on the window. My son asked me 23 times what it was, and I replied to him all 23 times that it was crow. I hugged himlovingly each time he asked me the same question again and again for 23 times. I did not at all feel annoyed; I rather felt affection for my innocent child.”5. What does the underlined word “perched” mean in the passage?A. knocked.B. hit.C. landed.D. flew.6. Why did the father ask the same question again and again?A. Because he wanted to see how patient his son would be.B. Because he was too old to remember anything.C. Because he wanted to make his son angry.D. Because he couldn’t understand what his son said.7. How old was the old man when his son asked him 23 times “What is this?”A. 38 years old.B. 45 years old.C. 80 years old.D. 35 years old.8. What is the most suitable title for the passage?A. A Crow.B. An Old Man.C. An Old Diary.D. Father’s Love.CWhen other nine-year-old kids were playing games, she was working at a petrol station. When other teens were studying or going out, she struggled to find a place to sleep on the street. But she overcame these terrible setbacks to win a highly competitive scholarship and gain entry to Harvard University. And her amazing story has inspired a movie, “Homeless to Harvard: The Liz Murray Story” shown in late April.Liz Murray, a 22-year-old American girl, has been writing a real-life story of willpower and determination. Liz grew up in the shadow of two drug-addicted parents. There was never enough food or warm clothes in the house. Liz was the only member of the family who had a job. Her mother had AIDS and died when Liz was just 15 years old. The effect of that LOSS became a turning point in her life. Connecting the environment in which she had grown up with how her mother had died, she decided to do something about it.Liz went back to school. She threw herself into her studies, never telling her teachers that she was homeless. At night, she lived on the streets. “What drove me to live on had something to do with understanding, by understanding that there was a whole other way of being. I had only experienced a small part of the society,” she wrote in her book Breaking Night.She admitted that she used envy to drive herself on. She used the benefits that come easily to others, such as a safe living environment, to encourage herself that “next to nothing could hold me down”. She finished high school in just two years and won a full scholarship to study at Harvard University, but Liz decided to leave her top university a couple of months earlier this year in order to take care of her father,who has also developed AIDS. “I love my parents so much. They are drug addicts. But I never forget that they love me all the time.”Liz wants moviegoers to come away with the idea that changing your life is “as simple as making a decision”.9. The main idea of the passage is __________.A. what a hard time Liz had in her childhoodB. how Liz managed to enter Harvard UniversityC. how Liz struggled to change her lifeD. why Liz loved her parents so much10. What actually made her go towards her goal?A. Willpower and determination.B. Envy and encouragement.C. Decisions and understanding.D. Love and respect for her parents.11. When she wrote “What drove me to live on… I had only experienced a small part of the society”, she meant that _________.A. she needed to travel more around the worldB. she would do something for her own lifeC. she could hardly understand the societyD. she had little experience of social lifeDPhiladelphia, Pennsylvania is America’s fifth largest city. Once a major American colonial city, it is the home of America’s first library, its first hospital, and its first zoo. Now it is also the first US city to be named a World Heritage City. On November 6, 2015, Philadelphia joined more than 260 other cities that have been recognized for their influence on the world. These cities include Paris, France, Florence, Italy, and Cairo, Egypt.“Today marks the start of a new and exciting chapter in the history of Philadelphia,”remarked Philadelphia Mayor Michael Nutter when the announcement was made. “As a World Heritage City, Philadelphia is being officially recognized on the global stage for its wealth of contributions to the world.To be named a World Heritage City, a city must be home to a UNESCO World Heritage site. UNESCO World Heritage sites are selected for their universal value and significance. For Philadelphia, the site is Independence Hall.Independence Hall is where two of the most important documents in US history—the Declaration of Independence and the US Constitution—were adopted. The Declaration of Independence, approved on July 4, 1776, united the 13 former British colonies and declared them independent from British rule. The US Constitution, signed in 1787, established the American democratic system of government. A democracy is a system of government in which the people elect their leaders. The Constitution later spelled out the basicfreedoms American citizens have.Philadelphia Deputy Mayor Alan Greenberger says the city’s selection as a World Heritage City also reflects its educational, cultural, and economic achievements. The city is home to dozens of colleges and universities, and many museums, such as the Philadelphia Museum of Art. “Philadelphia has rightfully earned its place as one of the greatest cities in the world.” Greenberger says.12. We can learn from Paragraph 1 that Philadelphia ________.A. is known for many America’s firstsB. has been famous as a World Heritage CityC. has the best American hospitalD. has contributed a lot to the global economy13. In Paragraph 2, Michael Nutter is talking about _________.A. the World Heritage CityB. the significance of the city’s selectionC. the history of PhiladelphiaD. the contributions of the city14. What opinion does Alan Greenberger hold?A. It’s easy for the city to win the honor.B. The honor will bring the city a better future.C. It won’t be long before the city takes off.D. The city really deserves the honor.15. What could be the best title for the text?A. Philadelphia Makes a DifferenceB. Philadelphia Develops a LotC. Philadelphia Makes HistoryD. Philadelphia Wins Global Respect第二节(共5小题;每小题2分,满分10分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。

甘肃省兰州市2016_2017学年高一数学上学期期中试题

甘肃省兰州市2016_2017学年高一数学上学期期中试题

甘肃省兰州市2016-2017学年高一数学上学期期中试题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单项选择题(本大题共12小题,每小题5分,共60分) 1.设集合{}{}{}1,2,3,4,5,A 2,3,4,1,4U B ===,则()U C A B =U( )A .{}1B .{}1,5C .{}1,4D .{}1,4,52.函数1lg(2)y x x =++-的定义域是 ( )A.B.C. [)1,2D.3. 与函数y x =相同的函数是 ( )A.2y x =2x y x=C.2()y x =D.log (01)xa y a a a =>≠且4.设1,(0)(),(0)0,(0)x x f x x x π+>⎧⎪==⎨⎪<⎩,则{[(1)]}f f f -= ( )A .1π+B .0C .πD .-15. 下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是 ( ) A .y=1xB .y=e ﹣xC .y=﹣x 2+1 D .y=lg|x| 6.已知定义域为R 的函数f(x)在区间(8,+∞)上为减函数,且函数为偶函数,则 ( ) A. B. C. D.7.函数2(44)x y a a a =-+是指数函数,则a 的值是 ( ) A .4 B .1或3 C .3 D .18.若3log 41x =,则44x x -+= ( ) A. 1 B. 2 C.83 D. 1039.设125211(),2,log 55a b c ===,则 ( )A .c a b <<B .c b a <<C .a c b <<D .a b c << 10.下图中的曲线是幂函数n y x =在第一象限内的图象,已知n 取2±,12±四个值, 则相应于曲线1234,,,C C C C 的n 依次为 ( )A .112,,,222--B .112,,,222--C .11,2,2,22--D .112,,2,22-- 11.函数x xx f 2log 1)(+-=的一个零点落在下列哪个区间 ( )A .)1,0(B .)2,1(C .)3,2(D .)4,3( 12.已知函数,在区间(-∞,4)上是减函数,则的取值范围是 ( )A .B .C .D .第II 卷(非选择题)二、填空题(本大题共4小题,每小题5分,共20分) 13.函数)(x f 满足3)2(2+=+x x f , 则()f x = . 14.函数,则该函数值域为 .15.设偶函数)(x f 在区间[0,+∞)上单调递增,则使得成立的的取 值范围是 .16.已知定义在R 上的奇函数,当时,,那么时, .三、解答题(本大题共6小题,共70分) 17.(本题10分)利用函数单调性定义证明函数x12-在(0,+∞)上为增函数.18.(本题12分)已知集合{|280}A x x =-<,{|06}B x x =<<,全集U R =,求: (1)A B I ; (2)B A C U Y )(.19.(本题12分)计算以下式子的值:(1)421033)21(25.0)21()4(--⨯+--;(2)1log 45lg 20lg 81log 52log 34++++.20.(本题12分)已知函数的定义域是(0,+∞),且满足 ,1()2f =1,如果对于,都有. (1)求的值;(2)解不等式.21.(本题12分)已知函数1()log (0,1)1a xf x a a x+=>≠-。

兰州第一中学2016届高三上学期期中考试数学(理)题目-Word版

兰州第一中学2016届高三上学期期中考试数学(理)题目-Word版

兰州一中2015-2016-1学期高三年级期中考试试题数 学 (理)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效.满分150分,考试时间120分钟,考试结束后,只交答题卡.第I 卷(共60分)一、选择题(本大题共12小题,每小题5分,共60分) 1. 已知集合A ={}{}|1,|12,x x B x x >=-<<则(C R A )B = ( )A .{}|1x x >-B .{}|11x x -<≤C .{}|12x x -<<D .{}|12x x <<2.若0.52a =,log 3b π=,22log sin 5c π=,则 ( ) A .a b c >>B .b a c >>C .c a b >>D .b c a >>3.设曲线y =11x x +-在点(3,2)处的切线与直线ax +y +3=0垂直,则a 等于 ( ) A .2B .12C. -2D .-124. 已知函数f (x )=20082cos(2000)32(2000)x x x x π-⎧≤⎪⎨⎪>⎩,则f = ( ) AB .C .1D . -15.下列说法中,正确的是 ( ) A .命题“若a <b ,则am 2<bm 2”的否命题是假命题B .设α ,β为两个不同的平面,直线l ⊂α,则“l ⊥β ”是 “α⊥β ” 成立的充分不必要条件C .命题“存在x ∈R ,x 2-x >0”的否定是“对任意x ∈R ,x 2-x <0” D .已知x ∈R ,则“x >1”是“x >2”的充分不必要条件6. 已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为 ( )A .12B. -12 C .-32D.327.在△ABC 中,AB =2,BC =3,∠ABC =60°,AD 为BC 边上的高,O 为AD 的中点,若AO →=λAB →+μBC →,则λ+μ等于 ( ) A .1 B. 12 C. 13 D. 238.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax (a >12),当x ∈(-2,0)时,f (x )的最小值为1,则a =( ) A .-1B .1C .21eD .e29.若将函数y =tan ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π6个单位长度后,与函数y =tan⎝⎛⎭⎪⎫ωx +π6的图象重合,则ω的最小值为( ) A.16B.14C.13D.1210.设函数f (x )=12x 2-9ln x 在区间上单调递减,则实数a 的取值范围是( )A .1<a ≤2B .a ≥4C .a ≤2D .0<a ≤311. 设函数)22,0)(sin(3)(πϕπωϕω<<->+=x x f 的图象关于直线x =23π对称,相邻两个对称中心之间的距离为2π,则( )A .f (x )的图象过点(0,12) B. f (x )在[12π,23π]上是减函数C. f (x )的一个对称中心是(512π,0) D. 将f (x )的图象向右平移||ϕ个单位得到函数x y ωsin 3=的图象12.已知f (x )=x 3-6x 2+9x -abc ,a <b <c ,且f (a )=f (b )=f (c )=0. 下列说法中正确的是( )A .f (0) f (1)>0B .f (0)f (3)>0C .f (0)f (2)>0D .f (0)f (3)<0第Ⅱ卷(共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.设向量a =(-1,2),b =(m ,1),如果向量a +2b 与2a -b 平行,则a ·b = . 14.如图所示,在边长为1的正方形OABC 中任取一点M ,则点M 恰好取自阴影部分的概率是 .15.已知0<β<2π<α<π,且cos(α-2β)=-19,sin(2α-β)=23,则cos(α+β) =_____.16.设函数f (x )=ln x -12ax 2-bx ,若x =1是f (x )的极大值点,则a 的取值范围为_______.三、解答题(本大题共6小题,共70分) 17.(本小题满分12分)在△ABC 中,已知a sin A -c sin C =(a -b )sin B , △ABC(1)求C ;(2)求△ABC 的面积S 的最大值.18.(本小题满分12分)在三棱锥M -ABC 中,AB =2AC =2,MA =MB,AB =4A N ,AB ⊥AC ,平面MAB ⊥平面ABC ,S 为BC 的中点.(1) 证明:CM ⊥SN ;(2) 求SN 与平面CMN 所成角的大小.19.(本小题满分12分)某班同学利用国庆节进行社会实践,对 岁的人群随机抽取n 人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:(1)补全频率分布直方图并求n 、a 、p 的值;(2)从,使 2φ(x 1)<φ(x 2)成立,求实数t 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分)选修4~1:几何证明选讲如图,AB 是⊙O 的一条切线,切点为B ,直线ADE ,CFD ,CGE 都是⊙O 的割线, 已知AC =AB .(1) 若CG =1,CD =4,求DEGF的值; (2) 求证:FG //AC .23.(本小题满分10分)选修4~4:坐标系与参数方程在直角坐标系xOy中,直线l的参数方程为1cos,2sinx ty tαα=+⎧⎨=+⎩(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为ρ=6sinθ.(1)求圆C的直角坐标方程;(2)若点P(1,2),设圆C与直线l交于点A,B.求∣PA∣+∣PB∣的最小值.24.(本小题满分10分)选修4~5:不等式选讲设不等式-2<|x-1|-|x+2|<0的解集为M,a,b∈M.(1)证明:111 364a b+<;(2)比较|1-4ab|与2|a-b|的大小,并说明理由.兰州一中2015-2016-1学期期中考试参考答案高三数学(理)一、选择题(本大题共12小题,每小题5分,共60分) 1. 已知集合A ={}{}|1,|12,x x B x x >=-<<则(C R A)B =( )A .{}|1x x >-B .{}|11x x -<≤C .{}|12x x -<<D .{}|12x x <<【答案】B【解析】(){1}R A x x =≤ð,所以(){11}R A B x x =-<≤ð.2.若2a =,log 3b π=,22log sin5c π=,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>【答案】A 3.设曲线y =11x x +-在点(3,2)处的切线与直线ax +y +3=0垂直,则a 等于 ( ) A .2B .12C. -2D .-12【答案】C 【解析】 因为y =x +1x -1的导数为y ′=-2(x -1)2,所以曲线在(3,2)处的切线斜率为k =-12, 又直线ax +y +3=0的斜率为-a ,所以-a ·(-12)=-1,解得a =-2.4.已知函数f (x )=20082cos (2000)32(2000)x x x x π-⎧≤⎪⎨⎪>⎩,则f =( ) AB .C .1D . -1【答案】D 【解析】201320085(2013)2232f -===,所以322[(2013)](32)2cos2cos 133f f f ππ====-. 5.下列说法中,正确的是( )A .命题“若a <b ,则am 2<bm 2”的否命题是假命题B .设α ,β为两个不同的平面,直线l ⊂α,则“l ⊥β ”是 “α⊥β ” 成立的充分不必要条件C .命题“存在x ∈R ,x 2-x >0”的否定是“对任意x ∈R ,x 2-x <0” D .已知x ∈R ,则“x >1”是“x >2”的充分不必要条件 【答案】B6. 已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为( ) A .12B. -12 C .-32D.32【答案】A【解析】 (1)∵r =64m 2+9,∴cos α=-8m64m 2+9=-45,∴m >0,∴4m 264m 2+9=125,即m =12.7.在△ABC 中,AB =2,BC =3,∠ABC =60°,AD 为BC 边上的高,O 为AD 的中点,若AO →=λAB→+μBC →,则λ+μ等于( )A .1 B. 12 C. 13 D. 23【答案】D【解析】∵AD →=AB →+BD →=AB →+13BC →, ∴2AO →=AB →+13BC →,即AO →=12AB →+16BC →. 故λ+μ=12+16=23. 8.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax (a >12),当x ∈(-2,0)时,f (x )的最小值为1,则a=( )A .-1B .1C .21eD .e2【答案】B【解析】∵f (x )是奇函数,∴f (x )在(0,2)上的最大值为-1.当x ∈(0,2)时,f ′(x )=1x-a ,令f ′(x )=0得x =1a ,又a >12,∴0<1a <2.当x <1a 时,f ′(x )>0,f (x )在(0,1a )上单调递增;当x >1a 时,f ′(x )<0,f (x )在(1a ,2)上单调递减,∴f (x )max =f (1a )=ln 1a -a ·1a=-1,解得a =1.9.若将函数y =tan ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π6个单位长度后,与函数y =tan⎝ ⎛⎭⎪⎫ωx +π6的图象重合,则ω的最小值为( ) A.16B.14C.13D.12【答案】D【解析】函数y =tan ⎝ ⎛⎭⎪⎫ωx +π4向右平移π6后得到解析y =tan ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x -π6+π4=tan ⎝⎛⎭⎪⎫ωx -ωπ6+π4. 又因为y =tan ⎝ ⎛⎭⎪⎫ωx +π6,∴令π4-ωπ6=π6+k π,∴π12=ωπ6+k π(k ∈Z ),由ω>0得ω的最小值为12.10.设函数f (x )=12x 2-9ln x 在区间上单调递减,则实数a 的取值范围是 ( )A .1<a ≤2B .a ≥4 C.a ≤2D .0<a ≤3【答案】A【解析】∵f (x )=12x 2-9ln x ,∴f ′(x )=x -9x (x >0),当x -9x ≤0时,0<x ≤3,即在(0,3]上f (x )是减函数,∴a -1>0且a +1≤3,解得1<a ≤2. 11. 设函数)22,0)(sin(3)(πϕπωϕω<<->+=x x f 的图象关于直线x =23π对称,相邻两个对称中心之间的距离为2π,则( )A .f (x )的图象过点(0,12)B. f (x )在[12π,23π]上是减函数 C. f (x )的一个对称中心是(512π,0) D. 将f (x )的图象向右平移||ϕ个单位得到函数x y ωsin 3=的图象 【答案】C12.已知f (x )=x 3-6x 2+9x -abc ,a <b <c ,且f (a )=f (b )=f (c )=0. 下列说法中正确的是 ( )A .f (0) f (1)>0B .f (0)f (3)>0C .f (0)f (2)>0D .f (0)f (3)<0 【答案】B【解析】∵f ′(x )=3x 2-12x +9=3(x -1)(x -3),由f ′(x )<0,得1<x <3,由f ′(x )>0,得x <1或x >3,∴f (x )在区间(1,3)上是减函数,在区间(-∞,1),(3,+∞)上是增函数. 又a <b <c ,f (a )=f (b )=f (c )=0,∴y 极大值=f (1)=4-abc >0,y 极小值=f (3)=-abc <0,∴0<abc <4.∴a ,b ,c 均大于零,或者a <0,b <0,c >0.又x =1,x =3为函数f (x )的极值点,后一种情况不可能成立,如图. ∴f (0)<0,∴f (0)f (1)<0,f (0)f (3)>0,∴正确结论的是B. 二、填空题(本大题共4小题,每小题5分,共20分)13.设向量a =(-1,2),b =(m ,1),如果向量a +2b 与2a -b 平行,则a·b = .【答案】52【解析】a +2b =(-1+2m ,4),2a -b =(-2-m ,3),由题意得3(-1+2m )-4(-2-m )=0,则m =-12,所以a·b =-1×⎝ ⎛⎭⎪⎫-12+2×1=52. 14.如图所示,在边长为1的正方形OABC 中任取一点M ,则点M 恰好取自阴影部分的概率是 . 【答案】1615.已知0<β<2π<α<π,且cos(α-2β)=-19,sin(2α-β)=23,则cos(α+β) =_____.【答案】-239729【解析】∵0<β<π2<α<π,∴π4<α-β2<π,-π4<α2-β<π2,∴sin ⎝ ⎛⎭⎪⎫α-β2=1-cos 2⎝ ⎛⎭⎪⎫α-β2=459,cos ⎝ ⎛⎭⎪⎫α2-β=1-sin 2⎝ ⎛⎭⎪⎫α2-β=53, ∴cos α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β=cos ⎝ ⎛⎭⎪⎫α-β2cos ⎝ ⎛⎭⎪⎫α2-β+sin ⎝⎛⎭⎪⎫α-β2sin ⎝⎛⎭⎪⎫α2-β=⎝ ⎛⎭⎪⎫-19×53+459×23=7527,∴cos(α+β)=2cos2α+β2-1=2×49×5729-1=-239729. 16.设函数f (x )=ln x -12ax 2-bx ,若x =1是f (x )的极大值点,则a 的取值范围为_______.【答案】 (-1,+∞)【解析】f (x )的定义域为(0,+∞),f ′(x )=1x-ax -b ,由f ′(1)=0,得b =1-a .∴f ′(x )=1x -ax +a -1=-ax 2+1+ax -xx.(1)若a ≥0,当0<x <1时,f ′(x )>0,f (x )单调递增;当x >1时,f ′(x )<0,f (x )单调递减,所以x =1是f (x )的极大值点.(2)若a <0,由f ′(x )=0,得x =1或x =-1a .因为x =1是f (x )的极大值点,所以-1a>1,解得-1<a <0.综合(1),(2)得a 的取值范围是 (-1,+∞). 三、解答题(本大题共6小题,共70分) 17.(本小题满分12分)在△ABC 中,已知a sin A -c sin C =(a -b )sin B , △ABC (1)求C ;(2)求△ABC 的面积S 的最大值.【解析】 (1)依正弦定理,有()22222,,a c a b b a b ab c -=-+-= 再由余弦定理得12cos ,cos ,2ab ab C C =∴=又C 是三角形△ABC 内角,0,3c C ππ∴<<=.-------------------------------6分(2)S △ABC =211sin sin sin sin sin()2233ab C ab A B A A ππ==+-6A π-------------------------------10分max 3A B S π∴===+当时,-------------------------------12分18.(本小题满分12分)在三棱锥M -ABC 中,AB =2AC =2,MA =MB ,AB =4A N ,AB ⊥AC ,平面MAB ⊥平面ABC ,S 为BC 的中点.(1) 证明:CM ⊥SN ;(2) 求SN 与平面CMN 所成角的大小.【解析】解法一:(1)取AB 中点O ,连接MO 、CO 、SO ∵MA =MB ,∴MO ⊥AB∵平面MAB ⊥平面ABC ,平面MAB ∩平面ABC =AB∴MO ⊥平面ABC -------------------------------2分∵△NOS 和△AOC 都是等腰直角三角形 ∵AB =2AC =2,AB =4AN , ∴AO =AC ,NO =SO , ∴∠AOC =45°,∠ONS =45°,∴CO ⊥SN ,∴CM ⊥SN . -------------------------------6分(2)在△MNC 中, MN , CN , CM =32,∴S △MNC =38-------------------------------10分 设S 到平面MNC 的距离为h ,SN 与平面CMN 所成角为θ, ∵V M ﹣NSC =V S ﹣NMC ∴S △NSC .MO =S △MNC .h ∴h =12-------------------------------11分∴sin θ=h SN∴SN 与平面CMN 所成角为4π .-------------------------------12分解法二:(1)证明:取AB 中点O ,连接MO 、SO ,∵MA =MB ,∴MO ⊥AB ,∵平面MAB ⊥平面ABC ,平面MAB ∩平面ABC =AB , ∴MO ⊥平面ABC ,又SO ⊥AB ; ∴如图,可以以O 为原点,以OB 为x 轴,以OS 为y 轴,以OM 为z 轴建立空间直角坐标系, -------------------------------2分 各点坐标如下:C (-1,1,0)、M (0,0,12)、N (-12,0,0)、S (0,12,0) ∴CM=(1,-1,12),SN=(-12,-12,0),-------------------------------5分∴ 0CM SN ⋅=, ∴CM ⊥SN -------------------------------6分 (2)由题意知CN =(12, -1, 0), NM =(12, 0, 12), ------------------------8分设平面CMN 的法向量为n =(x ,y ,z ),则0n CN n NM ⎧⋅=⎪⎨⋅=⎪⎩,∴02022xy x z ⎧-=⎪⎪⎨⎪+=⎪⎩令y =1,得平面CMN 的法向量为n =(2,1,-2),-------------------------------10分设SN 与平面CMN 所成角为θ,则sin θ=|cos<n ,SN >|, ∴SN 与平面CMN 所成角为4π-------------------------------12分19.(本小题满分12分)某班同学利用国庆节进行社会实践,对岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:(1)补全频率分布直方图并求n、a、p的值;(2)从,使 2φ(x1)<φ(x2)成立,求实数t的取值范围.【解析】(1)∵函数的定义f′(x)=-1xax ae+-,域为R,---------------------------1分1)当a=0时,f′(x)<0,f(x) 的单调递减区间是(-∞,+∞);2)当a<0时,由f′(x)=0,得x=1 aa-;∴f(x) 的单调递减区间是(-∞,1aa-),单调递减区间是(1aa-,+∞);3)当0<a<1时,由f′(x)=0,得x=1 aa-;∴f(x) 的单调递减区间是(1aa-,+∞),单调递减区间是(-∞,1aa-).-----------------------5分(2)假设存在x1,x2∈,使得2φ(x1)<φ(x2)成立,则2min<max.∵φ(x )=xf (x )+tf ′(x )+e -x=x 2+(1-t )x +1ex,∴φ′(x )=-x 2+(1+t )x -t e x =-(x -t )(x -1)e x. ①当t ≥1时,φ′(x )≤0,φ(x )在上单调递减, ∴2φ(1)<φ(0),即t >3-e2>1.②当t ≤0时,φ′(x )>0,φ(x )在上单调递增, ∴2φ(0)<φ(1),即t <3-2e<0.③当0<t <1时,若x ∈,φ′(x )>0,φ(x )在(t ,1]上单调递增,所以2φ(t )<max{φ(0),φ(1)},即2·t +1e t<max{1,3-te},(*), 由(1)知,g (t )=2·t +1et在上单调递减,故4e ≤2·t +1e t ≤2,而2e ≤3-t e ≤3e ,所以不等式(*)无解. 综上所述,存在t ∈(-∞,3-2e)∪(3-e2,+∞),使得命题成立. ----------------------12分22.(本小题满分10分)选修4~1:几何证明选讲如图,AB 是⊙O 的一条切线,切点为B ,直线ADE ,CFD ,CGE 都是⊙O 的割线, 已知AC =AB .(1) 若CG =1,CD =4,求DEGF的值; (2) 求证:FG //AC .【解析】(1) 由题意可得:F D E G ,,,四点共圆,CED CFG CDE CGF ∠=∠∠=∠∴,.CGF ∆∴∽CDE ∆. CGCDGF DE =∴. 又4,1==CD CG ,∴GFDE =4.-----------------------4分(2)因为AB 为切线,AE 为割线,AB 2=AD ·AE , 又因为AC =AB ,所以AD ·AE =AC 2,. 所以AD ACAC AE=,又因为EAC DAC ∠=∠,所以ADC △∽ACE △, 所以ADC ACE ∠=∠,又因为ADC EGF ∠=∠,所以EGF ACE ∠=∠,所以FG //AC . ----------------------10分23.(本小题满分10分)选修4~4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为1cos ,2sin x t y t αα=+⎧⎨=+⎩(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,圆C 的方程为ρ=6sin θ. (1)求圆C 的直角坐标方程;(2)若点P (1,2),设圆C 与直线l 交于点A ,B .求∣PA ∣+∣PB ∣的最小值. 【解析】(1)由ρ=6sin θ得ρ2=6ρsin θ.,化为直角坐标方程为x 2+y 2=6y ,即x 2+(y -3)2=9.-----------------------4分(2)将l 的参数方程代入圆C 的直角坐标方程,得22(cos sin )70t t αα+--=. 由2(2cos 2sin )470αα∆=-+⨯>,故可设12,t t 是上述方程的两根, 所以12122(cos sin ),7,t t t t αα+=--⎧⎨⋅=-⎩又直线l 过点(1,2),故结合t 的几何意义得||||PA PB +=1212||||||t t t t +=-==所以∣PA ∣+∣PB ∣的最小值为-----------------------10分24.(本小题满分10分)选修4~5:不等式选讲设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M . (1)证明:111364a b +<; (2)比较|1-4ab |与2|a -b |的大小,并说明理由.【解析】(1)证明:记f (x )=|x -1|-|x +2|=⎩⎪⎨⎪⎧3,x ≤-2,-2x -1,-2<x <1,-3,x ≥1.由-2<-2x -1<0,解得-12<x <12, 则M =⎝ ⎛⎭⎪⎫-12,12.所以⎪⎪⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14-----------------------5分(2)由(1)得a 2<14,b 2<14.因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2)=(4a 2-1)(4b 2-1)>0,所以|1-4ab |2>4|a -b |2, 故|1-4ab |>2|a-b |-----------------------10分。

甘肃省兰州第一中学1617学年度高一上学期期中考——物

甘肃省兰州第一中学1617学年度高一上学期期中考——物

甘肃省兰州第一中学2016—2017学年度上学期期中考试高一物理试题说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分,考试时间100分钟。

答案写在答题卡上,交卷时只交答题卡。

一、本题共12小题,每小题4分,共48分.其中第1-7小题每题只有一个选项符合题意,第8-12小题有多个选项符合题意.每小题全部选对的得4分,选不全的得2分,有选错或不答的得0分.1.在下列各组物理量中,全部属于矢量的是A.位移、长度、时间B.位移、速率、平均速度C.位移、速度、加速度D.速度、时间、平均速率2.在2016年里约奥运会上,中国代表团参加了包括田径、体操、柔道等项目的比赛,下列几种比赛项目中的研究对象可视为质点的是A.跆拳道比赛中研究运动员的动作B.帆船比赛中确定帆船在大海中的位置C.跳水比赛中研究运动员在空中的运动情况D.在撑杆跳高比赛中研究运动员手中的支撑杆在支撑地面过程中的转动情况3.关于速度、速度的变化量、加速度,下列说法正确的是A.速度很大的物体,其加速度可能为零B.加速度方向为正时,速度一定增大C.加速度很大时,运动物体的速度一定很快变大D.物体运动时,速度的变化量越大,它的加速度一定越大4.一物体做初速度为零的匀加速直线运动,经过的位移为x,则该物体通过前一半位移和通过后一半位移所用的时间之比t1: t2等于A.B.(C.D.5.如图所示是物体做直线运动的v-t图象,由图象可得到的正确结果是A.t=1s时物体的加速度大小为1.0m/s2B.t=5s时物体的加速度大小为0.75m/s2C.第3s内物体的位移为1.5mD.物体在加速过程的位移比减速过程的位移大6.如图所示是甲、乙两物体从同一地点出发的位移-时间图象,由图象可以看出在0~4s这段时间内A.甲、乙两物体始终同向运动B.4s时甲、乙两物体之间的距离最大C.甲的平均速度大于乙的平均速度D.甲、乙两物体之间的最大距离为3m7.小球从空中某处由静止开始自由下落,与水平地面碰撞后上升到空中某一高度,此过程中小球速度随时间变化的关系如图所示,则A.在下落和上升两个过程中,小球的加速度不同B.小球开始下落处离地面的高度为0.8mC.整个过程中小球的位移为1.0mD.整个过程中小球的平均速度大小为2m/s8.两个人以相同的速率同时从圆形轨道上的A点出发,分别沿ABC和ADE方向行走,经过一段时间后在F点(图中未画出)相遇.从出发到相遇的过程中,描述两人运动情况的物理量相同的是A.速度B.位移C.路程D.平均速度9.物体由静止开始做匀加速直线运动,3s末速度为v,则下列说法正确的是A.2s末、3s末的速度之比为1:3B.第1s内和第2s内的位移之比为1:3C.2s末的速度为D.3s内的平均速度为10.在塔顶上将一物体竖直向上抛出,抛出点为A,物体上升的最大高度为20m.不计空气阻力,设塔足够高.则物体位移大小为10m时,物体通过的路程可能是A.10 m B.20 mC.30 m D.50 m11.一辆自行车沿着平直的公路以速度v做匀速直线运动,当它路过某一电线杆时,该处有一辆汽车开始做初速度为零的匀加速运动去追赶自行车,根据上述已知条件A.可求出汽车追上自行车时,汽车的速度B.可求出汽车追上自行车时,汽车的位移C.可求出汽车从开始到追上自行车时所用的时间D.可求出汽车追上自行车前,两车相距最远时,汽车的速度12.从地面竖直上抛一物体A,同时在某一高度处有一物体B自由下落,两物体在空中相遇时的速率都是v,则下列说法正确的是A.物体A的上抛初速度大小和物体B落地时速度的大小相等,都是2vB.物体A和物体B在空中运动时间相等C .物体A 能上升的最大高度和物体B 开始下落时的高度相等D .两物体在空中相遇处一定是B 开始下落时的高度的中点二、本题共4小题,每空2分,共22分.把答案填在题中的横线上或按题目要求作答.13.飞机着陆后匀减速滑行,滑行的初速度是216km/h ,加速度的大小是3m/s 2,则飞机着陆后滑行的时间为_________s ,在匀减速滑行过程中最后5s 内发生的位移为_________m .14.在研究某小车运动状态的实验中,如图所示为一次记录小车运动情况的纸带,图中A 、B 、C 、D 为依次打下的相邻的计数点,且相邻计数点间的时间间隔T =0.1 s.(1)纸带可以判定小车做_____________直线运动,因为___________________________; (2)根据纸带可以计算C 点的瞬时速度v C =____m/s ;该小车的加速度大小为a =____ m/s 2.15.用电磁打点计时器“研究匀变速直线运动”的实验中,打点计时器的工作频率为50Hz ,如图所示的是一次记录小车运动情况的纸带,图中A 、B 、C 、D 、E 、F 、G 为相邻的计数点,相邻计数点间还有四个点未画出.(1)根据运动学有关公式可求得 B v =16.50cm/s ,C v =______cm/s ,D v =26.30cm/s ;(2)利用求得的数值在下图所示的坐标系中做出小车的v-t 图线(以打A 点时开始记时),并根据图线求出小车运动的加速度a =_______m/s 2;(3)将图线延长与纵轴相交,交点的纵坐标是______cm/s ,此速度的物理意义是: .三、本题共4小题,满分30分,解答应写出必要的文字说明、方程式和重要演算步骤.只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位.16.(6分) 物体做匀变速直线运动,第一个1s 内的平均速度比第一个2s 内的平均速度大1m/s ,而位移小5m ,求物体的初速度和加速度.17.(6分) 酒后驾驶会导致许多安全隐患,这是因为驾驶员的反应时间变长,反应时间是指驾驶员从发现情况到采取制动的时间.下表中“反应距离”是指驾驶员从发现情况到采取制动的时间内汽车行驶的距离;“制动距离”是指驾驶员发现情况到汽车停止行驶的距离(假设汽车制动时的加速度大小都相同).速度(m/s)反应距离(m) 制动距离(m)正常 酒后 正常 酒后15 7.5 15.0 22.5 30.0 20 10.0 20.0 36.7 46.7(1)驾驶员酒后的反应时间比正常情况下多多少? (2)驾驶员采取制动措施后汽车的加速度大小;(3)若汽车以25m/s 的速度行驶时,发现前方60m 处有险情,酒后驾驶者能否安全停车?18.(9分) 小明课外研究性小组自制一枚火箭,火箭从地面发射后,始终在垂直于地面的方向上运动,火箭点火后可认为做匀加速直线运动,经过4s到达离地面40m高处时燃料恰好用完,若不计空气阻力,取g=10m/s2,求:火箭离地面的最大高度和从发射到残骸落回地面过程的总时间.19. (9分)平直道路上有甲、乙两辆汽车同向匀速行驶,乙车在前,甲车在后.甲、乙两车速度分别为40m/s和25m/s,当两车距离为200m时,两车同时刹车,已知甲、乙两车刹车的加速度大小分别为1.0m/s2和0.5m/s2.问:甲车是否会撞上乙车?若未相撞,两车最近距离多大?若能相撞,两车从开始刹车直到相撞经历了多长时间?兰州一中2016-2017-1学期高一期中考试物理答题卡班级姓名成绩一、选择题(本题共12小题,每小题4分,共48分)题号 1 2 3 4 5 6 答案题号7 8 9 10 11 12 答案二、填空题(本题共3小题,每空2分,共22分)13.s,m.14.(1),;(2)m/s,m/s2.15.(1)cm /s;(2)m/s2;(3)cm /s,物理意义:.三、计算题:(本题共4小题,共30分)16.17.18.19.高一期中考试物理答案题号 1 2 3 4 5 6 答案 C B A C B D 题号 7 8 9 10 11 12 答案BBCDBCACDADAC二、填空题(本题共3小题,每空2分,共22分) 13. 20 s , 37.5 m. 14.(1) 匀加速 ,小车在连续相等的时间间隔内的位移之差恒定; (2) 0.44 m/s , 1.2 m/s 2. 15.(1) 21.40 cm /s ;(2) 0.49 m/s 2;(0.48~0.51均对) (3) 11.60 cm /s ,(11.30~11.70均对) 物理意义: 开始计时时小车的速度 (即表示小车在A 点的瞬时速度). 三、计算题:(本题共4小题,共30分) 16.解:17.解:正常情况下反应时间为t =x v =7.515 s =0.5s ,酒后反应时间t ′=x v =1515s =1s ,Δt =t ′-t =0.5s ;由运动学公式可得v 2=2a (x 制-x 思),a =7.5m/s 2; 当酒后 25m/s 的速度行驶时,,制动距离为66.7m>60 m ,不能安全停车.18.解:(1)设火箭的速度为v ,则h =12vt ,所以v =20m/s(2)最大高度h m =40m +v 22g=60m(3)t 1=4s ,t 2=v g =2s ,t 3=2h mg=23st =t 1+t 2+t 3=(6+23)s =9.46s19.解:当v 甲=v 乙时, v 甲-a 甲t =v 乙-a 乙t 代入数据得:t =30s v =10m/s设在30s 时甲、乙两车的距离为Δx ,则 Δx =200+x 乙-x 甲=200m +12(25+10)×30m -12(40+10)×30m=-25m说明30 s 以前两车已碰撞,设从开始刹车到相撞时间为t ′,则x 甲′=40t ′-12×1×t ′2① x 乙′=25t ′-12×0.5t ′2②x 甲′=200+x 乙′③由①②③得:t ′2-60t ′+800=0 即t ′=20 s 或t ′=40 s(舍去)。

甘肃省兰州市第一中学高一上学期期中考试物理试题含答案

甘肃省兰州市第一中学高一上学期期中考试物理试题含答案

兰州一中2017—2018—1学期高一年级期中考试试题物理说明:本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分,考试时间100分钟.答案写在答题卡上,交卷时只交答题卡。

第Ⅰ卷(选择题,共40分)一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,第1-6题只有一个选项符合题目要求,第7-10题有多个选项符合题目要求.全部选对的得4分,选对但不全的得2分,有选错或不答的得0分。

1.关于位移和路程的说法中正确的是A.位移是描述直线运动的,路程是描述曲线运动的B.位移取决于始末位置,路程取决于实际运动的路线KS5UKS5UKS5U]C.位移的大小和路程的大小总是相等的,只不过位移是矢量,而路程是标量D.运动物体的路程总大于位移的大小2.汽车沿平直公路做加速度为2m/s2的匀加速运动,那么在任意1s内A .速度增加为2倍B .速度增加2 m/sC .位移增加2mD .加速度增加2m/s 23.若汽车在保持向前行驶过程中,加速度方向与速度方向相反,当加速度减小时,则A .汽车的速度也减小B .汽车的速度将增大C .当加速度减小到零时,汽车的速度达到最大D .当加速度减小到零时,汽车一定静止4.物体的初速度为v 0,以不变的加速度a 做直线运动,如果要使速度增加到初速度的n 倍,则经过的位移是A .()22012-n av B .()122-n av C .av 220D .()12220-n av5.做匀减速直线运动的物体经4 s 停止,若在4 s 内的位移是32 m ,则最后1 s 内的位移大小是A .3。

5 mB .2 mC .1 mD .06. a 、b 两物体从同一位置沿同一直线运动,它们的速度图象如图所示,下列说法正确的是A .60s 时,物体a 在物体b 的前方,最终相遇一t /s4010 O次B.a、b加速时,物体a的加速度大于物体b的加速度C.20s时,a、b两物体相距最远D.40s时,a、b两物体速度相等,相距最远为200m7.如图所示为某物体做直线运动的v-t图象,关于物体在前4s的运动情况,下列说法中正确的是A.物体始终向同一方向运动B.物体的加速度方向发生变化C.物体的加速度不变D.物体在4s内的平均速度为零8.汽车在平直公路上做初速度为零的匀加速直线运动,途中用了6s时间经过A、B两根电杆,已知A、B间的距离为60m,车经过B时的速度为15m/s,则A.经过A杆时速度为5m/sB.车的加速度为15m/s2[KS5UKS5U。

甘肃省兰州第一中学2016届高三英语上学期期中试卷(含解析)

甘肃省兰州第一中学2016届高三英语上学期期中试卷(含解析)

2016届甘肃省兰州第一中学高三上学期期中考试英语试卷(带解析)第II卷(非选择题)本试卷第二部分共有9道试题。

一、阅读理解(共4小题)1.阅读下列短文,从每题所给的四个选项(A、B、C和D)中, 选出最佳选项。

According to the US government, wind farms off the Pacific coast could produce 900 gigawatts of electricity every year.Unfortunately, the water there is far too deep for even the tallest windmills to touch bottom.An experiment under way off the coast of Norway, however, could help put them anywhere.The project, called Hywind, is the world’s first large-scale deepwater wind turbine (涡轮发电机).Although it uses a fairly standard 152-ton, 2.3-megawatt turbine, Hywind represents totally new technology.The turbine will be fixed 213 feet above the water on a floating spar, a technology Hywind’s creator, the Norwegian company StatoilHydro, has developed recently.The steel spar, which is filled with stones and goes 328 feet below the sea surface, will be tied to the ocean floor by three cables ; these will keep the spar stable and prevent the turbine from moving up and down in the waves.Hywind’s stability i n the cold and rough sea would prove that even the deepest corners of the ocean are suitable for wind power.If all goes according to the plan, the turbine will start producing electricity six miles off the coast of southwestern Norway as early as September.To produce electricity on a large scale, a commercial wind farm will have to use bigger turbines than Hywind does, but it’s difficult enough to balance such a large turbine so high on a floating spar in the middle of the ocean.To make that turbine heav ier, the whole spar’s center of gravity must be moved much closer to the ocean’s surface.To do that, the company plans to design a new kind of wind turbine, one whose gearbox (变速箱) sits at sea level rather than behind the blades.Hywind is a test run, but the benefits for perfecting floating wind-farm technology could be extremely large.Out at sea, the wind is often stronger and steadier than close to shore, where all existing offshore windmills are planted.Deep-sea farms are invisible from land, which helps overcome the windmill-as-eyesore objection.If the technology catches on, it will open up vast areas of the planet’s surface to one of the best low-carbon power sources available.1.The Hywind project uses totally new technology to ensure the stability of_________.A.the cables which tie the spar to the ocean floorB.the spar which is floating in deep-sea waterC.the blades driven by strong and steady sea windD.the stones filled in the spar below the sea surface2.To balance a bigger turbine high on a floating spar, a new type of turbine is to be designed with its gearbox sitting_________.A.on the sea floorB.on the spar topC.at sea levelD.behind the blades3.Wide applications of deepwater wind power technology can_________.A.solve the technical problems of deepwater windmillsB.make financial profits by producing more turbinesC.settle the arguments about environmental problemsD.explore low-carbon power resources available at sea考点:科普环保答案:1-3 BCD试题解析:1.细节理解根据文章的第二段中的these will keep the spar stable and prevent the turbine from moving up and down in the waves,可知这个句子的内容与B选项的描述是一致的,故选B。

甘肃省兰州市第一中学2017届高三上学期期中考试理科数学试卷 Word版含解析

甘肃省兰州市第一中学2017届高三上学期期中考试理科数学试卷 Word版含解析

2017届甘肃省兰州市第一中学高三上学期期中考试理科数学试卷一、单选题(共12小题)1.若集合,,则()A.B.C.D.2.已知复数,若是实数,则实数的值为()A.0B.C.-6D.63.以下判断正确的是()A.函数为上可导函数,则是为函数极值点的充要条件B.命题“”的否定是“”C.“”是“函数是偶函数”的充要条件D.命题“在中,若,则”的逆命题为假命题4.一个长方体被一个平面截去一部分后所剩几何体的三视图如图所示(单位:cm),则该几何体的体积为()A.120cm3B.100cm3C.80cm3D.60cm35.由曲线,直线及坐标轴所围成图形的面积为()A.B.C.D.36.设等差数列的前项和为,若,,,则()A.3B.4C.5D.67.我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出的结果()A.4B.5C.2D.38.设,则()A.B.C.D.9.已知函数,则的图象大致为()A.B.C.D.10.函数的图象向右平移个单位后,与函数的图象重合,则的值为()A.B.C.D.11.椭圆: 的左、右焦点分别为,焦距为.若直线与椭圆的一个交点M满足,则该椭圆的离心率等于()A.B.C.D.12.已知定义在R上的函数满足:且,,则方程在区间上的所有实根之和为()A.-6B.-7C.-8D.-9二、填空题(共4小题)13.已知向量,,则.14.已知,则.15.已知满足约束条件若的最小值为1,则.16.在中,内角的对边分别为,已知,,则面积的最大值为.三、解答题(共7小题)17.已知函数.(Ⅰ)求的最小正周期及对称中心;(Ⅱ)若,求的最大值和最小值.18.如图,在直三棱柱中,,是棱上的一点,是的延长线与的延长线的交点,且平面.(Ⅰ)求证:;(Ⅱ)求二面角的平面角的正弦值.19.随着苹果7手机的上市,很多消费者觉得价格偏高,尤其是一部分大学生可望而不可及,因此“国美在线”推出无抵押分期付款的购买方式,某店对最近100位采用分期付款的购买者进行统计,统计结果如下表所示.已知分3期付款的频率为0.15,并且销售一部苹果7手机,顾客分1期付款,其利润为1000元;分2期或3期付款,其利润为1500元;分4期或5期付款,其利润为2000元,以频率作为概率.(Ⅰ)求,的值,并求事件:“购买苹果7手机的3位顾客中,至多有1位分4期付款”的概率;(Ⅱ)用表示销售一部苹果7手机的利润,求的分布列及数学期望.20.已知抛物线:,直线交于两点,是线段的中点,过点作轴的垂线交于点(Ⅰ)证明:抛物线在点的切线与平行;(Ⅱ)是否存在实数,使以为直径的圆经过点,若存在,求出的值;若不存在,请说明理由.21.已知函数(Ⅰ)当时,求的单调区间;(Ⅱ)若函数在其定义域内有两个不同的极值点.(i)求的取值范围;(ii)设两个极值点分别为,证明:.22.选修4-4:坐标系与参数方程在平面直角坐标系中,以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的参数方程为(为参数),曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)设为曲线上一点,为曲线上一点,求的最小值.23.已知函数,且的解集为.(Ⅰ)求的值;(Ⅱ)若,且,求证:.答案部分1.考点:集合的运算试题解析:因为,,所以,所以选A答案:A2.考点:复数综合运算试题解析:因为是实数,所以,所以答案:D3.考点:全称量词与存在性量词充分条件与必要条件试题解析:A:如,令得不是函数的极值点,所以A不对;B:命题“”的否定应该是C:根据诱导公式,前后能互推,所以C正确;D:在中,若,则是真命题,所以D不对.所以选C答案:C4.考点:空间几何体的三视图与直观图试题解析:直观图如图所示:答案:B5.考点:积分试题解析:根据题意作图如下:由得,所以所以答案:C6.考点:等差数列试题解析:因为,所以,所以,所以,因为当时,,代入上式得.答案:C7.考点:算法和程序框图试题解析:初始:第一次循环:第二次循环:第三次循环:第四次循环:输出答案:A8.考点:对数与对数函数试题解析:因为,所以,又因为,所以答案:C9.考点:函数图象试题解析:令得排除D;令得排除C;又因为排除B,所以选A.答案:A10.考点:三角函数图像变换试题解析:因为向右平移个单位后为,由题意得:,所以.答案:B11.考点:椭圆试题解析:由题意作图如下:由直线斜率为得所以,所以因为所以所以所以答案:D12.考点:函数综合试题解析:由已知得:,函数的周期为2,图象如下:由图象知:在区间上两函数有3个交点,其中一个由图象可得为(-3,1),另外两个交点关于对称,所以另外两个交点横坐标之和为所以所有实根之和为.答案:B13.考点:平面向量坐标运算试题解析:由题意得,所以,解得.答案:-314.考点:半角公式倍角公式试题解析:答案:15.考点:线性规划试题解析:如图:当目标函数经过点时,最小值为1,所以所以.答案:16.考点:解斜三角形试题解析:由已知及正弦定理得:又所以所以所以因为所以因为,所以所以由已知及余弦定理得:又因为所以所以答案:17.考点:三角函数综合试题解析:(Ⅰ)∴的最小正周期为,令,则,∴的对称中心为(Ⅱ)∵∴∴∴∴当时,的最小值为-1;当时,的最大值为2.答案:见解析18.考点:立体几何综合试题解析:(Ⅰ)连接交于,连接.∵平面,面,面面∴又∵为的中点,∴为中点,∴为中点∴,∴(Ⅱ)∵在直三棱柱中,∴以为坐标原点,以,所在直线建立空间直角坐标系如图所示由(Ⅰ)知为中点∴点坐标分别为,,,设平面的法向量∵且∴取∴同理:平面的法向量设二面角平面角为则,∴答案:见解析19.考点:随机变量的期望与方差试题解析:(Ⅰ)由,得因为所以(Ⅱ)设分期付款的分期数为,则的所有可能取值为1000,1500,2000.所以的分布列为答案:见解析20.考点:圆锥曲线综合试题解析:(Ⅰ)解法一:设,,把代入得,得.∵,点的坐标为.∵∴,即抛物线在点处的切线的斜率为.∵直线:的的斜率为,∴.解法二:设,,把代入得,得.∵,点的坐标为.设抛物线在点处的切线的方程为,将代入上式得,直线与抛物线相切,,,即.(Ⅱ)假设存在实数,存在实数使为直径的圆经过点.是的中点,.由(Ⅰ)知轴,.∵,∴,故存在实数,使为直径的圆经过点.答案:见解析21.考点:导数的综合运用试题解析:(Ⅰ)当时,;函数的定义域为,当时,;当时,.所以,在上单调递减;在上单调递增.(Ⅱ)(i)依题意,函数的定义域为,所以方程在有两个不同根.即,方程在有两个不同根.(解法一)转化为,函数与函数的图象在上有两个不同交点,如图.可见,若令过原点且切于函数图像的直线斜率为,只须.令切点,所以,又,所以,解得,,于是,所以.(解法二)令,从而转化为函数有两个不同零点,而若,可见在上恒成立,所以在单调增,此时不可能有两个不同零点.若,在时,,在时,,所以在上单调增,在上单调减,从而又因为在时,,在时,,于是只须:,即,所以.综上所述,.(ii)由(i)可知分别是方程的两个根,即,,不妨设,作差得,,即.原不等式等价于令,则,设,,∴函数在上单调递增,∴,即不等式成立,故所证不等式成立.答案:见解析22.考点:极坐标方程曲线参数方程试题解析:(1)由消去参数得,曲线的普通方程得由得,曲线的直角坐标方程为(2)设,则点到曲线的距离为当时,有最小值0,所以的最小值为0.答案:见解析23.考点:不等式证明试题解析:(Ⅰ)因为,所以等价于,由有解,得,且其解集为.又的解集为,故(Ⅱ)由(Ⅰ)知,又,∴≥=9.(或展开运用基本不等式)∴答案:见解析。

甘肃省兰州第一中学2016届高三上学期期中考试数学(理)试题Word版含答案

甘肃省兰州第一中学2016届高三上学期期中考试数学(理)试题Word版含答案

兰州一中2015-2016-1学期高三年级期中考试试题数 学 (理)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效.满分150分,考试时间120分钟,考试结束后,只交答题卡.第I 卷(共60分)一、选择题(本大题共12小题,每小题5分,共60分) 1. 已知集合A ={}{}|1,|12,x x B x x >=-<<则(C R A )B = ( )A .{}|1x x >-B .{}|11x x -<≤C .{}|12x x -<<D .{}|12x x <<2.若0.52a =,log 3b π=,22log sin 5c π=,则 ( ) A .a b c >>B .b a c >>C .c a b >>D .b c a >>3.设曲线y =11x x +-在点(3,2)处的切线与直线ax +y +3=0垂直,则a 等于 ( ) A .2B .12C. -2D .-124. 已知函数f (x )=20082cos(2000)32(2000)x x x x π-⎧≤⎪⎨⎪>⎩,则f = ( ) AB .C .1D . -15.下列说法中,正确的是 ( ) A .命题“若a <b ,则am 2<bm 2”的否命题是假命题B .设α ,β为两个不同的平面,直线l ⊂α,则“l ⊥β ”是 “α⊥β ” 成立的充分不必要条件C .命题“存在x ∈R ,x 2-x >0”的否定是“对任意x ∈R ,x 2-x <0” D .已知x ∈R ,则“x >1”是“x >2”的充分不必要条件6. 已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为( ) A .12B. -12 C .-32D.327.在△ABC 中,AB =2,BC =3,∠ABC =60°,AD 为BC 边上的高,O 为AD 的中点,若AO →=λAB →+μBC →,则λ+μ等于 ( ) A .1 B. 12 C. 13 D. 238.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax (a >12),当x ∈(-2,0)时,f (x )的最小值为1,则a =( ) A .-1B .1C .21e D .e29.若将函数y =tan ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π6个单位长度后,与函数y =tan⎝ ⎛⎭⎪⎫ωx +π6的图象重合,则ω的最小值为( ) A.16B.14C.13D.1210.设函数f (x )=12x 2-9ln x 在区间上单调递减,则实数a 的取值范围是( )A .1<a ≤2B .a ≥4C .a ≤2D .0<a ≤311. 设函数)22,0)(sin(3)(πϕπωϕω<<->+=x x f 的图象关于直线x =23π对称,相邻两个对称中心之间的距离为2π,则( )A .f (x )的图象过点(0,12) B. f (x )在[12π,23π]上是减函数 C. f (x )的一个对称中心是(512π,0)D. 将f (x )的图象向右平移||ϕ个单位得到函数x y ωsin 3=的图象12.已知f (x )=x 3-6x 2+9x -abc ,a <b <c ,且f (a )=f (b )=f (c )=0. 下列说法中正确的是( )A .f (0) f (1)>0B .f (0)f (3)>0C .f (0)f (2)>0D .f (0)f (3)<0第Ⅱ卷(共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.设向量a =(-1,2),b =(m ,1),如果向量a +2b 与2a -b 平行,则a·b = .14.如图所示,在边长为1的正方形OABC 中任取一点M ,则点M 恰好取自阴影部分的概率是 .15.已知0<β<2π<α<π,且cos(α-2β)=-19,sin(2α-β)=23,则cos(α+β)=_____.16.设函数f (x )=ln x -12ax 2-bx ,若x =1是f (x )的极大值点,则a 的取值范围为_______.三、解答题(本大题共6小题,共70分) 17.(本小题满分12分)在△ABC 中,已知a sin A -c sin C =(a -b )sin B , △ABC(1)求C ;(2)求△ABC 的面积S 的最大值.18.(本小题满分12分)在三棱锥M -ABC 中,AB =2AC =2,MA =MB,AB =4A N ,AB ⊥AC ,平面MAB ⊥平面ABC ,S 为BC 的中点.(1) 证明:CM ⊥SN ;(2) 求SN 与平面CMN 所成角的大小.19.(本小题满分12分)某班同学利用国庆节进行社会实践,对 岁的人群随机抽取n 人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:(1)补全频率分布直方图并求n 、a 、p 的值;(2)从,使 2φ(x 1)<φ(x 2)成立,求实数t 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分)选修4~1:几何证明选讲如图,AB 是⊙O 的一条切线,切点为B ,直线ADE ,CFD ,CGE 都是⊙O 的割线, 已知AC =AB .(1) 若CG =1,CD =4,求DEGF的值; (2) 求证:FG //AC .23.(本小题满分10分)选修4~4:坐标系与参数方程在直角坐标系xOy中,直线l的参数方程为1cos,2sinx ty tαα=+⎧⎨=+⎩(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为ρ=6sinθ.(1)求圆C的直角坐标方程;(2)若点P(1,2),设圆C与直线l交于点A,B.求∣PA∣+∣PB∣的最小值.24.(本小题满分10分)选修4~5:不等式选讲设不等式-2<|x-1|-|x+2|<0的解集为M,a,b∈M.(1)证明:111 364a b+<;(2)比较|1-4ab|与2|a-b|的大小,并说明理由.兰州一中2015-2016-1学期期中考试参考答案高三数学(理)一、选择题(本大题共12小题,每小题5分,共60分) 1. 已知集合A ={}{}|1,|12,x x B x x >=-<<则(C R A)B =( )A .{}|1x x >-B .{}|11x x -<≤C .{}|12x x -<<D .{}|12x x <<【答案】B【解析】(){1}R A x x =≤ð,所以(){11}R A B x x =-<≤ð.2.若2a =,log 3b π=,22log sin5c π=,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>【答案】A 3.设曲线y =11x x +-在点(3,2)处的切线与直线ax +y +3=0垂直,则a 等于 ( ) A .2B .12C. -2D .-12【答案】C 【解析】 因为y =x +1x -1的导数为y ′=-2(x -1)2,所以曲线在(3,2)处的切线斜率为k =-12, 又直线ax +y +3=0的斜率为-a ,所以-a ·(-12)=-1,解得a =-2.4.已知函数f (x )=20082cos (2000)32(2000)x x x x π-⎧≤⎪⎨⎪>⎩,则f =( ) AB .C .1D . -1【答案】D 【解析】201320085(2013)2232f -===,所以322[(2013)](32)2cos2cos 133f f f ππ====-. 5.下列说法中,正确的是( )A .命题“若a <b ,则am 2<bm 2”的否命题是假命题B .设α ,β为两个不同的平面,直线l ⊂α,则“l ⊥β ”是 “α⊥β ” 成立的充分不必要条件C .命题“存在x ∈R ,x 2-x >0”的否定是“对任意x ∈R ,x 2-x <0” D .已知x ∈R ,则“x >1”是“x >2”的充分不必要条件 【答案】B6. 已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为( ) A .12B. -12 C .-32D.32【答案】A【解析】 (1)∵r =64m 2+9,∴cos α=-8m64m 2+9=-45,∴m >0,∴4m 264m 2+9=125,即m =12.7.在△ABC 中,AB =2,BC =3,∠ABC =60°,AD 为BC 边上的高,O 为AD 的中点,若AO →=λAB→+μBC →,则λ+μ等于( )A .1 B. 12 C. 13 D. 23【答案】D【解析】∵AD →=AB →+BD →=AB →+13BC →, ∴2AO →=AB →+13BC →,即AO →=12AB →+16BC →. 故λ+μ=12+16=23. 8.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax (a >12),当x ∈(-2,0)时,f (x )的最小值为1,则a=( )A .-1B .1C .21eD .e2【答案】B【解析】∵f (x )是奇函数,∴f (x )在(0,2)上的最大值为-1.当x ∈(0,2)时,f ′(x )=1x-a ,令f ′(x )=0得x =1a ,又a >12,∴0<1a <2.当x <1a 时,f ′(x )>0,f (x )在(0,1a )上单调递增;当x >1a 时,f ′(x )<0,f (x )在(1a ,2)上单调递减,∴f (x )max =f (1a )=ln 1a -a ·1a=-1,解得a =1.9.若将函数y =tan ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π6个单位长度后,与函数y =tan⎝ ⎛⎭⎪⎫ωx +π6的图象重合,则ω的最小值为( ) A.16B.14C.13D.12【答案】D【解析】函数y =tan ⎝ ⎛⎭⎪⎫ωx +π4向右平移π6后得到解析y =tan ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x -π6+π4=tan ⎝⎛⎭⎪⎫ωx -ωπ6+π4. 又因为y =tan ⎝ ⎛⎭⎪⎫ωx +π6,∴令π4-ωπ6=π6+k π,∴π12=ωπ6+k π(k ∈Z ),由ω>0得ω的最小值为12.10.设函数f (x )=12x 2-9ln x 在区间上单调递减,则实数a 的取值范围是 ( )A .1<a ≤2B .a ≥4 C.a ≤2D .0<a ≤3【答案】A【解析】∵f (x )=12x 2-9ln x ,∴f ′(x )=x -9x (x >0),当x -9x ≤0时,0<x ≤3,即在(0,3]上f (x )是减函数,∴a -1>0且a +1≤3,解得1<a ≤2. 11. 设函数)22,0)(sin(3)(πϕπωϕω<<->+=x x f 的图象关于直线x =23π对称,相邻两个对称中心之间的距离为2π,则( )A .f (x )的图象过点(0,12) B. f (x )在[12π,23π]上是减函数C. f (x )的一个对称中心是(512π,0) D. 将f (x )的图象向右平移||ϕ个单位得到函数x y ωsin 3=的图象 【答案】C12.已知f (x )=x 3-6x 2+9x -abc ,a <b <c ,且f (a )=f (b )=f (c )=0. 下列说法中正确的是 ( )A .f (0) f (1)>0B .f (0)f (3)>0C .f (0)f (2)>0D .f (0)f (3)<0 【答案】B【解析】∵f ′(x )=3x 2-12x +9=3(x -1)(x -3),由f ′(x )<0,得1<x <3,由f ′(x )>0,得x <1或x >3,∴f (x )在区间(1,3)上是减函数,在区间(-∞,1),(3,+∞)上是增函数. 又a <b <c ,f (a )=f (b )=f (c )=0,∴y极大值=f (1)=4-abc >0,y极小值=f (3)=-abc <0,∴0<abc <4.∴a ,b ,c 均大于零,或者a <0,b <0,c >0.又x =1,x =3为函数f (x )的极值点,后一种情况不可能成立,如图. ∴f (0)<0,∴f (0)f (1)<0,f (0)f (3)>0,∴正确结论的是B. 二、填空题(本大题共4小题,每小题5分,共20分)13.设向量a =(-1,2),b =(m ,1),如果向量a +2b 与2a -b 平行,则a·b = .【答案】52【解析】a +2b =(-1+2m ,4),2a -b =(-2-m ,3),由题意得3(-1+2m )-4(-2-m )=0,则m =-12,所以a·b =-1×⎝ ⎛⎭⎪⎫-12+2×1=52. 14.如图所示,在边长为1的正方形OABC 中任取一点M ,则点M 恰好取自阴影部分的概率是 . 【答案】1615.已知0<β<2π<α<π,且cos(α-2β)=-19,sin(2α-β)=23,则cos(α+β)=_____.【答案】-239729【解析】∵0<β<π2<α<π,∴π4<α-β2<π,-π4<α2-β<π2,∴sin ⎝ ⎛⎭⎪⎫α-β2=1-cos 2⎝ ⎛⎭⎪⎫α-β2=459,cos ⎝ ⎛⎭⎪⎫α2-β=1-sin 2⎝ ⎛⎭⎪⎫α2-β=53, ∴cos α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β=cos ⎝ ⎛⎭⎪⎫α-β2cos ⎝ ⎛⎭⎪⎫α2-β+sin ⎝⎛⎭⎪⎫α-β2sin ⎝⎛⎭⎪⎫α2-β=⎝ ⎛⎭⎪⎫-19×53+459×23=7527,∴cos(α+β)=2cos2α+β2-1=2×49×5729-1=-239729. 16.设函数f (x )=ln x -12ax 2-bx ,若x =1是f (x )的极大值点,则a 的取值范围为_______.【答案】 (-1,+∞)【解析】f (x )的定义域为(0,+∞),f ′(x )=1x-ax -b ,由f ′(1)=0,得b =1-a .∴f ′(x )=1x -ax +a -1=-ax 2+1+ax -xx.(1)若a ≥0,当0<x <1时,f ′(x )>0,f (x )单调递增;当x >1时,f ′(x )<0,f (x )单调递减,所以x =1是f (x )的极大值点.(2)若a <0,由f ′(x )=0,得x =1或x =-1a .因为x =1是f (x )的极大值点,所以-1a>1,解得-1<a <0.综合(1),(2)得a 的取值范围是 (-1,+∞). 三、解答题(本大题共6小题,共70分) 17.(本小题满分12分)在△ABC 中,已知a sin A -c sin C =(a -b )sin B , △ABC (1)求C ;(2)求△ABC 的面积S 的最大值.【解析】 (1)依正弦定理,有()22222,,a c a b b a b ab c -=-+-= 再由余弦定理得12cos ,cos ,2ab ab C C =∴=又C 是三角形△ABC 内角,0,3c C ππ∴<<=.-------------------------------6分(2)S △ABC =211sin sin sin sin sin()2233ab C ab A B A A ππ==+-6A π-------------------------------10分max 3A B S π∴===+当时,-------------------------------12分18.(本小题满分12分)在三棱锥M -ABC 中,AB =2AC =2,MA =MB ,AB =4A N ,AB ⊥AC ,平面MAB ⊥平面ABC ,S 为BC 的中点.(1) 证明:CM ⊥SN ;(2) 求SN 与平面CMN 所成角的大小.【解析】解法一:(1)取AB 中点O ,连接MO 、CO 、SO ∵MA =MB ,∴MO ⊥AB∵平面MAB ⊥平面ABC ,平面MAB ∩平面ABC =AB∴MO ⊥平面ABC -------------------------------2分∵△NOS 和△AOC 都是等腰直角三角形 ∵AB =2AC =2,AB =4AN , ∴AO =AC ,NO =SO , ∴∠AOC =45°,∠ONS =45°,∴CO ⊥SN ,∴CM ⊥SN . -------------------------------6分(2)在△MNC 中, MN , CN , CM =32, ∴S △MNC =38-------------------------------10分设S 到平面MNC 的距离为h ,SN 与平面CMN 所成角为θ, ∵V M ﹣NSC =V S ﹣NMC ∴S △NSC .MO =S △MNC .h ∴h =12-------------------------------11分∴sin θ=h SN=2∴SN 与平面CMN 所成角为4π .-------------------------------12分解法二:(1)证明:取AB 中点O ,连接MO 、SO ,∵MA =MB ,∴MO ⊥AB ,∵平面MAB ⊥平面ABC ,平面MAB ∩平面ABC =AB , ∴MO ⊥平面ABC ,又SO ⊥AB ; ∴如图,可以以O 为原点,以OB 为x 轴,以OS 为y 轴,以OM 为z 轴建立空间直角坐标系, -------------------------------2分 各点坐标如下:C (-1,1,0)、M (0,0,12)、N (-12,0,0)、S (0,12,0) ∴CM=(1,-1,12),SN=(-12,-12,0),-------------------------------5分∴ 0CM SN ⋅=, ∴CM ⊥SN -------------------------------6分 (2)由题意知CN =(12, -1, 0), NM =(12, 0, 12), ------------------------8分设平面CMN 的法向量为n =(x ,y ,z ),则0n CN n NM ⎧⋅=⎪⎨⋅=⎪⎩,∴02022xy x z ⎧-=⎪⎪⎨⎪+=⎪⎩令y =1,得平面CMN 的法向量为n =(2,1,-2),-------------------------------10分设SN 与平面CMN 所成角为θ,则sin θ=|cos<n ,SN >|, ∴SN 与平面CMN 所成角为4π-------------------------------12分 19.(本小题满分12分)某班同学利用国庆节进行社会实践,对 岁的人群随机抽取n 人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图: (1)补全频率分布直方图并求n 、a 、p 的值;(2)从,使 2φ(x 1)<φ(x 2)成立,求实数t 的取值范围.【解析】(1)∵函数的定义f ′(x )=-1xax a e +-,域为R ,---------------------------1分1)当a =0时,f ′(x )<0,f (x ) 的单调递减区间是(-∞,+∞);2)当a <0时,由f ′(x )=0,得x =1a a-; ∴f (x ) 的单调递减区间是(-∞,1a a -),单调递减区间是(1a a -,+∞);3)当0<a <1时,由f ′(x )=0,得x =1a a -;∴f (x ) 的单调递减区间是(1a a -,+∞),单调递减区间是(-∞,1a a-).-----------------------5分(2)假设存在x 1,x 2∈,使得2φ(x 1)<φ(x 2)成立,则2min <max . ∵φ(x )=xf (x )+tf ′(x )+e -x=x 2+(1-t )x +1ex,∴φ′(x )=-x 2+(1+t )x -t e x =-(x -t )(x -1)ex.①当t ≥1时,φ′(x )≤0,φ(x )在上单调递减, ∴2φ(1)<φ(0),即t >3-e2>1.②当t ≤0时,φ′(x )>0,φ(x )在上单调递增, ∴2φ(0)<φ(1),即t <3-2e<0.③当0<t <1时,若x ∈,φ′(x )>0,φ(x )在(t ,1]上单调递增,所以2φ(t )<max{φ(0),φ(1)},即2·t +1e t<max{1,3-te},(*), 由(1)知,g (t )=2·t +1et在上单调递减,故4e ≤2·t +1e t ≤2,而2e ≤3-t e ≤3e ,所以不等式(*)无解. 综上所述,存在t ∈(-∞,3-2e)∪(3-e2,+∞),使得命题成立. ----------------------12分22.(本小题满分10分)选修4~1:几何证明选讲如图,AB 是⊙O 的一条切线,切点为B ,直线ADE ,CFD ,CGE 都是⊙O 的割线, 已知AC =AB .(1) 若CG =1,CD =4,求DEGF的值; (2) 求证:FG //AC .【解析】(1) 由题意可得:F D E G ,,,四点共圆,CED CFG CDE CGF ∠=∠∠=∠∴,.CGF ∆∴∽CDE ∆. CGCDGF DE =∴. 又4,1==CD CG ,∴GFDE =4.-----------------------4分(2)因为AB 为切线,AE 为割线,AB 2=AD ·AE , 又因为AC =AB ,所以AD ·AE =AC 2,. 所以AD ACAC AE=,又因为EAC DAC ∠=∠,所以ADC △∽ACE △,所以ADC ACE ∠=∠,又因为ADC EGF ∠=∠,所以EGF ACE ∠=∠,所以FG //AC . ----------------------10分23.(本小题满分10分)选修4~4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为1cos ,2sin x t y t αα=+⎧⎨=+⎩(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,圆C 的方程为ρ=6sin θ. (1)求圆C 的直角坐标方程;(2)若点P (1,2),设圆C 与直线l 交于点A ,B .求∣PA ∣+∣PB ∣的最小值. 【解析】(1)由ρ=6sin θ得ρ2=6ρsin θ.,化为直角坐标方程为x 2+y 2=6y ,即x 2+(y -3)2=9.-----------------------4分(2)将l 的参数方程代入圆C 的直角坐标方程,得22(cos sin )70t t αα+--=. 由2(2cos 2sin )470αα∆=-+⨯>,故可设12,t t 是上述方程的两根, 所以12122(cos sin ),7,t t t t αα+=--⎧⎨⋅=-⎩又直线l 过点(1,2),故结合t 的几何意义得||||PA PB +=1212||||||t t t t +=-==所以∣PA ∣+∣PB ∣的最小值为-----------------------10分24.(本小题满分10分)选修4~5:不等式选讲设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M . (1)证明:111364a b +<; (2)比较|1-4ab |与2|a -b |的大小,并说明理由.【解析】(1)证明:记f (x )=|x -1|-|x +2|=⎩⎪⎨⎪⎧3,x ≤-2,-2x -1,-2<x <1,-3,x ≥1.由-2<-2x -1<0,解得-12<x <12, 则M =⎝⎛⎭⎪⎫-12,12. 所以⎪⎪⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14-----------------------5分(2)由(1)得a 2<14,b 2<14.因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2)=(4a 2-1)(4b 2-1)>0,所以|1-4ab |2>4|a -b |2, 故|1-4ab |>2|a-b |-----------------------10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

兰州一中2016-2017-1学期高一年级期中考试试题
数学
说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间100分钟.答案写在答题卡上,交卷时只交答题卡.
第Ⅰ卷
一、
选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案
的代号填在题后的括号内(本大题共10个小题,每小题4分,共40分)。

1.设集合{}
1>∈=x N x A ,则( )
A. A ∉φ
B. A ∉1
C. A ∈1
D. {}
A ⊆1 2.已知函数23)12(+=+x x f 且2)(=a f ,则a 的值等于( ) A. -1 B. 5 C. 1 D. 8 3.三个数0.7
6
,6
0.7,0.7log 6的大小顺序是( )
A .60.7
0.70.7log 66<< B .6
0.7
0.70.76log 6<<
C .0.7
60.7log 66
0.7<< D .60.70.7log 60.76<<
4.若函数()y f x =是函数(0,1)x
y a a a =>≠且的反函数,且)(x f y =图像经过点)a ,则=)(x f ( )
A .2log x
B .1
2
log x C .
12x
D .2
x 5.函数y =log 2
1(x 2
-3x +2)的递增区间是 ( )
A .(-∞,1)
B .(2,+∞)
C .(-∞,23
) D .( 2
3, +∞)
6.已知y =f (x )是奇函数,当x >0时,f (x )=x (1+x ),当x<0时,f (x )等于( ) A .-x (1-x ) B .x (1-x ) C .-x (1+x )
D .x (1+x )
7.已知函数8)(3
5
+++=cx bx ax x f ,且10)2(=-f ,则函数)2(f 的值是( ) A.2- B.6- C.6 D.8
8.1
(0,1)x
y a a a a
=-
≠≠函数且的图像可能是( ) A . B . C . D .
9.已知2.05.05.0,2,5.0===c b a ,则c b a ,,三者的大小关系是( ) A. a c b >> B. c a b >> C. c b a >> D. a b c >> 10.设奇函数)(x f 的定义域为[]5,5-,若当[0,5]x ∈时,
)(x f 的图象如右图,则不等式()0f x <的解是( )
A.)52(,
B.)02(,-
C.[)52()25,,
-- D .(](2,0)2,5-
第Ⅱ卷
二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题4分,共16分). 11.函数2
()2(1)2f x x a x =+--在区间[)4+∞,上单调递增,则实数a 的取值范围是
(用区间表示);
12.函数12
()log f x x =在区间[]2,8上的最大值为 ;
13.若方程0x
a x a --= (a >0,且a ≠1)有两个实根,则实数a 的取值范围是 ;
14.若14log 3=x ,则x
x -+44= .
兰州一中2016-2017-1学期高一年级期中考试试题
数学答题卡
一、选择题(本大题共1个题,共40分)
二、填空题(本大题共4个题,共16分)
11. ; 12. ; 13. ; 14. . 三、 解答题:解答应写出文字说明,证明过程或演算步骤...................,把答案填在答题.......卷.相应位置....(本 大题共5小题,共44分) 15.(本题满分
8
分)已知函数
⎪⎩

⎨⎧≥<<--≤+=
2,221,1
,2)(2x x x x x x x f ,
(Ⅰ)求f (f (-2));
(Ⅱ)画出函数f (x )的图象,根据图象写出函数的单调增区间并求出函数f (x )在区间(-4,0)上的值域.
16.(本题满分8分)已知函数()()110212x
f x x x ⎛⎫=+≠
⎪-⎝⎭
, (Ⅰ)判断函数()f x 的奇偶性; (Ⅱ)证明()0f x >.
17.(本题满分8分)已知函数f (x )=log a ⎣⎢⎡⎦
⎥⎤⎝ ⎛⎭
⎪⎫1a
-2x +1在区间上恒为正,求实数a 的取值范围.
18.(本题满分10分)已知-3≤log 12 x ≤-12,求函数f (x )=(log 2x 2)(log 2x
4
)的最大值和最小值,
并求出对应的x 的值.
19.(本题满分10分)设函数()y f x =且lg(lg )lg3lg(3)y x x =+-. (Ⅰ)求函数()f x 的解析式及定义域; (Ⅱ)求函数()f x 的值域; (Ⅲ)讨论函数()f x 的单调性.
兰州一中2016-2017-1学期高一年级期中考试试题
数学答题卡
一、选择题(本大题共1个题,共40分)
二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题4分,共16分) 11. (],5-∞; 12. -1 ; 13. ),1(+∞; 14. 3
10
. 三、 解答题:在相应位置.....解答..(本大题共5小题,共44分) 15.(本题满分8分) 解
:



(2)220
f -=-+=((2))(0)02
f f f ∴-==⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分
(Ⅱ)图略 ………………………4分 单调增区间为),0(),1,(+∞--∞(开区间,闭区间都给分 …………………………6分 由图可知: (4)2f -=- (1)1f -= ()f x ∴的值域为(2,1]-. …………8分 16.(本题满分8分)
解:(Ⅰ)1121
()()212221
x x x x f x x +=+=⋅-- 2121
()()221221x x x x x x f x f x --++-=-⋅=⋅=--,为偶函数...................4分
(Ⅱ)21()221
x x x f x +=⋅-,当0x >,则210x
->,即()0f x >;
当0x <,则210x -<,即()0f x >, ∴()0f x > .................8分
17.(本题满分8分)
解:当a >1时,y =⎝ ⎛⎭
⎪⎫1a
-2x +1是减函数,
故⎝ ⎛⎭
⎪⎫1a -2·2+1>1,则a <12,矛盾. ……………………………………4分
当0<a <1时,0<⎝ ⎛⎭
⎪⎫1a
-2x +1<1,设y =⎝ ⎛⎭
⎪⎫1a
-2x +1,
分类讨论1a -2的取值,得12<a <2
3. …………………………………8分
18.(本题满分10分)
解:∵log 12 (12)-3≤log 12 x ≤log 12
(1
2)
- 1
2
, ∴log 12 8≤log 12 x ≤log 12
2,
∴2≤x ≤8. ………………………………………………………3分 又f (x )=(log 2x 2)(log 2x
4
)=(log 2x -1)(log 2x -2)
=(log 2x )2
-3log 2x +2=(log 2x -32)2+2-94=(log 2x -32)2-14.
∵log 2x ∈, ∴log 2x ∈[1
2
,3].
令log 2x =t ,则f (x )=(t -32)2-14,t ∈[1
2,3]. ……………………………6分
∴f (x )min =-14,此时t =32,即log 2x =3
2

∴x =2 32
=22; ………………………………………………8分
f (x )max =(3-32)2-14
=2,
此时t =3,即log 2x =3,∴x =8. …………………………………10分
19.(本题满分10分)
解:(Ⅰ)由已知得lg(lg )lg[3(3)]y x x =-,所以lg 3(3)y x x =-, 即3(3)10x x y -= ……………………………………………………2分
要使函数有意义,则30
0330x x x >⎧⇒<<⎨->⎩
.
所以函数的定义域为(0,3) …………………………………………4分
(Ⅱ)令2
3273(3)3()24
u x x x =-=--+
. ∵03x <<,∴2704
u <≤
, ∴270
4
1010y <≤,即274
110y <≤ …………………………………7分 (Ⅲ)由(Ⅱ)知,3(3)u x x =-在3(0,)2上是增函数,在3[,3)2
上是减函数. ∵10u
y =在274
(1,10)上是增函数,
∴3(3)10x x y -=在3(0,)2上是增函数,在3[,3)2
上是减函数. ……10分。

相关文档
最新文档