电控发动机传感器及执行器的认识
项目2 汽油发动机电控系统信号输入装置、 执行器认知与检修

翼片式空气流量计结构简单、 可靠性好, 测量精度不受电源电压波动的影响。 但 是进气阻力大、 急加速 响应慢、 外形尺寸大、 布置比较困难。 另外, 单位体积空气在不同的温度和压力下, 具有不同的质量, 因此 还需测量进气温度和压力, 才能计算出 空气的质量流量。
该形式的空气流量传感器用于早期的如: 宝马535、 雷克萨斯ES300、 沃尔沃760 型发动机上。
(1)翼片式空气流量传感器的结构与工作原理。 翼片式空气流量传感器也叫叶片 式空气流量传感器, 安装在空气滤清器后方的进气道上, 结构如图2-2、 图2-3所 示。 翼片式空气流量计由测量板、 补偿板、 回位弹簧、 电位计、 旁通道、 怠速调整螺 钉和接线插头等组成。
翼片式空气流量计的工作原理如图2-4 所示。 汽油发动机工作时, 具有一定流 速的空气推开测量翼片, 经主空气通道进入发动机气缸。 测量翼片被气流推开的程 度, 也即偏转角 α 的大小, 与空气流速和扭簧的回复 力矩有关。 测量翼片的偏转角α 越大, 扭簧的回复力矩也越大, 与之对应的是较高空气流速(即较大的空气流 量), 反 之则相反。 对于某一具体的空气流量计, 在流量计主空气通道几何尺寸已定的情况 下, 对应于每一偏 转角α, 就有一个确定的主通道流通截面积。 由于空气的体积流 量=空气流速×流通截面积, 因此对应于每一偏 转角α, 就有一个确定的空气流量值, 只要把偏转角α转换为对应的电信号并输送到ECU, ECU就能根据偏 转角仪和空气流 流量的对应关系, 算出单位时间发动机吸入的空气量。
合理地设计进气通道的截面积和涡流发生器的尺寸, 可使在发动机的进气流速范围 内St 为一常数。 于是, 卡门涡旋频率就只与空气流速成正比关系。 这样, 只要测出卡门 涡旋的频率f, 就可知道空气的流速v, v乘 以空气通道的截面积, 便是空气的体积流量。
项目一发动机电控系统总体认识

项目一发动机电控系统总体认识项目描述发动机电子控制系统是车辆上最重要的电控系统之一。
发动机电控系统主要由空气供给系统、燃油供给系统、点火控制系统、排放控制系统以及发动机辅助控制系统等组成。
如果发动机电子控制系统出现故障,发动机会出现油耗增加、动力不足、运行不良等各种故障,甚至是发动机无法起动。
图3-1大众发动电子控制系统组成图G28发动机转速传感器 G130催化器后氧传感器 G40霍尔传感器 F和F47制动信号灯开关 G39氧传感器 G70热膜式空气质量流量计 G62冷却液温度传感器 G42进气温度传感器 G61爆燃传感器I J338节气门控制单元 G61爆燃传感器I G62爆燃传感器II F36离合器踏板开关 G187和G188节气门传动装置角度传感器(电子节气门调节器) G79和G185加速踏板位置传感器传感器侧附加信号:空调压缩机接通,空调准备就绪,车速信号 K83废气警告灯 N156调节式进气管转换阀 J17燃油泵继电器G6燃油泵 J299二次空气泵继电器 N30~N33喷射阀 V101二次空气泵电动机继电器J338节气门控制单元 G186节气门传动装置 N152点火变压器 N80活性炭罐电磁阀Z29催化器后氧传感器加热装置 Z19氧传感器加热装置执行器侧附加信号:空调压缩机关闭,电子节气门故障指示灯,定速巡航控制系统,耗油量信号任务1 发动机电控系统总体认识任务描述:一辆2009款迈腾1.8T 轿车,装备BYJ发动机,行驶里程8.6万公里。
客户李先生反映该车在行驶中发动机故障灯点亮,此前车辆并未出现过事故和维修。
发动机故障灯点亮,意味着发动机电控系统出现了故障,并且记录在了发动机电脑板中。
故障部位一般电控系统的传感器、执行器、电脑板或者是线路故障。
在进行维修之前,需要对故障车辆的发动机电控系统比较熟悉,然后使用解码器对发动机电控系统进行故障码的读取,然后结合故障码和维修手册进行故障维修和修复。
传感器与执行器的解析

传感器与执行器的解析什么是传感器?甲传感器监视环境条件,例如流体的水平,温度,振动,或电压。
当这些环境条件发生变化时,它们会向传感器发送电信号,然后传感器可以将数据或警报发送回中央计算机系统,或调整特定设备的功能。
例如,如果电动机达到过热温度点,它将自动关闭。
什么是执行器?另一方面,致动器引起运动。
它接收电信号并将其与能源结合以产生物理运动。
致动器可以是气动的,液压的,电动的,热的或磁性的。
例如,电脉冲可以驱动资产中电动机的功能。
传感器和执行器之间的6个主要区别传感器和执行器跟踪不同的信号,通过不同的方式进行操作,并且必须协同工作才能完成任务。
它们还物理上位于不同的区域,并且经常用于单独的应用程序中。
传感器负责跟踪进入机器的数据,而执行器则执行动作。
输入和输出传感器查看来自环境的输入,这些输入触发特定的动作。
另一方面,执行器跟踪系统和机器的输出。
电信号传感器通过电子信号读取特定的环境条件并执行分配的任务。
但是,执行器会测量热量或运动能以确定所产生的作用。
依赖传感器和执行器实际上可以相互依赖来执行特定任务。
如果两者都存在,则执行器将依靠传感器来完成其工作。
如果一个或两个都无法正常工作,则系统将无法运行。
转换方向传感器倾向于将物理属性转换为电信号。
执行器的作用相反:将电信号改变为物理动作。
位置如果同时存在传感器和执行器,则个位于输入端口,而后者位于输出端口。
应用传感器通常用于测量资产温度,振动,压力或液位。
执行器的工业应用包括操作风门,阀门和联轴器。
执行器和传感器示例在工业领域,执行器和传感器都有许多用途。
它们都有助于关键资产更有效地工作,从而有助于减少停机时间并提高生产率。
5种不同类型的执行器1、手动执行器这些执行器需要员工控制齿轮,杠杆或车轮。
尽管它们便宜且易于使用,但适用性有限。
2、气动执行器这些执行器利用气压为阀门提供动力。
压力推动活塞影响阀杆。
3、液压执行器这些执行器使用流体产生压力。
液压执行器不使用气压,而是使用液压来操作阀门。
电控发动机的工作原理

电控发动机的工作原理
电控发动机是一种通过电子控制系统对发动机的燃油喷射、气门开关等进行精确调控的动力装置。
其工作原理主要包括以下几个方面:
1. 点火系统:电控发动机通过电子控制单元(ECU)对点火系统进行精确控制。
ECU接收来自传感器的信息,判断最佳点
火时机,并通过点火线圈产生高电压来点燃混合气体,从而引爆燃料混合气。
2. 燃油喷射系统:电控发动机采用电喷技术,通过ECU控制
喷油嘴的喷油时间和喷油量,实现对燃料供给的精确调控。
ECU接收来自传感器的信息,计算最佳喷油时间和喷油量,
并送出相应的指令,使喷油嘴以精确的喷油量和时间完成燃油喷射过程。
3. 气门控制系统:电控发动机通过ECU控制气门的开闭时机
和持续时间。
ECU根据发动机负荷和转速等参数,计算出最
佳气门控制策略,并通过控制执行器来实现气门的精确控制。
气门的开闭时机和持续时间对进气量和排气量等影响很大,因此精确的气门控制能够使发动机达到更高的燃烧效率。
4. 传感器系统:电控发动机依靠各种传感器来获取发动机工作状态的信息,如气温传感器、氧传感器、曲轴传感器等。
这些传感器将实时的工作参数转化为电信号并送至ECU,ECU根
据这些信息作出相应的调整,以实现对发动机工作的精确控制。
通过以上这些系统的协同工作,电控发动机能够更加精确地控制燃油喷射、点火时机和气门控制等参数,从而提高燃烧效率、减少能量损失,实现更低的燃油消耗和更高的动力输出效率。
同时,电控技术还使得发动机能够根据驾驶员的需求做出即时响应,提升了驾驶的舒适性和安全性。
电控发动机工作原理

电控发动机工作原理随着科技的发展,电控发动机已经成为现代汽车的主流动力。
它采用电子控制系统来管理燃油喷射、点火和排放等过程,从而实现更高效、更环保的动力输出。
本文将详细介绍电控发动机的工作原理。
1. 传感器电控发动机的控制系统需要通过传感器来获取发动机运行状态的信息。
这些传感器包括空气流量计、氧气传感器、水温传感器、气压传感器等,它们将发动机的运行状态转化为电信号并传送给控制器。
2. 控制器控制器是电控发动机的“大脑”,它根据传感器的信息来计算燃油喷射量、点火时机等参数,并发送指令给执行器。
控制器还会对发动机的工作状态进行监测,并根据需要进行调整。
3. 发动机执行器执行器是控制器指令的执行者,它们包括燃油喷嘴、点火线圈、节气门执行器等。
这些执行器受到控制器的指令后,会相应地控制燃油喷射量、点火时机和节气门开度等参数,从而控制发动机的输出功率和转速。
4. 燃油系统电控发动机的燃油系统包括油泵、燃油滤清器、燃油喷射器等部件。
在控制器的指令下,燃油泵会将燃油送至燃油滤清器进行过滤,再由燃油喷射器将燃油喷射到发动机的气缸中。
燃油喷射器的喷射量和喷射时机等参数由控制器根据传感器的信息进行计算和控制。
5. 点火系统电控发动机的点火系统包括点火线圈、火花塞等部件。
在控制器的指令下,点火线圈会产生高压电流,从而使火花塞产生火花,点燃气缸中的燃油混合气。
点火时机的计算和控制也是由控制器完成的。
6. 排放系统电控发动机的排放系统包括三元催化器、氧气传感器等部件,它们能够有效地减少尾气排放的有害物质。
氧气传感器会监测排气中的氧气含量,并将信息传送给控制器。
控制器根据氧气传感器的信息来调整燃油喷射量,使得燃烧产生的尾气排放更加环保。
电控发动机采用电子控制系统来管理燃油喷射、点火和排放等过程,从而实现更高效、更环保的动力输出。
传感器、控制器、执行器、燃油系统、点火系统和排放系统等部件相互协作,共同完成发动机的工作。
汽车电控系统工作原理与结构

汽车电控系统工作原理与结构汽车电控系统是指用电子技术控制汽车运行和操作的系统。
它是汽车电子技术的重要应用,通过精确控制发动机、传动系统、制动系统、灯光系统等汽车的相关部件,提高汽车的性能、安全性和舒适性。
本文将从工作原理和结构两个方面,详细介绍汽车电控系统的相关知识。
一、工作原理1.传感器感知:汽车电控系统通过传感器感知车身的各种物理、化学和电学参数。
例如,氧传感器能够感知排气中的氧含量,进而判断发动机的燃烧情况;油温传感器能够感知发动机的油温,从而为油路提供适当的油量和油压。
2.信号转化:传感器将感知到的参数转化为电信号,从而为后续的电子元件处理和传输提供基础。
例如,氧传感器将氧含量转化为电压信号,通过电缆传输给电控单元。
3.信号处理:电控单元作为汽车电控系统的核心部件,接收各个传感器传来的电信号,进行数字化处理,计算各参数的值,并根据预先设定的控制策略制定相应的控制命令。
例如,在发动机控制方面,电控单元根据氧传感器的信号计算空燃比,再根据设定的控制策略调整喷油时间和量。
4.执行器控制:执行器根据电控单元发送的控制信号,控制相应部件的工作状态。
例如,喷油器根据电控单元的命令,调节燃油的喷入量和喷射时间,从而实现发动机功率和排放控制。
二、结构1.感知系统:感知系统由各种传感器组成,用于感知控制参数。
例如,汽车发动机控制系统常用的传感器包括氧传感器、油温传感器、速度传感器等。
2.信号调理系统:信号调理系统用于将传感器感知到的信号进行处理和转化。
例如,模拟信号经过模拟电路处理后,转化为数字信号,再传输给电控单元进行处理。
3.控制器:控制器是整个电控系统的核心部件,负责接收和处理感知到的信号,并根据设定的控制算法制定控制策略。
控制器一般由微处理器和相应的存储器组成。
4.执行器:执行器根据控制器的命令,控制汽车各个部件的工作状态。
例如,喷油器根据控制器的控制信号,调整喷油时间和量;制动系统根据控制器的信号,调节制动力度。
电控发动机的工作原理

电控发动机的工作原理
电控发动机是一种通过电子控制设备来控制燃料喷射和点火时机的发动机。
它主要包括以下几个部分:
1. 传感器:电控发动机中设置了多个传感器,用于监测发动机的工作状态。
例如,空气流量传感器用于测量进气量,进气温度传感器用于测量进气温度,氧气传感器用于监测尾气中氧气浓度等。
2. 控制单元:电控发动机的控制单元是一个特定的电子装置,用于接收传感器所采集到的各种数据,并根据预设的程序进行计算和判断。
它能够通过控制喷油器和点火系统来实现发动机的控制。
3. 喷油器:电控发动机中的喷油器是非常重要的部件。
控制单元会根据传感器所监测到的数据,计算出适当的燃油量,并通过电子信号控制喷油器喷射相应的燃油量到发动机燃烧室。
4. 点火系统:点火系统用于在正确的时机点燃混合气体。
电控发动机中的点火系统主要包括火花塞和点火线圈。
控制单元会根据传感器数据计算出适当的点火时机,并通过点火线圈产生高压电流,点燃混合气体。
电控发动机的工作原理可以总结为:传感器监测实时数据,控制单元根据这些数据计算出相应的控制信号,控制喷油器喷射适当的燃油量,并通过点火系统点燃混合气体。
通过精确的控制,电控发动机可以提供更高的燃烧效率和更低的排放。
发动机电控原理实验报告

一、实验目的1. 理解发动机电控系统的工作原理,掌握电控发动机的基本组成和功能。
2. 掌握电控发动机传感器的原理、类型、工作特性及检修方法。
3. 掌握电控发动机执行器的原理、类型、工作特性及检修方法。
4. 熟悉电控发动机ECU(电子控制单元)的原理、组成、功能及检修方法。
5. 通过实验,提高动手能力和实际操作技能。
二、实验原理发动机电控系统是一种利用电子技术对发动机进行控制的技术,它通过传感器、执行器和控制器(ECU)的相互作用,实现对发动机工作状态的精确控制。
以下是发动机电控系统的主要组成部分及其工作原理:1. 传感器:传感器将发动机的工作状态转换为电信号,输送给ECU。
常见的传感器有空气流量传感器、曲轴位置传感器、发动机转速传感器、节气门位置传感器、氧传感器、爆燃传感器等。
2. 执行器:执行器根据ECU的控制指令,实现对发动机工作状态的调整。
常见的执行器有电动燃油泵、喷油器、怠速控制(ISC)阀、废弃再循环(EGR)阀等。
3. ECU:ECU是电控系统的核心,负责接收传感器信号、处理数据、生成控制指令,并通过执行器实现对发动机的精确控制。
ECU主要由中央处理器(CPU)、随机存储器(RAM)、只读存储器(ROM)、输入和输出接口电路、驱动电路和固化在ROM中的发动机控制程序等组成。
三、实验内容1. 传感器实验:观察传感器的外观、结构,了解其工作原理和检修方法。
以空气流量传感器为例,实验内容包括:(1)测量空气流量传感器的电阻值,判断其是否正常。
(2)检测传感器信号输出波形,分析其工作状态。
2. 执行器实验:观察执行器的外观、结构,了解其工作原理和检修方法。
以电动燃油泵为例,实验内容包括:(1)测量电动燃油泵的电流、电压,判断其是否正常。
(2)检测电动燃油泵的启动、停止功能。
3. ECU实验:观察ECU的外观、结构,了解其工作原理和检修方法。
实验内容包括:(1)检测ECU的电源、接地情况。
(2)读取ECU中的故障代码,分析故障原因。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学项目:电控发动机传感器及执行器认识
实习教师:常喜运
一、教学项目名称
电控发动机传感器及执行器的认识
二、教学场景设计
PSSTAB5电控发动机台架,丰田5A发动机机台架如图1---1所示
三、工作安全
1. 在良好的通风条件下进行。
2、不经允许,不得私自拔传感器等电子部件的线束。
3、不要私自起动发动机
四、教学目标和工作任务
1、教学目标
掌握各传感器及执行器的作用及安装位置
2、工作任务
部件认识
五、教学项目流程
(一)作业技术规范流程
汽车电控发动机传感器认识考核评分表班级:姓名:。