高中数学第一二章综合能力检测题课后强化训练(含详解)新人教A版必修
高中数学 第一章综合检测题课后强化训练(含详解) 新人教A版必修4

第一章综合检测题本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.sin2cos3tan4的值( ) A .小于0 B .大于0 C .等于0 D .不存在[答案] A[解析] ∵π2<2<π,∴sin2>0,∵π2<3<π,∴cos3<0,∵π<4<3π2,∴tan4>0,∴sin2cos3tan4<0.2.若角600°的终边上有一点(-4,a ),则a 的值是( ) A .4 3B .-4 3C .±4 3 D. 3 [答案] B[解析] 由条件知,tan600°=a-4, ∴a =-4tan600°=-4tan60°=-4 3. 3.(08·全国Ⅰ文)y =(sin x -cos x )2-1是( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为π的奇函数 [答案] D[解析] ∵y =(sin x -cos x )2-1=sin 2x -2sin x cos x +cos 2x -1=-sin2x , ∴函数y =(sin x -cos x )2-1的最小正周期为π,且是奇函数. 4.函数y =sin ⎝⎛⎭⎫2x -π3在区间⎣⎡⎦⎤-π2,π的简图是( )[答案] A[解析] x =0时,y <0,排除B 、D , x =π6时,y =0,排除C ,故选A. 5.为了得到函数y =cos ⎝⎛⎭⎫2x +π3的图象,只需将函数y =sin2x 的图象( ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位C .向左平移5π6个长度单位D .向右平移5π6个长度单位[答案] A[解析] y =cos(2x +π3)=sin(2x +π2+π3)=sin(2x +5π6)=sin2(x +5π12),由y =sin2x 的图象得到y =cos(2x +π3)的图象.只需向左平移5π12个长度单位就可以.6.函数y =|sin x |的一个单调增区间是( ) A.⎝⎛⎭⎫-π4,π4 B.⎝⎛⎭⎫π4,3π4 C.⎝⎛⎭⎫π,3π2 D.⎝⎛⎭⎫3π2,2π[答案] C[解析] 画出函数y =|sin x |的图象,如图所示.由函数图象知它的单调增区间为⎝⎛⎭⎫k π,k π+π2(k ∈Z ),所以当k =1时,得到y =|sin x |的一个单调增区间为⎝⎛⎭⎫π,3π2,故选C. 7.(08·四川)设0≤α≤2π,若sin α>3cos α,则α的取值范围是( ) A.⎝⎛⎭⎫π3,π2 B.⎝⎛⎭⎫π3,π C.⎝⎛⎭⎫π3,4π3 D.⎝⎛⎭⎫π3,3π2[答案] C[解析] ∵sin α>3cos α,∴⎩⎪⎨⎪⎧ cos α>0tan α>3或⎩⎪⎨⎪⎧ cos α<0tan α<3或⎩⎪⎨⎪⎧cos α=0sin α=1, ∴π3<α<4π3. [点评] ①可取特值检验,α=π2时,1=sin π2>3cos π2=0,排除A ;α=π时,0=sinπ>3cosπ=-3,排除B ;α=4π3时,sin 4π3=-32,3cos 4π3=-32,∴sin 4π3=3cos 4π3,排除D ,故选C.②学过两角和与差的三角函数后,可化一角一函解决,sin α-3cos α=2sin ⎝⎛⎭⎫α-π3>0,∴sin ⎝⎛⎭⎫α-π3>0,∵0≤α≤2π,∴π3<α<4π3. 8.方程sinπx =14x 的解的个数是( )A .5B .6C .7D .8[答案] C[解析] 在同一坐标系中分别作出函数y 1=sinπx ,y 2=14x 的图象,左边三个交点,右边三个交点,再加上原点,共计7个.9.已知△ABC 是锐角三角形,P =sin A +sin B ,Q =cos A +cos B ,则( ) A .P <QB .P >QC .P =QD .P 与Q 的大小不能确定[答案] B[解析] ∵△ABC 是锐角三角形,∴0<A <π2,0<B <π2,A +B >π2,∴A >π2-B ,B >π2-A ,∵y =sin x 在⎝⎛⎭⎫0,π2上是增函数, ∴sin A >cos B ,sin B >cos A , ∴sin A +sin B >cos A +cos B ,∴P >Q .10.若函数f (x )=3cos(ωx +φ)对任意的x 都满足f ⎝⎛⎭⎫π3+x =f ⎝⎛⎭⎫π3-x ,则f ⎝⎛⎭⎫π3的值是( ) A .3或0 B .-3或0 C .0D .-3或3[答案] D[解析] f (x )的图象关于直线x =π3对称,故f ⎝⎛⎭⎫π3为最大值或最小值. 11.下列函数中,图象的一部分符合下图的是( )A .y =sin(x +π6)B .y =sin(2x -π6)C .y =cos(4x -π3)D .y =cos(2x -π6)[答案] D[解析] 用三角函数图象所反映的周期确定ω,再由最高点确定函数类型.从而求得解析式.由图象知T =4(π12+π6)=π,故ω=2,排除A 、C.又当x =π12时,y =1,而B 中的y =0,故选D.12.函数y =2sin ⎝⎛⎭⎫π3-x -cos ⎝⎛⎭⎫x +π6(x ∈R )的最小值为( ) A .-3 B .-2 C .-1 D .- 5[答案] C[解析] ∵y =2sin ⎝⎛⎭⎫π3-x -cos ⎝⎛⎭⎫x +π6 =2cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π3-x -cos ⎝⎛⎭⎫x +π6=cos ⎝⎛⎭⎫x +π6, ∴y min =-1.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.若1+sin 2θ=3sin θcos θ则tan θ=________. [答案] 1或12[解析] 由1+sin 2θ=3sin θcos θ变形得2sin 2θ+cos 2θ-3sin θcos θ=0⇒(2sin θ-cos θ)(sin θ-cos θ)=0, ∴tan θ=12或1.14.函数y =16-x 2+sin x 的定义域为________. [答案] [-4,-π]∪[0,π][解析] 要使函数有意义,则⎩⎪⎨⎪⎧16-x 2≥0sin x ≥0,∴⎩⎪⎨⎪⎧-4≤x ≤42k π≤x ≤2k π+π(k ∈Z ), ∴-4≤x ≤-π或0≤x ≤π.15.已知集合A ={α|30°+k ·180°<α<90°+k ·180°,k ∈Z },集合B ={β|-45°+k ·360°<β<45°+k ·360°,k ∈Z },则A ∩B =________.[答案] {α|30°+k ·360°<α<45°+k ·360°,k ∈Z } [解析] 如图可知,A ∩B ={α|30°+k ·360°<α<45°+k ·360°,k ∈Z }.16.若a =sin(sin2009°),b =sin(cos2009°),c =cos(sin2009°),d =cos(cos2009°),则a 、b 、c 、d 从小到大的顺序是________.[答案] b <a <d <c[解析] ∵2009°=5×360°+180°+29°, ∴a =sin(-sin29°)=-sin(sin29°)<0, b =sin(-cos29°)=-sin(cos29°)<0, c =cos(-sin29°)=cos(sin29°)>0, d =cos(-cos29°)=cos(cos29°)>0, 又0<sin29°<cos29°<1<π2,∴b <a <d <c .[点评] 本题“麻雀虽小,五脏俱全”,考查了终边相同的角、诱导公式、正余弦函数的单调性等,应加强这种难度不大,对基础知识要求掌握熟练的小综合题训练.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)已知sin θ=1-a 1+a ,cos θ=3a -11+a,若θ为第二象限角,求实数a 的值. [解析] ∵θ为第二象限角,∴sin θ>0,cos θ<0. ∴1-a 1+a >0,3a -11+a<0,解之得,-1<a <13.又∵sin 2θ+cos 2θ=1,∴⎝⎛⎭⎪⎫1-a 1+a 2+⎝ ⎛⎭⎪⎫3a -11+a 2=1,解之,得a =19或a =1(舍去).故实数a 的值为19.18.(本题满分12分)若集合M =⎩⎨⎧⎭⎬⎫θ⎪⎪ sin θ≥12,0≤θ≤π,N =⎩⎨⎧⎭⎬⎫θ⎪⎪cos θ≤12,0≤θ≤π,求M ∩N . [解析] 解法一:可根据正弦函数图象和余弦函数图象,找出集合N 和集合M 对应的部分,然后求M ∩N .首先作出正弦函数与余弦函数的图象以及直线y =12.如图.结合图象得集合M 、N 分别为M =⎩⎨⎧⎭⎬⎫θ⎪⎪ π6≤θ≤5π6,N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤π. 得M ∩N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤5π6. 解法二:利用单位圆中的三角函数线确定集合M 、N . 作出单位圆的正弦线和余弦线如图所示.由单位圆中的三角函数线知M =⎩⎨⎧⎭⎬⎫θ⎪⎪π6≤θ≤5π6, N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤π. 由此可得M ∩N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤5π6. 19.(本题满分12分)已知cos x +sin y =12,求sin y -cos 2x 的最值.[解析] ∵cos x +sin y =12,∴sin y =12-cos x ,∴sin y -cos 2x =12-cos x -cos 2x=-⎝⎛⎭⎫cos x +122+34, ∵-1≤sin y ≤1,∴-1≤12-cos x ≤1,解得-12≤cos x ≤1,所以当cos x =-12时,(sin y -cos 2x )max =34,当cos x =1时,(sin y -cos 2x )min =-32.[点评] 本题由-1≤sin y ≤1求出-12≤cos x ≤1是解题的关键环节,是易漏掉出错的地方.20.(本题满分12分)已知y =a -b cos3x (b >0)的最大值为32,最小值为-12.(1)求函数y =-4a sin(3bx )的周期、最值,并求取得最值时的x ; (2)判断其奇偶性.[解析] (1)∵y =a -b cos3x ,b >0,∴⎩⎨⎧y max =a +b =32ymin=a -b =-12,解得⎩⎪⎨⎪⎧a =12b =1,∴函数y =-4a sin(3bx )=-2sin3x . ∴此函数的周期T =2π3,当x =2k π3+π6(k ∈Z )时,函数取得最小值-2;当x =2k π3-π6(k ∈Z )时,函数取得最大值2.(2)∵函数解析式f (x )=-2sin3x ,x ∈R , ∴f (-x )=-2sin(-3x )=2sin3x =-f (x ), ∴y =-2sin3x 为奇函数.21.(本题满分12分)函数f (x )=A sin(ωx +φ)的图象如图所示.试依图推出:(1)f (x )的最小正周期; (2)f (x )的单调递增区间;(3)使f (x )取最小值的x 的取值集合.[解析] (1)由图象可知,T 2=74π-π4=32π,∴T =3π.(2)由(1)可知当x =74π-3π=-54π时,函数f (x )取最小值,∴f (x )的单调递增区间是⎣⎡⎦⎤-54π+3k π,π4+3k π(k ∈Z ). (3)由图知x =74π时,f (x )取最小值,又∵T =3π,∴当x =74π+3k π时,f (x )取最小值,所以f (x )取最小值时x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =74π+3k π,k ∈Z .22.(本题满分14分)函数f (x )=1-2a -2a cos x -2sin 2x 的最小值为g (a )(a ∈R ). (1)求g (a );(2)若g (a )=12,求a 及此时f (x )的最大值.[解析] (1)由f (x )=1-2a -2a cos x -2sin 2x =1-2a -2a cos x -2(1-cos 2x ) =2cos 2x -2a cos x -(2a +1)=2⎝⎛⎭⎫cos x -a 22-a22-2a -1.这里-1≤cos x ≤1. ①若-1≤a 2≤1,则当cos x =a 2时,f (x )min =-a 22-2a -1;②若a2>1,则当cos x =1时,f (x )min =1-4a ;③若a2<-1,则当cos x =-1时,f (x )min =1.因此g (a )=⎩⎪⎨⎪⎧1 (a <-2)-a22-2a -1 (-2≤a ≤2)1-4a (a >2).(2)∵g (a )=12.∴①若a >2,则有1-4a =12,得a =18,矛盾;②若-2≤a ≤2,则有-a 22-2a -1=12,即a 2+4a +3=0,∴a =-1或a =-3(舍). ∴g (a )=12时,a =-1.此时f (x )=2⎝⎛⎭⎫cos x +122+12, 当cos x =1时,f (x )取得最大值为5.。
高中数学 课后强化训练(含详解)1.1.2.1 新人教版必修3

1.1.2.1一、选择题1.下列关于程序框图的说法中正确的个数是( )①用程序框图表示算法直观、形象,容易理解②程序框图能够清楚地展现算法的逻辑结构,也就是通常所说的一图胜万言③在程序框图中,起止框是任何流程不可少的④输入和输出框可用在算法中任何需要输入、输出的位置A.1个B.2个C.3个D.4个[答案] D[解析] 由程序框图定义可知,①②③④都正确.2.在程序框图中,算法中间要处理数据或计算,可分别写在不同的( )A.处理框内B.判断框内C.输入、输出框内D.终端框内[答案] A[解析] 由处理框的意义可知,对变量进行赋值,执行计算语句,处理数据,结果的传送等都可以放在处理框内,∴选A.3.在画程序框图时如果一个框图需要分开来画,要在断开处画上( )A.流程线B.注释框C.判断框D.连结点[答案] D4.在程序框图中,一个算法步骤到另一个算法步骤的连接用( )A.连结点B.判断框C.流程线D.处理框[答案] C[解析] 流程线的意义是流程进行的方向,一个算法步骤到另一个算法步骤表示的是流程进行的方向,故选C.而连结点是当一个框图需要分开来画时,在断开处画上连结点.判断框是根据给定条件进行判断,处理框是赋值、计算、数据处理、结果传送,所以A、B、D都不对.5.下面是求方程ax2+bx+c=0(a≠0)的根的程序框图.则判断框内(1)处应填的条件为( )A.Δ>0? B.Δ≥0?C.Δ<0? D.Δ≤0?[答案] C[解析] 判断框中条件(1)满足时,输出方程无实数解,故判断的条件应为Δ<0.6.(08·宁夏海南文)下面的程序框图,如果输入三个实数a,b,c,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的( )A.c>x?B.x>c?C.c>b?D.b>c?[答案] A[解析] x 开始取a 的值,经过第一次判断后,x 取a 与b 中较大的值,又最后输出的是三个数a ,b ,c 中的最大值为x ,故第二次判断的条件应为c >x ?,故选A.7.如图,若f (x )=x 2,g (x )=log 2x ,输入x 的值为0.25,则输出结果为( )A .0.24B .-2C .2D .-0.25[答案] B[解析] 由框图知,h (x )是f (x )与g (x )中的较小值,∵f (0.25)=0.252=116,g (0.25)=log 20.25=-2,∴h (0.25)=-2.8.如图所示的程序框图运行后输出结果为12,则输入的x 值为( )A .-1B.22C.12 D .-1或22[答案] D[解析] 程序框图表示的是求分段函数f (x )=⎩⎪⎨⎪⎧x 2 x ≥142xx ≤0log 12x 0<x <14的函数值,由⎩⎪⎨⎪⎧x 2=12x ≥14得,x =22;由⎩⎪⎨⎪⎧2x =12x ≤0得,x =-1.又⎩⎪⎨⎪⎧log 12x =120<x <4无解,故选D.二、填空题9.(09·上海理)某算法的程序框图如图所示,则输出量y 与输入量x满足的关系式是______________________.[答案] y =⎩⎪⎨⎪⎧2x(x ≤1)x -2 (x >1)[解析] 由程序框图可知,当x >1时,y =x -2;当x ≤1时,y =2x, ∴输出量y 与输入量x 满足的关系式是y =⎩⎪⎨⎪⎧2x(x ≤1)x -2 (x >1).10.读下列流程图填空:(1)流程图(1)的算法功能是________________. (2)流程图(2)的算法功能是________________. (3)流程图(3)的算法功能是________________. (4)流程图(4)的算法功能是________________. [答案] (1)求输入的两个实数a 与b 的和.(2)求以输入的两个正数a ,b 为直角边长的直角三角形斜边的长. (3)求输入两数a ,b 的差的绝对值. (4)求函数f (x )=|x -3|+1,即分段函数f (x )=⎩⎪⎨⎪⎧x -2 (x >3)4-x (x ≤3)的函数值.11.判断正整数x 的奇偶性的程序框图如下,则①处应为________.[答案] r =1?[点评] (1)想一想,若在判断框内的条件改为r =0,则上面的程序框图如何修改?(将是与否互换)(2)r 为x 除以2的余数可表示为r =x MOD 2.12.(2010·广州市)某算法的程序框如图所示,若输出结果为12,则输入的实数x 的值是________.[答案]2[解析] 当x ≤1时,y =x -1≤0,∵输出结果为12,∴x >1,∴log 2x =12,∴x = 2.三、解答题13.画出求坐标平面内两点A (a ,b ),B (c ,d )之间距离的程序框图. [解析]14.为了加强居民的节水意识,某市制定了以下生活用水收费标准:每户每月用水未超过7立方米时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7立方米的部分,每立方米收费1.5元,并加收0.4元的城市污水处理费.设某户每月用水量为x 立方米,应交纳水费y 元,请你设计一个输入用水量、输出应交水费额的算法,画出程序框图.[解析] y 与x 之间的函数关系式为:y =⎩⎪⎨⎪⎧1.2x (0≤x ≤7)1.9x -4.9 (x >7)算法设计如下:S 1 输入每月用水量x ;S 2 判断输入的x 是否超过7;若x >7,则应交水费y =1.9x -4.9;否则应交纳水费y =1.2x ;S 3 输出应交水费y .程序框图如图所示.15.试描述判断圆(x -a )2+(y -b )2=r 2和直线Ax +By +C =0(A 2+B 2≠0)位置关系的算法,画出流程图.[解析] 直线与圆的位置关系有三种,相离、相切、相交.如果圆心到直线的距离d 大于r ,则直线与圆相离;d =r ,则直线与圆相切;d <r ,则直线与圆相交.因此,我们可以先求出圆心到直线的距离d ,然后再和r 相比较.因此需用条件分支结构来描述.第一步:输入圆心的坐标a 、b 和半径r ,直线方程的系数A 、B 、C ; 第二步:计算z 1=Aa +Bb +C ; 第三步:计算z 2=A 2+B 2; 第四步:计算d =|z 1|z 2;第五步:如果d >r 则相离;如果d =r 则相切;如果d <r 则相交. 程序框图如图所示.。
2020-2021学年人教A版数学必修1课后强化练习解析含答案3-2-1

3.2.1一、选择题1.某商店某种商品(以下提到的商品均指该商品)进货价为每件40元,当售价为50元时,一个月能卖出500件.通过市场调查发现,若每件商品的单价每提高1元,则商品一个月的销售量会减少10件.商店为使销售该商品的月利润最高,应将每件商品定价为( )A .45元B .55元C .65元D .70元[答案] D[解析] 设每件商品定价为x 元,则一个月的销量为500-(x -50)×10=1000-10x 件,故月利润为y =(x -40)·(1000-10x )=-10(x -40)(x -100), ∵⎩⎨⎧ x >401000-10x >0,∴40<x <100,∴当x =70时,y 取最大值,故选D.2.某债券市场发行三种债券,A 种面值为100元,一年到期本息和为103元;B 种面值为50元,半年到期本息和为51.4元;C 种面值为100元,但买入价为97元,一年到期本息和为100元.作为购买者,分析这三种债券的收益,从小到大排列为( )A .B ,A ,CB .A ,C ,B C .A ,B ,CD .C ,A ,B[答案] B[解析] A 种债券的收益是每100元收益3元;B 种债券的利率为51.4-5050,所以100元一年到期的本息和为100(1+51.4-5050)≈105.68(元),收益为5.68元;C 种债券的利率为100-97100,100元一年到期的本息和为100(1+100-9797)≈103.09(元),收益为3.09元.3.某厂原来月产量为a ,一月份增产10%,二月份比一月份减产10%,设二月份产量为b ,则( )A .a =bB .a >bC .a <bD .a 、b 的大小无法确定 [答案] B[解析] 一月份产量为a(1+10%),二月份产量b=a(1+10%)(1-10%)=a(1-1%),∴b<a,故选B.4.甲、乙两人在一次赛跑中,路程S与时间t的函数关系如图所示,则下列说法正确的是( )A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲先到达终点[答案] D[解析] 从图可以看出,甲、乙两人同时出发(t=0),跑相同多的路程(S0),甲用时(t1)比乙用时(t2)较短,即甲比乙的速度快,甲先到达终点.5.如图所示,花坛水池中央有一喷泉,水管OA=1m,水从喷头A喷出后呈抛物线状,先向上至最高点落下,若最高点距水面2m,A离抛物线对称轴1m,则在水池半径的下列可选值中,最合算的是( )A.3.5m B.3mC.2.5m D.2m[答案] C[解析] 建立如图坐标系,据题设y轴右侧的抛物线方程为y=a(x-1)2+2.∵抛物线过点A(0,1)∴将(0,1)点代入方程得a=-1,∴y=-(x-1)2+2.令y=0,得x=1+2,x=1-2(舍),故落在水面上的最远点B到O点距离为(1+2)m,考虑合算,须达到要求条件下用料最少,∴选C.6.某市原来民用电价为0.52元/kw·h.换装分时电表后,峰时段(早上八点到晚上九点)的电价为0.55元/kw·h,谷时段(晚上九点到次日早上八点)的电价为0.35元/kw·h.对于一个平均每月用电量为200kw·h的家庭,要使节省的电费不少于原来电费的10%,则这个家庭每月在峰时段的平均用电量( )A.至少为82kw·hB.至少为118kw·hC.至多为198kw·hD.至多为118kw·h[答案] D[解析] ①原来电费y1=0.52×200=104(元).②设峰时段用电为x kw·h,电费为y,则y=x×0.55+(200-x)×0.35=0.2x+70,由题意知0.2x+70≤(1-10%)y1,∴x≤118.答:这个家庭每月在峰时段的平均用电量至多为118kw·h.二、填空题7.英语老师准备存款5000元.银行的定期存款中存期为1年的年利率1.98%.试计算五年后本金和利息共有________元.[答案] 5514.99[解析]根据题意,五年后的本息共5000(1+1.98%)5=5514.99(元).8.设物体在8∶00到16∶00之间的温度T是时间t的函数:T(t)=at2+bt+c(a≠0),其中温度的单位是°C,时间的单位是小时,t=0表示12∶00,t取正值表示12∶00以后,若测得该物体在8∶00的温度为8°C ,12∶00的温度为60°C,13∶00的温度为58°C ,则T (t )=________.[答案] -3t 2+t +60[解析] 将t =-4,T =8;t =0,T =60;t =1,T =58分别代入函数表达式中即可解出a =-3,b =1,c =60.三、解答题9.某物品的价格从1964年的100元增加到2004年的500元,假设该物品的价格年增长率是平均的,那么2010年该物品的价格是多少?(精确到元)[解析] 从1964年开始,设经过x 年后物价为y ,物价增长率为a %,则y =100(1+a %)x ,将x =40,y =500代入得500=100(1+a %)40,解得a =4.1,故物价增长模型为y =100(1+4.1%)x .到2010年,x =46,代入上式得y =100(1+4.1%)46≈635(元).10.有甲、乙两个水桶,开始时水桶甲中有a 升水,水通过水桶甲的底部小孔流入水桶乙中,t 分钟后剩余的水符合指数衰减曲线y =ae -nt ,假设过5分钟时水桶甲和水桶乙的水相等,求再过多长时间水桶甲的水只有a 8. [解析] 由题意得ae -5n =a -ae -5n ,即e -5n =12,设再过t 分钟桶甲中的水只有a8,得ae-n(t+5)=a8,所以(12)t+55=(e-5n)t+55=e-n(t+5)=18=(12)3,∴t+55=3,∴t=10.∴再过10分钟桶甲的水只有a8.11.某报纸上报道了两则广告,甲商厦实行有奖销售:特等奖10000元1名,一等奖1000元2名,二等奖100元10名,三等奖5元200名,乙商厦则实行九五折优惠销售.请你想一想;哪一种销售方式更吸引人?哪一家商厦提供给消费者的实惠大.面对问题我们并不能一目了然.于是我们首先作了一个随机调查.把全组的16名学员作为调查对象,其中8人愿意去甲家,6人喜欢去乙家,还有两人则认为去两家都可以.调查结果表明:甲商厦的销售方式更吸引人,但事实是否如此呢?请给予说明.[解析] 在实际问题中,甲商厦每组设奖销售的营业额和参加抽奖的人数都没有限制.所以这个问题应该有几种情形:(1)若甲商厦确定每组设奖.当参加人数较少时,少于1+2+10+200=213人,人们会认为获奖机率较大,则甲商厦的销售方式更吸引顾客.(2)若甲商厦的每组营业额较多时,他给顾客的优惠幅度就相应的小.因为甲商厦提供的优惠金额是固定的,共10000+2000+1000+1000=14000元.假设两商厦提供的优惠都是14000元,则可求乙商厦的营业额为14000÷5%=280000.所以由此可得:(1)当两商厦的营业额都为280000元时,两家商厦所提供的优惠同样多.(2)当两商厦的营业额都不足280000元时,乙商厦的优惠则小于1 4000元,所以这时甲商厦提供的优惠仍是1 4000元,优惠较大.(3)当两家的营业额都超过280000元时,乙商厦的优惠则大于14000元,而甲商厦的优惠仍保持14000元时,乙商厦所提供的优惠大.12.某种新栽树木5年成材,在此期间年生长率为20%,以后每年生长率为x%(x<20).树木成材后,既可以砍伐重新再栽,也可以继续让其生长,哪种方案更好?[解析] 只需考虑10年的情形.设新树苗的木材量为Q,则连续生长10年后木材量为:Q(1+20%)5(1+x%)5,5年后再重栽的木材量为2Q(1+20%)5,画出函数y=(1+x%)5与y=2的图象,用二分法可求得方程(1+x%)5=2的近似根x=14.87,故当x<14.87%时就考虑重栽,否则让它继续生长.*13.(湖南长沙同升湖实验学校高一期末)商场销售某一品牌的羊毛衫,购买人数n 是羊毛衫标价x 的一次函数,标价越高,购买人数越少.已知标价为每件300元时,购买人数为零.标价为每件225元时,购买人数为75人,若这种羊毛衫的成本价是100元/件,商场以高于成本价的相同价格(标价)出售,问:(1)商场要获取最大利润,羊毛衫的标价应定为每件多少元?(2)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?[解析] (1)设购买人数为n 人,羊毛衫的标价为每件x 元,利润为y 元,则n =kx +b (k <0),∴⎩⎨⎧ 0=300k +b 75=225k +b,∴⎩⎨⎧ k =-1b =300,∴n =-x +300. y =-(x -300)·(x -100)=-(x -200)2+10000,x ∈(100,300] ∴x =200时,y max =10000即商场要获取最大利润,羊毛衫的标价应定为每件200元.(2)由题意得,-(x -300)·(x -100)=10000×75%∴x 2-400x +30000=-7500,∴x 2-400x +37500=0,∴(x -250)(x -150)=0∴x 1=250,x 2=150所以当商场以每件150元或250元出售时,可获得最大利润的75%.14.学校请了30名木工,要制作200把椅子和100张课桌.已知制作一张课桌与制作一把椅子的工时数之比为10∶7,问30名工人应当如何分组(一组制课桌,另一组制椅子),能使完成全部任务最快?[分析] 制作课桌和椅子中所花较多的时间即为完成任务的时间,只要它最小,即完成任务最快.[解析] 设x 名工人制课桌,(30-x )名工人制椅子,一个工人在一个单位时间里可制7张课桌或10把椅子,∴制作100张课桌所需时间为函数P (x )=1007x, 制作200把椅子所需时间为函数Q (x )=20010(30-x ), 完成全部任务所需的时间f (x )为P (x )与Q (x )中的较大值.欲使完成任务最快,须使P (x )与Q (x )尽可能接近(或相等).令P (x )=Q (x ),即1007x =20010(30-x ), 解得x =12.5,∵人数x ∈N ,考察x =12和13的情形有P (12)≈1.19,Q(12)≈1.111,P(13)≈1.099,Q(13)≈1.176,∴f(12)=1.19,f(13)=1.176,∵f(12)>f(13),∴x=13时,f(x)取最小值,∴用13名工人制作课桌,17名工人制作椅子完成任务最快.[点评] 本题有几点需特别注意,人数x必须是自然数,故P(x)与Q(x)不相等,f(x)是P(x)与Q(x)中的较大者,完成任务最快的时间是f(x)的最小值.。
2020-2021学年人教A版数学必修1课后强化练习解析含答案2-2-2-4

2.2.2.4一、选择题1.12log 612-log 62等于( ) A .2 2 B .122C.12D .3[答案] C[解析] 12log 612-log 62=12log 612-12log 62=12log 6122=12log 66=12,故选C. 2.以下函数中,在区间(-∞,0)上为单调增函数的是( ) A .y =-log 12(-x )B .y =2+x1-xC .y =x 2-1D .y =-(x +1)2[答案] B[解析] y =-log 12(-x )=log 2(-x )在(-∞,0)上为减函数,否定A;y=x2-1在(-∞,0)上也为减函数,否定C;y=-(x+1)2在(-∞,0)上不单调,否定D,故选B.3.(09·陕西文)设不等式x2-x≤0的解集为M,函数f(x)=ln(1-|x|)的定义域为N,则M∩N为( )A.[0,1) B.(0,1)C.[0,1] D.(-1,0][答案] A[解析] 由题意知M={x|0≤x≤1},N={x|-1<x<1},∴M∩N=[0,1),故选A.4.f(x)=a x,g(x)=-log b x且lg a+lg b=0,a≠1,b≠1,则y=f(x)与y=g(x)的图象() A.关于直线x+y=0对称B.关于直线x-y=0对称C.关于y轴对称D.关于原点对称[答案] B[解析] ∵lg a+lg b=0,∴ab=1,f(x)=a x,g(x)=-log b x=-log1x=log a xa∴f(x)与g(x)互为反函数,其图象关于直线x-y=0对称.5.(2010·安徽理,2)若集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪log12x ≥12,则∁R A =( )A .(-∞,0]∪⎝⎛⎭⎪⎫22,+∞ B.⎝⎛⎭⎪⎫22,+∞C .(-∞,0]∪⎣⎢⎡⎭⎪⎫22+∞ D.⎣⎢⎡⎭⎪⎫22,+∞ [答案] A[解析] log 12x ≥12,∴0<x ≤22,∁R A =(-∞,0]∪(22,+∞),故选A.6.(2010年延边州质检)函数y =xa x|x |(a >1)的图象的大致形状是( )[答案] C[解析]∵y =xa x|x |=⎩⎨⎧a x (x >0)-⎝ ⎛⎭⎪⎫1a x(x <0),∵a >1,∴当x >0时,y =a x 单增,排除B 、D ;当x <0时,y =-⎝ ⎛⎭⎪⎫1a x单减,排除A ,故选C. 7.若x ∈(e -1,1),a =ln x ,b =2ln x ,c =ln 3x ,则( ) A .a <b <c B .c <a <b C .b <a <cD .b <c <a[答案] C[解析] ∵x ∈(e -1,1),y =ln x 是增函数,∴-1<ln x <0,∵ln 3x -ln x =ln x (ln 2x -1)>0,∴c >a ,∵ln x -2ln x =-ln x >0,∴a >b ,∴c >a >b .8.设A ={x ∈Z|2≤22-x <8},B ={x ∈R||log 2x |>1},则A ∩(∁R B )中元素个数为( )A .0B .1C .2D .3[答案] C[解析] 由2≤22-x <8得,-1<x ≤1, ∵x ∈Z ,∴x =0,1,∴A ={0,1}; 由|log 2x |>1,得x >2或0<x <12,∴∁R B ={x |x ≤0或12≤x ≤2},∴A ∩(∁R B )={0,1}.9.(09·全国Ⅰ)已知函数f (x )的反函数为g (x )=1+2lg x (x >0),则f (1)+g (1)=( )A .0B .1C .2D .4[答案] C[解析] ∵g (1)=1,f (x )与g (x )互为反函数, ∴f (1)=1,∴f (1)+g (1)=2.10.对任意两实数a 、b ,定义运算“*”如下:a *b =⎩⎨⎧a ,若a ≤b ;b ,若a >b,则函数f (x )=log 12(3x -2)*log 2x 的值域为( )A .(-∞,0)B .(0,+∞)C .(-∞,0]D .[0,+∞)[答案] C[解析]∵a *b =⎩⎨⎧a ,若a ≤b ,b ,若a >b .而函数f (x )=log12(3x -2)*log 2x 的大致图象如右图所示的实线部分,∴f (x )的值域为(-∞,0]. 二、填空题11.若正整数m 满足10m -1<2512<10m ,则m =______.(其中lg2=0.3010)[答案] 155[解析] 将已知不等式两边取常用对数,则m -1<512lg2<m , ∵lg2=0.3010,m ∈Z +,∴m =155.12.若a =log 3π、b =log 76、c =log 20.8,则a 、b 、c 按从小到大顺序用“<”连接起来为________.[答案] c <b <a[解析] a =log 3π>log 33=1,b =log 76<log 77=1, log 76>log 71=0,c =log 20.8<log 21=0 ∴c <b <a13.函数f (x )=|x -2|-1log 2(x -1)的定义域为________.[答案] [3,+∞)[解析]要使函数有意义,须⎩⎪⎨⎪⎧|x -2|-1≥0x -1>0x -1≠1,∴⎩⎪⎨⎪⎧x ≥3或x ≤1x >1x ≠2,∴x ≥3.14.已知log a 12<1,那么a 的取值范围是__________.[答案] 0<a <12或a >1[解析] 当a >1时,log a 12<0成立,当0<a <1时,log a 12<log a a ,∴12>a >0.三、解答题15.设A ={x ∈R|2≤x ≤π},定义在集合A 上的函数y =log a x (a >0,a ≠1)的最大值比最小值大1,求a 的值.[解析] a >1时,y =log a x 是增函数,log a π-log a 2=1,即log a π2=1,得a =π2.0<a <1时,y =log a x 是减函数,log a 2-log a π=1,即log a 2π=1,得a =2π.综上可知a 的值为π2或2π.16.已知f (x )=log a 1+x1-x (a >0且a ≠1),(1)求f (x )的定义域; (2)判断y =f (x )的奇偶性; (3)求使f (x )>0的x 的取值范围.[解析] (1)依题意有1+x 1-x>0,即(1+x )(1-x )>0,所以-1<x <1,所以函数的定义域为(-1,1).(2)f (x )为奇函数.因为函数的定义域为(-1,1), 又f (-x )=log a 1-x 1+x =log a (1+x1-x )-1=-log a 1+x1-x =-f (x ),因此y =f (x )为奇函数.(3)由f (x )>0得,log a 1+x1-x >0(a >0,a ≠1),①当0<a <1时,由①可得0<1+x1-x <1,②解得-1<x <0;当a >1时,由①知1+x1-x >1,③解此不等式得0<x <1.17.已知a 、b 、c 是△ABC 的三边,且关于x 的二次方程x 2-2x +lg(c 2-b 2)-2lg a +1=0有等根,判断△ABC 的形状.[解析] ∵方程有等根∴Δ=4-4[lg(c 2-b 2)-2lg a +1]=4-4lg 10(c 2-b 2)a 2=0, ∴lg 10(c 2-b 2)a 2=1,∴10(c 2-b 2)a 2=10 ∴c 2-b 2=a 2即a 2+b 2=c 2,∴△ABC 为直角三角形.18.(1)计算: lg 23-lg9+lg10(lg 27+lg8-lg 1000)(lg0.3)(lg1.2)(2)设a 、b 满足条件a >b >1,3log a b +3log b a =10,求式子log a b -log b a 的值.[分析] (1)因9=32,27=33,8=23,12=22·3,故需将式中的项设法化为与lg2,lg3相关的项求解;(2)题设条件与待求式均为x +y =c 1,x -y =c 2的形式,注意到x ·y =log a b ·log b a =1,可从x ·y 入手构造方程求解.[解析] (1)lg0.3=lg 310=lg3-lg10=lg3-1, lg1.2=lg 1210=lg12-1=lg(22·3)-1=2lg2+lg3-1. lg 23-lg9+lg10=lg 23-2lg3+1=1-lg3, lg 27+lg8-lg 1000=32(lg3+2lg2-1),原式=32·(1-lg3)·(lg3+2lg2-1)(lg3-1)(lg3+2lg2-1)=-32. (2)解法1:∵log b a ·log a b =lg a lg b ·lg b lg a=1, ∴log b a =1log a b. 由log a b +log b a =103,得:log a b +1log a b =103. 令t =log a b ,∴t +1t =103,化简得3t 2-10t +3=0,由a >b >1,知0<t <1,∴t =13. ∴log a b -log b a =log a b -1log a b =13-3=-83. 解法2:log a b ·log b a =lg b lg a ·lg a lg b=1, ∵3log a b +3log b a =10,∴9(log a b +log b a )2=100, ∴log 2a b +log 2b a =1009-2=829∴(log a b -log b a )2=log 2a b +log 2b a -2=649. ∵a >b >1,∴log a b -log b a <0,∴log a b -log b a =-83.。
高中数学必修一和必修二第一二章综合试题人教A版含答案

1 / 8高一数学第二次月考模拟试题(必修一+二第一二章)时间:120分钟 分值:150分、选择题(每小题5分,共60分)1•设集合 A = {4,5,7,9} ,B = {3,4,7,8,9},全集 A . 3 个B.4个C2•下列函数为奇函数的是 ( )A . y = x 2B3.y = xC13.函数y = -+ log 2(x + 3)的定义域是()XA . RB . (— 3,+^) CA. 120B. 150C. 6. 已知f (x 3— 1) = x + 1,贝U f ⑺ 的值,为(A. ^7 — 1B.芋 + 1 C9 7. 已知 log 23 = a , log 25= b ,贝U log 2 等于(52A . a — bB . 2a — b&函数y = x 2 + x ( —1< x < 3)的值域是(1 A . [0,12] B . [ — 4, 12] 9•下列四个图象中,表示函数 f (x ) = x —丄的图象的是()xU = A U B , .5个则集合?U (A n BI 中的兀素共有(D.6个x.y =2D.y = log 2X(—m,- -3)D.(—3,0) U (0 ,+sABCD 的直观图(斜二测),若 AD 1 // y /轴,AB 」/ x /轴,AQ C 1D 1 32 , A 1D 1 则平面图形ABCD 的面积是(A.5B.10C.)5.2D.10 2180 D. 240) 3D. 22aC.bD.)13 C .[—2, 12] D .[4, 12] 4.梯形AB i C i D i (如图)是一水平放置的平面图形5.已知圆锥的表面积是底面积的 3倍,那么该圆锥的侧面展开图扇形的圆心角为(210. 函数y=—x + 8x—16 在区间[3,5]上( )A.没有零点 B .有一个零点 C .有两个零点 D .有无数个零点11. 给出以下四个命题:①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行;②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面;③如果两条直线都平行于一个平面,那么这两条直线互相平行;④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直•其中真命题的个数是()A. 4 B . 3 C. 2 D. 112. 已知f(x)是定义在(0 ,+^)上的增函数,若f(x)>f(2 —x),则x的取值范围是()A. x>1 B . x<1 C . 0<x<2 D . 1<x<2二、填空题(每小题5分,共20分)13 .已知集合A= {x| x<—1 或2< x<3}, B= {x| —2< x<4},贝U A U B= ________ .14 .函数y= ―3 —4x 的定义域为 ____________ .15 .据有关资料统计,通过环境整治,某湖泊污染区域S(km2)与时间t(年)可近似看作指数函数关系,已2 2 2 知近两年污染区域由0.16 km 降至0.04 km,则污染区域降至0.01 km 还需要_______________________________________________________________________________________ 年.16 .空间四边形ABCD中,P、R分别是AB、CD的中点,PR=3、AC = 4、BD = 2. 5,那么AC与BD所成角的度数是__________ .三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17 . (10 分)已知集合A= {x|1 w x<4}, B= {x| x—a<0},(1) 当a= 3 时,求A n B;(2) 若A? B,求实数a的取值范围.⑵ 解方程:log 3(6x - 9) = 3.19. (12分)判断函数f (x ) = a x 丄〒+ x 3 + 2的奇偶性.a — 1 220. 如图,在长方体 ABC —ABGD 中,AB= 2, BB = BC= 1, E 为DC 的中点,连结 ED EC EB 和DB(1) 求证:平面 EDBL 平面EBC (2) 求二面角E — DB- C 的正切值.18. (12 分)(1)计算:(2詁 +(lg5) 0 + (分3 ;fi21. (12分)已知正方体ABCD A1B1C1D1, O是底ABCD对角线的交点求证:(1) C1O //面AB1D1;(2) AC 面AB1D1.22. ( 12分)已知函数f(x)是正比例函数,函数g(x)是反比例函数,且f(1) = 1, g(1) = 1,(1) 求f(x), g(x);(2) 判断函数h(x) = f (x) + g(x)的奇偶性;1(3) 证明函数S(x) = xf(x) + gq)在(0,+m)上是增函数.咼 数学期末考试模拟试题(答案)、选择题(每小题5分,共60分)1.解析: U = A U B= {3,4,5,7,8,9}, A n B= {4,7,9} , • ?u (A A B) = {3,5,8},有 3 个兀素,故选 A.答案:A2.解析: A 为偶函数,C D 均为非奇非偶函数. 答案:B3.解析: 要使函数有意义,自变量 x 的取值须满足x 工0x + 3>0,解得x >- 3且& 0.答案:D4.解析:梯形A 1B 1C 1D 1上底长为2,下底长为3腰梯形AD ,长为1,腰A 1D 1与下底GD ,的夹角为45,可知,平面图形 ABCD 的面积为5.答案: 5.、填空题(每小题5分,共20分) 13. 答案:{x |x <4}J 2 所以梯形 AB 1C 1D 1的高为一兰,所以梯形 215yf2 A 1B 1C 1D 1 的面积为一(2+3)-= 22J 2,根据S 直观=—S 平面 4 4 360 - 解析: 解析: 解析:解析:由 r 2 rl3 r 2知道I 2r 所以圆锥的侧面展图扇形圆心角度数为360 180 令 X 3 — 1 = 7, ,故选C 答案:C得x = 2 ,••• f(7) = 3.答案:C 9 〜log 2 = log 29 — log 25= 2log 23 — log 25= 2a — b .答案:B5 画出函数y = x 2 + x ( — K x < 3)的图象,由图象得值域是 [—1412].答案:B函数y = x , y =— g 在(0 ,+^)上为增函数,所以函数 f (x ) = x — x 在(0,+^)上为增函数,故满足条件的图象为 A.答案:A10.解析:•/ y =— x 2 + 8x — 16=— (x — 4)2,「.函数在[3,5]上只有一个零点4.答案:B 11 •解析:因为①②④正确,故选 B.x >012.解析:由题目的条件可得 2— x >0 x >2 — x,解得1<x <2,故答案应为D.答案:D114. 解析:根据对数函数的性质可得log 2(3 —4x)>0= log 21,解得3- 4x> 1,得x<色,所以定义域1 1为(一R, 2】.答案:(—R,2 t 2 1 1 1 t 2 215. 解析:设S= a,则由题意可得a2= 4,从而a=㊁,于是S=(㊁),设从0.04 km2降至0.01 km 2还1 1需要t年,则(2)t= 4,即t = 2.答案:216、解析:如图,取AD 中点Q,连PQ , RQ,则PQ .5 , RQ 2,而PR=3,所以PQ2 RQ2 PR2, 所以VPQR为直角三角形,PQR 90,即PQ与RQ成90的角,所以AC与BD所成角的度数是90 答案:90三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17. (10 分)已知集合A= {x|1 w x<4}, B= {x| x—a<0},(1) 当a= 3 时,求A n B;⑵若A? B,求实数a的取值范围.解:(1)当a= 3 时,B= {x| x—3<0} = {x| x<3},则有A n B= {x|1 w x<3}.(2) B= {x| x —a<0} = {x| x<a},当A? B时,有a>4,即实数a的取值范围是[4 ,+s).(2|)1 + (lg5) 0+ (欲3 ;18. (12 分)(1)计算:x⑵解方程:log 3(6 —9) = 3.25 10 3 3 —15 4解:(1)原式=(y)2 + (lg5) + [(才)]3= 3 + 1+ 3 = 4.(2)由方程log 3(6x—9) = 3 得6x—9= 33= 27,二6x= 36 = 62,二x = 2. 经检验,x= 2是原方程的解.1 3 119. (12分)判断函数f(x) =+ x3+的奇偶性.a —1 2解:由a x—1工0,得X M0,•••函数定义域为(—0, 0) U (0,+^), 131 a x 3 1f ( — x ) = —x + ( — x ) + = x — x + —a — 1 2 1 — a 2xa — 1 +1 3 1 x — x + ~ = 1 — a 2• f (x )为奇函数.20. (12分)如图,在长方体 ABC —ABCD 中,AB= 2, BB = BC = 1, E 为DC 的中点,连结 ED , EQEB 和 DB(1) 求证:平面 EDBL 平面EBQ (2) 求二面角E — DB- C 的正切值.证明:(1)在长方体 ABC — ABCD 中,AB= 2, BB = BC= 1, E 为DC 的中点.•••△ DDE 为等腰直角三 角形,/ DED= 45 ° .同理/ CEC= 45 ° .• DEC 90,即 DEL EC在长方体 ABC — A 1B 1C 1D 1 中,BC L 平面 D 1DCC 1,又 DE 平面 D 1DCC 1 ,⑵ 解:如图,过E 在平面D 1DCC 1中作EO L DC 于 O 在长方体 ABC — ABC 1D 1 中,T 面 ABCD L 面 D 1DCC 1 , • EO L 面 ABCD过O 在平面DBC 中作OF L DB 于F ,连结EF, • EF L BD / EFC 为二面角E — DB- C 的平面角.利用平面几何知识可得 OF = 1,( 第V520题)又 OE= 1,所以,tan EFO= .5 . 21. (12 分) 已知正方体 ABCDB 1C 1D 1 , O 是底ABCD 对角线的交点求证:(1) C 1O //面 AB 1D 1 ;(2 ) AC 面 AB 1D 1 .证明:(1)连结 A 1C 1,设 AC 1 I B 1D 1 O 1 连结 AO 1 ,• BC L DE 又 EC BC C ,• DEL 平面EBC •••平面 DEB 过DE 二平面 DE L 平面EBCx 3— 2——f (x ).C 1CQ ABCD A B1C1D1是正方体A1ACC1是平行四边形A1C1 PAC 且AG AC又O1,O分别是AG,AC的中点,OQ PAO且O1C1 AOAOC1O1是平行四边形C1O PAO1, AO1面AB1D1, C1O 面AB1D1GO P面AB1D1CC1 B1 D!Q CC1面AB1GD1又Q AG B1D1 , B1D1面AC1C即AC B1D1同理可证AC AB1,又D1B1 I AB1 B1AC 面AB1D122. (12分)已知函数f(x)是正比例函数,函数g(x)是反比例函数,且f(1) = 1, g(1) = 1, ⑴求f (x),g(x);(2)判断函数h(x) = f (x) + g(x)的奇偶性;1⑶证明函数S(x) = xf (x) + gq在(0,+m)上是增函数.k2解:(1)设f (x) = k1X(k工0), g(x) = 一(k2工0).x1T f (1) = 1, g(1) = 1,- k1= 1, k2= 1. ••• f (x) = x, g(x) = x・z\.1⑵由(1)得h(x)= x + x,则函数h(x)的定义域是z\.(— a, 0) U (0 ,+s),1 1h( —x) = —x+ —- = —(x + 一)=—h(x),•函数h(x) = f (x) + g(x)是奇函数.x x⑶证明:由(1)得S(x) = x2+ 2. 设X1, X2€ (0 ,+a),且X1<X2,2 2 2 2则S( X1) —S( X2) =(X1 + 2) —(X2 + 2) = X1 —X2 =(X1 —X2)( X1 + X2).■/ X1, X2 € (0 ,+a),且X1<X2,「. X1—X2<0, X1 + X2>0. • S(X1) —S( X2)<0. •• S( X1)< S( X2).1•函数S(x) = xf (x) + g(p在(0,+a)上是增函数.。
人教A版高中数学选修新人教课后强化训练含详解模块综合能力检测题

模块综合能力检测题本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(09·全国Ⅰ文)已知tan α=4,tan β=3,则tan (α+β)=( ) A.711 B .-711 C.713 D .-713 [答案] B[解析] ∵tan β=3,tan α=4,∴tan (α+β)=tan α+tan β1-tan α·tan β=4+31-4×3=-711.2.(09 广东文)函数y =2cos 2⎝⎛⎭⎫x -π4-1是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数[答案] A[解析] 因为y =2cos 2⎝⎛⎭⎫x -π4-1=cos ⎝⎛⎭⎫2x -π2=sin 2x 为奇函数,T =2π2=π,所以选A . 3.(09·山东文)将函数y =sin 2x 的图象向左平移π4个单位,再向上平移1个单位,所得图象的函数解析式是( )A .y =2cos 2xB .y =2sin 2xC .y =1-sin (2x +π4) D .y =cos 2x[答案] A4.(09·浙江文)已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =( ) A .(79,73)B .(-73,-79)C .(73,79)D .(-79,-73)[答案] D[解析] 设c =(m ,n ),∵c +a =(m +1,n +2),a +b =(3,-1), ∴由(c +a )∥b ,c ⊥(a +b )得:⎩⎪⎨⎪⎧-3(m +1)-2(n +2)=03m -n =0,解得m =-79,n =-73.故选D.5.函数y =cos x ·|tan x |⎝⎛⎭⎫-π2<x <π2的大致图象是( )[答案] C[解析] ∵y =cos x ·|tan x |=⎩⎨⎧-sin x ⎝⎛⎭⎫-π2<x <0sin x ⎝⎛⎭⎫0≤x <π2,故选C.6.在△ABC 中,sin A =35,cos B =513,则cos C 的值为( )A .-5665B .-1665C.1665D.5665 [答案] C[解析] ∵cos B =513,∴sin B =1213,∵sin B >sin A ,A 、B 为△ABC 的内角, ∴B >A ,∴A 为锐角, ∵sin A =35,cos A =45,∴cos C =-cos(A +B )=-cos A cos B +sin A sin B =-45×513+35×1213=1665.7.已知a =(1,3),b =(2+λ,1),且a 与b 成锐角,则实数λ的取值范围是( ) A .λ>-5 B .λ>-5且λ≠-53C .λ<-5D .λ<1且λ≠-53[答案] B[解析] ∵a 与b 夹角为锐角,∴a ·b =2+λ+3>0,∴λ>-5, 当a 与b 同向时,存在正数k ,使b =k a ,∴⎩⎪⎨⎪⎧2+λ=k 1=3k ,∴⎩⎨⎧k =13λ=-53,因此λ>-5且λ≠-53.8.(09·陕西理)若3sin α+cos α=0,则1cos 2α+sin2α的值为( )A.103B.53C.23 D .-2 [答案] A[解析] ∵3sin α+cos α=0,∴tan α=-13,∴原式=sin 2α+cos 2αcos 2α+2sin αcos α=tan 2α+11+2tan α=19+11-23=103,故选A.9.若sin 4θ+cos 4θ=1,则sin θ+cos θ的值为( ) A .0 B .1 C .-1 D .±1 [答案] D[解析] 解法一:由sin 4θ+cos 4θ=1知⎩⎪⎨⎪⎧ sin θ=0cos θ=±1或⎩⎪⎨⎪⎧sin θ=±1cos θ=0, ∴sin θ+cos θ=±1.解法二:∵sin 4θ+cos 4θ=(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=1-2sin 2θcos 2θ=1, ∴sin 2θcos 2θ=0,∴sin θcos θ=0, ∴(sin θ+cos θ)2=1+2sin θcos θ=1, ∴sin θ+cos θ=±1.10.a 与b 的夹角为120°,|a |=2,|b |=5,则(2a -b )·a =( ) A .3 B .9 C .12 D .13 [答案] D[解析] a ·b =2×5×cos120°=-5, ∴(2a -b )·a =2|a |2-a ·b =8-(-5)=13.11.设e 1与e 2是两个不共线向量,AB →=3e 1+2e 2,CB →=k e 1+e 2,CD →=3e 1-2k e 2,若A 、B 、D 三点共线,则k 的值为( )A .-94B .-49C .-38D .不存在 [答案] A[解析] BD →=BC →+CD →=(-k e 1-e 2)+(3e 1-2k e 2) =(3-k )e 1-(1+2k )e 2, ∵A 、B 、D 共线,∴AB →∥BD →, ∴3-k 3=-1-2k 2,∴k =-94. 12.(09·宁夏、海南理)已知O ,N ,P 在△ABC 所在平面内,且|OA →|=|OB →|=|OC →|,NA →+NB →+NC →=0,且P A →·PB →=PB →·PC →=PC →·P A →,则点O ,N ,P 依次是△ABC 的( )A .重心 外心 垂心B .重心 外心 内心C .外心 重心 垂心D .外心 重心 内心(注:三角形的三条高线交于一点,此点为三角形的垂心) [答案] C[解析] ∵O ,N ,P 在△ABC 所在平面内,且|OA →|=|OB →|=|OC →|, ∴O 是△ABC 外接圆的圆心,由NA →+NB →+NC →=0,得N 是△ABC 的重心; 由P A →·PB →=PB →·PC →=PC →·P A →得 PB →·(P A →-PC →)=PB →·CA →=0,∴PB ⊥CA ,同理可证PC ⊥AB ,P A ⊥BC , ∴P 为△ABC 的垂心.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)13.函数y =2cos 2x +sin2x 的最小值是________. [答案] 1- 2[解析] y =2cos 2x +sin2x =1+cos2x +sin2x =1+2sin ⎝⎛⎭⎫2x +π4, ∵x ∈R ,∴y min =1- 2.14.在▱ABCD 中,M 、N 分别是DC 、BC 的中点,已知AM →=c ,AN →=d ,用c 、d 表示AB →=________. [答案] 43d -23c[解析] d =AB →+BN →=AB →+12AD →① c =AD →+DM →=AD →+12AB →②解①②组成的方程组得AD →=43c -23d ,AB →=43d -23c .15.已知点P (sin α+cos α,tan α)在第二象限,则角α的取值范围是________. [答案] 2k π-π4<α<2k π或2k π+π2<α<2k π+3π4k ∈Z[解析] ∵点P 在第二象限,∴⎩⎪⎨⎪⎧sin α+cos α>0tan α<0,如图可知,α的取值范围是2k π-π4<α<2k π或2k π+π2<α<2k π+3π4k ∈Z .16.如图所示,已知O 为平行四边形ABCD 内一点,OA →=a ,OB →=b ,OC →=c ,则OD →=________.[答案] c +a -b[解析] OD →=OC →+CD →=OC →+BA →=OC →+(OA →-OB →)=c +a -b .三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)(09·湖南文)已知向量a =(sin θ,cos θ-2sin θ),b =(1,2). (1)若a ∥b ,求tan θ的值; (2)若|a |=|b |,0<θ<π,求θ的值.[解析] (1)因为a ∥b ,所以2sin θ=cos θ-2sin θ, 于是4sin θ=cos θ,故tan θ=14.(2)由|a |=|b |知,sin 2θ+(cos θ-2sin θ)2=5, 所以1-2sin2θ+4sin 2θ=5. 从而-2sin2θ+2(1-cos2θ)=4, 即sin2θ+cos2θ=-1, 于是sin ⎝⎛⎭⎫2θ+π4=-22. 又由0<θ<π知,π4<2θ+π4<9π4,所以2θ+π4=5π4,或2θ+π4=7π4.因此θ=π2,或θ=3π4.18.(本题满分12分)(09·重庆文)设函数f (x )=(sin ωx +cos ωx )2+2cos 2ωx (ω>0)的最小正周期为2π3.(1)求ω的值;(2)若函数y =g (x )的图象是由y =f (x )的图象向右平移π2个单位长度得到,求y =g (x )的单调增区间.[解析] (1)f (x )=sin 2ωx +cos 2ωx +2sin ωx cos ωx +1+cos2ωx =sin2ωx +cos2ωx +2 =2sin(2ωx +π4)+2,依题意得2π2ω=2π3,故ω=32.(2)f (x )=2sin ⎝⎛⎭⎫3x +π4+2, 依题意得g (x )=2sin ⎣⎡⎦⎤3⎝⎛⎭⎫x -π2+π4+2=2sin ⎝⎛⎭⎫3x -5π4+2, 由2k π-π2≤3x -5π4≤2k π+π2 (k ∈Z )解得23k π+π4≤x ≤23k π+7π12(k ∈Z ), 故g (x )的单调增区间为⎣⎡⎦⎤23k π+π4,23k π+7π12 (k ∈Z ). 19.(本题满分12分)(09·陕西文)已知函数f (x )=A sin(ωx +φ),x ∈R ,⎝⎛⎭⎫其中A >0,ω>0,0<φ<π2的周期为π,且图象上一个最低点为M ⎝⎛⎭⎫2π3,-2. (1)求f (x )的解析式;(2)当x ∈⎣⎡⎦⎤0,π12时,求f (x )的最值. [解析] (1)由最低点为M ⎝⎛⎭⎫2π3,-2得A =2, 由T =π得ω=2πT =2ππ=2,∴f (x )=2sin(2x +φ).由点M ⎝⎛⎭⎫2π3,-2在图象上得2sin ⎝⎛⎭⎫4π3+φ=-2 即sin ⎝⎛⎭⎫4π3+φ=-1, ∴4π3+φ=2k π-π2即φ=2k π-11π6,k ∈Z ,又φ∈⎝⎛⎭⎫0,π2,∴k =1,∴φ=π6, ∴f (x )=2sin ⎝⎛⎭⎫2x +π6. (2)∵x ∈⎣⎡⎦⎤0,π12,∴2x +π6∈⎣⎡⎦⎤π6,π3, ∴当2x +π6=π6,即x =0时,f (x )取得最小值1;当2x +π6=π3,即x =π12时,f (x )取得最大值 3.20.(本题满分12分)(北京通州市09~10高一期末)已知向量a =(3cos ωx ,sin ωx ),b =sin(ωx,0),且ω>0,设函数f (x )=(a +b )·b +k ,(1)若f (x )的图象中相邻两条对称轴间距离不小于π2,求ω的取值范围;(2)若f (x )的最小正周期为π,且当x ∈-π6,π6时,f (x )的最大值为2,求k 的值.[解析] ∵a =(3cos ωx ,sin ωx ),b =(sin ωx,0), ∴a +b =(3cos ωx +sin ωx ,sin ωx ).∴f (x )=(a +b )·b +k =3sin ωx cos ωx +sin 2ωx +k =32sin2ωx -12cos2ωx +12+k =sin ⎝⎛⎭⎫2ωx -π6+12+k . (1)由题意可得:T 2=2π2×2ω≥π2.∴ω≤1,又ω>0, ∴ω的取值范围是0<ω≤1. (2)∵T =π,∴ω=1. ∴f (x )=sin ⎝⎛⎭⎫2x -π6+12+k ∵-π6≤x ≤π6,∴-π2≤2x -π6≤π6.∴当2x -π6=π6,即x =π6时,f (x )取得最大值f ⎝⎛⎭⎫π6=2. ∴sin π6+12+k =2.∴k =1.21.(本题满分12分)(09·江苏文)设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β) (1)若a 与b -2c 垂直,求tan(α+β)的值; (2)求|b +c |的最大值;(3)若tan αtan β=16,求证:a ∥b .[解析] (1)∵a =(4cos α,sin α),b =(sin β,4cos β), c =(cos β,-4sin β)∵a 与b -2c 垂直,∴a ·(b -2c )=a ·b -2a ·c =4cos αsin β+4sin αcos β-2(4cos αcos β-4sin αsin β) =4sin(α+β)-8cos(α+β)=0,∴tan(α+β)=2. (2)∵b +c =(sin β+cos β,4cos β-4sin β)∴|b +c |2=sin 2β+2sin βcos β+cos 2β+16cos 2β-32cos βsin β+16sin 2β=17-30sin βcos β=17-15sin2β, 当sin2β=-1时,最大值为32, ∴|b +c |的最大值为4 2.(3)由tan αtan β=16得sin αsin β=16cos αcos β 即4cos α·4cos β-sin αsin β=0,∴a ∥b .22.(本题满分14分)(09·福建文)已知函数f (x )=sin(ωx +φ),其中ω>0,|φ|<π2.(1)若cos π4cos φ-sin 3π4sin φ=0,求φ的值;(2)在(1)的条件下,若函数f (x )的图象的相邻两条对称轴之间的距离等于π3,求函数f (x )的解析式;并求最小正实数m ,使得函数f (x )的图象向左平移m 个单位后所对应的函数是偶函数.[解析] 解法一:(1)由cos π4cos φ-sin 3π4sin φ=0得cos π4cos φ-sin π4sin φ=0,即cos ⎝⎛⎭⎫π4+φ=0. 又|φ|<π2,∴φ=π4;(2)由(1)得,f (x )=sin ⎝⎛⎭⎫ωx +π4. 依题意,T 2=π3.又T =2πω,故ω=3,∴f (x )=sin ⎝⎛⎭⎫3x +π4. 函数f (x )的图象向左平移m 个单位后,所得图象对应的函数为g (x )=sin ⎣⎡⎦⎤3(x +m )+π4, g (x )是偶函数当且仅当3m +π4=k π+π2(k ∈Z ),即m =k π3+π12(k ∈Z ).从而,最小正实数m =π12.解法二:(1)同解法一. (2)由(1)得,f (x )=sin ⎝⎛⎭⎫ωx +π4. 依题意,T 2=π3.又T =2πω,故ω=3,凡事豫(预)则立,不豫(预)则废。
高中数学课后强化训练(含详解)第一章综合能力检测新人教版必修
第一章综合能力检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.下面进位制之间转化错误的是( ) A .101(2)=5(10) B .27(8)=212(3) C .119(10)=315(6)D .31(4)=62(2)[答案] D[解析] 101(2)=1×22+0×2+1=5,故A 对;27(8)=2×8+7=23,212(3)=2×32+1×3+2=23,故B 对;315(6)=3×62+1×6+5=119,故C 对;31(4)=3×4+1=13,62(2)=6×2+2=14.故D 错.2.下面赋值语句中错误的是( ) A .x =2 B .a +b =1 C .a =a +bD .s =s -2[答案] B3.利用秦九韶算法公式⎩⎪⎨⎪⎧v 0=a nv k =v k -1x +a n -k (k =1,2,3,…,n ),计算多项式f (x )=3x 4-x 2+2x +1,当x =2时的函数值,则v 3=( )A .11B .24C .49D .14 [答案] B[解析] v 0=a 4=3,v 1=v 0x +a 3=6,v 2=v 1x +a 2=11,v 3=v 2x +a 1=24. 4.求使1+2+3+…+n >100的最小整数n 的值,下面算法语句正确的为( )[答案] B[解析] A中,由于n=n+1语句在S=S+n前面,故S加上的第一个数为2,不是1,故A错;C中不满足S≤100,跳出循环时,n的值只比符合要求的值大1,但语句n=n-2却减了2,故C中输出的n值是使1+2+…+n≤100成立的最大n值,故C错;D中条件S>100,由WHILE语句规则知条件不满足时,即跳出循环,故此程序中循环体一次也不执行,因此输出的n值为1,故D错,∴选B.5.下列程序框图表示的算法运行后,输出的结果是( )A.25 B.50 C.125 D.250[答案] C[解析] 由程序框图中的赋值语句S=S×5知,后一个S是前一个S的5倍,每循环一次S的值扩大为原来的5倍,由a初值为1,步长为1,到a>3结束循环,故循环了3次,∴S=1×53=125.6.如图是一个算法的程序框图,若循环体只执行了一次,且输出的结果是1e,则其输入的x 值为( )A.1eB.1e2C .eD .e 2[答案] A[分析] 知道输出的结果,求输入的x 值,需要利用逆向思维才能准确解答,要充分利用条件x ≤0.[解析] ∵循环体只执行了一次,∴输入的x >0,且执行赋值语句x =ln x 后,应有x ≤0, ∵输出结果为1e ,∴e x=1e,∴x =-1,∴ln x =-1,∴x =1e .故输出的x 值为1e.我们也可以利用代入检验法排除B ,C ,D 选项,从而得到A.[点评] ∵只循环了一次,且条件为x ≤0,∴x >0且ln x ≤0,因此排除C 、D ,再结合输出结果为1e 知x =1e.7.用更相减损术求30和18的最大公约数时,第三次作的减法为( ) A .18-12=6 B .12-6=6 C .6-6=0D .30-18=12[答案] B8.下面程序运行时,从键盘输入4,则输出结果为( )A .4B .8C .15D .2[答案] C[解析] 此程序语句表达的是分段函数f (x )=⎩⎪⎨⎪⎧2x x <3x 2-1 x >32 x =3,从键盘输入x 的值x 0求函数值f (x 0),∴f (4)=42-1=15.9.如图所示程序框图所表示的算法的功能是( )A .计算1+12+13+…+149的值B .计算1+13+15+…+149的值C .计算1+13+15+…+199的值D .计算1+12+13+…+199的值[答案] C[解析] n 初值为1,由n =n +2知求的是奇数的倒数的和,由i >50时循环结束知,共加了50项,故最后一项为12×50-1=199.10.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号,这些符号与十进制数的对应关系如下表: 十六进制 0123456789A B C D E F十进制12345678910 11 12 13 14 15A .6EB .72C .5FD .B 0[答案] A[解析] 在十进制中,A ×B =10×11=110. ∵110=16×6+14,∴在十六进制中A ×B =6E .故选A. 11.下列程序运行结束时,i 的值为( ) A .10 B .11 C .12D .13[答案] D12.一个算法的程序框图如图所示,若该程序输出的结果为56,则判断框中应填入的条件是( )A .i <4B .i <5C .i ≥5D .i <6[答案] D[解析] 该算法是求11×2+12×3+13×4+…+1n (n +1)的值,因输出结果为56,则56=11×2+12×3+13×4+14×5+15×6,故填i <6. 二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.读程序回答问题. INPUT ni =1sum =0 WHILE i <=n sum =sum +i /(i +1) i =i +1 WEND PRINT sum END(1)若输入n =3,输出的结果为________. (2)此程序对应的计算式子是________________. [答案] (1)2312 (2)12+23+34+…+nn +114.下面程序框图运行后,(1)若*处表达式为S=2S+1,则输出结果为________.(2)若输出结果为8,则处理框*处可填________.[答案] (1)15 (2)S=2S[解析] (1)∵S=2S+1,∴A=0循环后S=3;A=1循环后S=7;A=2循环后S=15,A=3不满足A<3跳出循环,输出S的值15.(2)A从0变到2循环三次,设表达式为f(S),则有f(f(f(1)))=8,∵23=8,∴可以填S=2S.(答案不惟一)15.下面的程序框图运行时,循环体执行的次数是______次.[答案] 499[解析] i初值为2,步长为2,依次取值2,4,6,8,…,1000.当i=1000时跳出循环,故循环了499次.16.(2010·湖南理,12)如下图是求12+22+32+…+1002的值的程序框图,则正整数n =________.[答案] 100[解析] 因为第一次判断执行后,s =12,i =2,第二次判断执行后,s =12+22,i =3,而题目要求计算12+22+32+…+1002,故n =100.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)某居民小区的物业部门每月向居民收取一定的物业费,收费办法为:住房面积不超过100m 2的每月20元,超过部分每30m 2每月加收10元(不足30m 2以30m 2计算).若该小区住房面积最大为150m 2,试设计一个程序,求出每户居民应收取的物业费.[解析] 设一户居民的住房面积为a m 2,应收物业费为b 元,则 b =⎩⎪⎨⎪⎧20 a ≤10030 100<a ≤13040 130<a ≤150,根据这个函数用条件语句写出程序如下:INPUT aIF a <=100 THENb =20ELSEIF a <=130 THEN b =30 ELSEb =40END IF END IFPRINT “b =”;b END18.(本题满分12分)画出求下面n 个数的和的程序框图.(n ∈N *).1 2,23,224,235,…,2n-1n+1.[解析]19.(本题满分12分)根据下列程序框图写出算法语句:[解析] INPUT “n=”;ni=1,S=0WHILE i<=n20.(本题满分12分)把区间[0,1]10等分,求函数y=2x+1+|x-2|在各分点的函数值,写出算法语句.[解析] 把区间[0,10]10等分,故步长为0.1,∴用x =x +0.1表达,y =2x +1+|x -2|,用y =SQR21.(本题满分12分)画程序框图,求使1+2+22+ (2)<1000成立的最大整数n . [解析][点评] T =1+21+22+…+2i,用T <1000作为判断条件,当条件不成立时,T 对应的i 值已比要求的n 值大1,由于i =i +1在语句T =T +2i后,故这时i 的值比要求的n 值大了2,故用n =i -2得到符合要求的n 的值后输出.22.(本题满分14分)百钱买百鸡问题:用100元钱买100只鸡,公鸡每只5元,母鸡每只3元,小鸡3只1元,问公鸡、母鸡、小鸡各买多少只?[分析] 设买了x 只公鸡,y 只母鸡,则小鸡只数为z =100-x -y,100元钱最多买公鸡20只,∴0<x ≤20,最多买母鸡33只,∴0<y ≤33,让x 、y 循环,检验5x +3y +z3=100的条件是否满足,如果满足,则输出x ,y ,z .。
2020-2021学年人教A版数学必修1课后强化练习解析含答案2-2-2-3
2.2.2.3一、选择题1.已知a>0且a≠1,则在同一坐标系中,函数y=a-x和y=log a(-x)的图象可能是( )[答案] D[解析] 若0<a<1,则y=a-x单调增,只能是A、C,此时,log a(-x)单调增,排除C,x=1时,log a(-x)无意义,排除A;∴a>1,此时y=log a(-x)单调减,排除B,故选D.2.若0<a<1,函数y=log a(x+5)的图象不通过( )A.第一象限B.第二象限C.第三象限D.第四象限[答案] A[解析] 将y=log a x的图象向左平移5个单位,得到y=log a(x+5)的图象,故不过第一象限,选A.3.设0<x <y <1,则下列结论中错误..的是( ) ①2x <2y ②⎝ ⎛⎭⎪⎪⎫23x <⎝ ⎛⎭⎪⎪⎫23y③log x 2<log y 2 ④log 12x >log 12yA .①②B .②③C .①③D .②④[答案] B[解析] ∵y =2u 为增函数,x <y ,∴2x <2y ,∴①正确; ∵y =⎝ ⎛⎭⎪⎪⎫23u 为减函数,x <y ,∴⎝ ⎛⎭⎪⎪⎫23x >⎝ ⎛⎭⎪⎪⎫23y ,∴②错误;∵y =log 2x 为增函数,0<x <y <1,∴log 2x <log 2y <0,∴log x 2>log y 2,∴③错误;∵y =log 12u 为减函数0<x <y ,∴log 12x >log 12y ,∴④正确.4.如下图所示的曲线是对数函数y =log a x 的图象,已知a 的取值分别为3、43、35、110,则相应于C 1、C 2、C 3、C 4的a 值依次是( )A.3,43,35,110B.3,43,110,35C.43,3,35,110D.43,3,110,35[答案] A[解析] 根据对数函数图象的变化规律即可求得. 5.函数y =log 12|x +2|的增区间为( )A .(-∞,+∞)B .(-∞,-2)C .(-2,+∞)D .(-∞,-2)∪(-2,+∞)[答案] B[解析] 由y =log 12|x +2|∵t =-(x +2)在x ∈(-∞,-2)上是减函数,y =log 12t 为减函数,∴此函数在(-∞,-2)上是增函数.6.设a >0且a ≠1,函数y =log a x 的反函数与y =log a 1x的反函数的图象关于( )A .x 轴对称B .y 轴对称C .y =x 对称D .原点对称[答案] B7.(08·陕西)设函数f (x )=2x +3的反函数为f -1(x ),若mn =16(m 、n ∈R +),则f -1(m )+f -1(n )的值为( )A .-2B .1C.4 D.10[答案] A[解析] 解法一:由y=2x+3得x=-3+log2y,∴反函数f-1(x)=-3+log2x,∵mn=16,∴f-1(m)+f-1(n)=-6+log2m+log2n=-6+log2(mn)=-6+log216=-2.解法二:设f-1(m)=a,f-1(n)=b,则f(a)=m,f(b)=n,∴mn=f(a)·f(b)=2a+3·2b+3=2a+b+6=16,∴a+b+6=4,∴a+b=-2.8.若函数f(x)=log a|x+1|在(-1,0)上有f(x)>0,则f(x)( )A.在(-∞,0)上是增函数B.在(-∞,0)上是减函数C.在(-∞,-1)上是增函数D.在(-∞,-1)上是减函数[答案] C[解析] 当-1<x<0时,0<x+1<1,又log a|x+1|>0,∴0<a<1因此函数f(x)=log a|x+1|在(-∞,-1)上递增;在(-1,+∞)上递减.9.已知函数f(x)=log a(x-k)的图象过点(4,0),而且其反函数y=f-1(x)的图象过点(1,7),则f(x)是( )A.增函数B.减函数C .先增后减D .先减后增[答案] A[解析] 由于y =f -1(x )过点(1,7),因此y =f (x )过点(7,1), ∴⎩⎪⎨⎪⎧log a (4-k )=0log a (7-k )=1,解得⎩⎪⎨⎪⎧k =3a =4,∴f (x )=log 4(x -3)是增函数.10.已知函数f (x )=log 12(3x 2-ax +5)在[-1,+∞)上是减函数,则实数a的取值范围是( )A .-8≤a ≤-6B .-8<a <-6C .-8<a ≤-6D .a ≤-6[答案] C[解析]⎩⎪⎨⎪⎧3-a ×(-1)+5>0a6≤-1⇒-8<a ≤-6,故选C.[点评] 不要只考虑对称轴,而忽视了定义域的限制作用. 二、填空题11.y =log a x 的图象与y =log b x 的图象关于x 轴对称,则a 与b 满足的关系式为________.[答案] ab =112.方程2x +x =2,log 2x +x =2,2x =log 2(-x )的根分别为a 、b 、c ,则a 、b、c的大小关系为________.[答案] b>a>c[解析] 在同一坐标系内画出y=2x,y=log2x,y=2-x,y=log2(-x)的图象.∴b>a>c.13.方程a-x=log a x(a>0且a≠1)的解的个数为____.[答案] 1[解析] 当a>1时,在同一坐标系中作出y=log a x和y=a-x的图象如图,则两个图象只有一个交点.同理,当0<a<1时,可观察出两个图象也只有一个交点.14.已知c1:y=log a x,c2:y=log b x,c3:y=log c x的图象如图(1)所示.则在图(2)中函数y=a x、y=b x、y=c x的图象依次为图中的曲线__________.[答案] m1,m2,m3[解析] 由图(1)知c>1>a>b>0故在图(2)中m 3:y =c x ,m 2:y =b x ,m 1:y =a x . 15.函数y =a x +1(0<a ≠1)的反函数图象恒过点______. [答案] (1,-1)[解析] 由于y =a x +1的图象过(-1,1)点,因此反函数图象必过点(1,-1). 三、解答题16.已知函数f (x )=log 1a (2-x )在其定义域内单调递增,求函数g (x )=log a (1-x 2)的单调递减区间.[解析] 由于f (x )=log 1a(2-x )在定义域内递增,所以0<1a<1,即a >1,因此g (x )=log a (1-x 2)的递减区间为[0,1).17.我们知道,y =a x (a >0且a ≠1)与y =log a x (a >0且a ≠1)互为反函数.只要把其中一个进行指对互化.就可以得到它的反函数的解析式.任意一个函数y =f (x ),将x 用y 表示出来能否得到它的反函数?据函数的定义:对于自变量x 的每一个值y 都有唯一确定的值与之对应.如果存在反函数,应是对于y 的每一个值,x 都有唯一确定的值与之对应,据此探究下列函数是否存在反函数?若是,反函数是什么?若否,为什么?(1)y =2x +1; (2)y =x ;(3)y =x 2;(4)y =2x -1x +1.[解析] (1)∵y =2x +1是单调增函数,由y =2x +1解得x =12(y -1)这时对任意y ∈R ,都有唯一确定的x 与之对应,也就是x 是y 的函数,按习惯用x 表示自变量,y 表示函数,则y =2x +1的反函数为y=12(x-1).(2)同(1)的道理,∵y=x单调增,也存在反函数,由y=x解出x=y2,∴y=x的反函数为y=x2,因为这里的x就是y=x中的y且y≥0,∴x≥0,即反函数为y=x2(x≥0).(3)∵x=±1时,都有y=1,反过来对于y=1,x有两个值与之对应,故y =x2不存在反函数.(4)由y=2x-1x+1解得x=y+12-y,对y的每一个值,x都有唯一值与之对应,故存在反函数,反函数为y=x+12-x(x≠2).。
新教材 人教A版高中数学选择性必修第一册全册各章节课后练习题 含解析
选择性必修第一册全册课后练习题本文档还有大量公式,在网页中显示可能会出现位置错误的情况,下载后均可正常显示,请放心下载练习!第一章空间向量与立体几何................................................................................................ - 2 -1.1.1空间向量及其线性运算......................................................................................... - 2 -1.1.2空间向量的数量积运算......................................................................................... - 8 -1.2空间向量基本定理.................................................................................................. - 15 -1.3.1空间直角坐标系 .................................................................................................. - 22 -1.3.2空间运算的坐标表示........................................................................................... - 28 -1.4.1.1空间向量与平行关系 ....................................................................................... - 34 -1.4.1.2空间向量与垂直关系 ....................................................................................... - 42 -1.4.2用空量研究距离、夹角问题............................................................................... - 51 -章末测验 ....................................................................................................................... - 64 - 第二章直线和圆的方程...................................................................................................... - 78 -2.1.1倾斜角与斜率 ...................................................................................................... - 78 -2.1.2两条直线平行和垂直的判定............................................................................... - 83 -2.2.1直线的点斜式方程............................................................................................... - 87 -2.2.2直线的两点式方程............................................................................................... - 92 -2.2.3直线的一般式方程............................................................................................... - 97 -2.3.1两条直线的交点坐标......................................................................................... - 102 -2.3.2两点间的距离公式............................................................................................. - 102 -2.3.3点到直线的距离公式......................................................................................... - 107 -2.3.4两条平行直线间的距离..................................................................................... - 107 -2.4.1圆的标准方程 .................................................................................................... - 113 -2.4.2圆的一般方程 .................................................................................................... - 118 -2.5.1直线与圆的位置关系......................................................................................... - 122 -2.5.2圆与圆的位置关系............................................................................................. - 128 -章末测验 ..................................................................................................................... - 135 - 第三章圆锥曲线的方程.................................................................................................... - 144 -3.1.1椭圆及其标准方程............................................................................................. - 144 -3.1.2.1椭圆的简单几何性质 ..................................................................................... - 150 -3.1.2.2椭圆的标准方程及性质的应用...................................................................... - 156 -3.2.1双曲线及其标准方程......................................................................................... - 164 -3.2.2双曲线的简单几何性质..................................................................................... - 171 -3.3.1抛物线及其标准方程......................................................................................... - 178 -3.3.2抛物线的简单几何性质..................................................................................... - 184 -章末测验 ..................................................................................................................... - 191 - 模块综合测验 ..................................................................................................................... - 202 -第一章 空间向量与立体几何1.1.1空间向量及其线性运算一、选择题1.空间任意四个点A ,B ,C ,D ,则DA →+CD →-CB →等于( ) A .DB → B .AC → C .AB → D .BA → D [DA →+CD →-CB →=DA →+BD →=BA →.]2.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是( )A .平行四边形B .空间四边形C .等腰梯形D .矩形A [∵AO →+OB →=DO →+OC →,∴AB →=DC →. ∴AB →∥DC →且|AB →|=|DC →|. ∴四边形ABCD 为平行四边形.]3.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A ,B ,C 一定共面的是( )A .OM →=OA →+OB →+OC → B .OM →=2OA →-OB →-OC → C .OM →=OA →+12OB →+13OC →D .OM →=13OA →+13OB →+13OC → D [由OM →=13OA →+13OB →+13OC →,可得3OM →=OA →+OB →+OC →⇒OM →-OA →+OM →-OB →+OM →-OC →=0, 即AM →=-BM →-CM →.所以AM →与BM →,CM →在一个平面上,即点M 与点A ,B ,C 一定共面.] 4.若空间中任意四点O ,A ,B ,P 满足OP →=mOA →+nOB →,其中m +n =1,则( )A .P ∈AB B .P ∉ABC .点P 可能在直线AB 上D .以上都不对A [因为m +n =1,所以m =1-n , 所以OP →=(1-n )OA →+nOB →, 即OP →-OA →=n (OB →-OA →), 即AP →=nAB →,所以AP →与AB →共线. 又AP →,AB →有公共起点A ,所以P ,A ,B 三点在同一直线上, 即P ∈AB .]5.已知在长方体ABCD -A 1B 1C 1D 1中,点E 是A 1C 1的中点, 点F 是AE 的三等分点,且AF =12EF ,则AF →=( )A .AA 1→+12AB →+12AD → B .12AA 1→+12AB →+12AD →C .12AA 1→+16AB →+16AD → D .13AA 1→+16AB →+16AD →D [如图所示,AF →=13AE →,AE →=AA 1→+A 1E →,A 1E →=12A 1C 1→,A 1C 1→=A 1B 1→+A 1D 1→,A 1B 1→=AB →,A 1D 1→=AD →,所以AF →=13⎝ ⎛⎭⎪⎫AA 1→+12A 1C 1→=13AA 1→+16AB →+16AD →,故选D.]二、填空题6.已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若由OM →=-2OA →+OB →+λOC →确定的点M 与A ,B ,C 共面,则λ=________.2 [由M 、A 、B 、C 四点共面知:-2+1+λ=1,即λ=2.]7.在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,用a ,b ,c 表示D 1M →,则D 1M →=________.12a -12b +c [D 1M →=D 1D →+DM → =A 1A →+12(DA →+DC →) =c +12(-A 1D 1→+A 1B 1→) =12a -12b +c .]8.在空间四边形ABCD 中,E ,F 分别是AB ,CD 的中点,则EF →和AD →+BC →的关系是________.(填“平行”,“相等”或“相反”)平行 [设G 是AC 的中点,则EF →=EG →+GF →=12BC →+12AD →=12(AD →+BC →) 所以2EF →=AD →+BC →, 从而EF →∥(AD →+BC →).] 三、解答题9.如图,在空间四边形ABCD 中,G 为△BCD 的重心,E ,F 分别为边CD 和AD 的中点,试化简AG →+13BE →-12AC →,并在图中标出化简结果的向量.[解] ∵G 是△BCD 的重心,BE 是CD 边上的中线,∴GE →=13BE →.又12AC →=12(DC →-DA →)=12DC →-12DA →=DE →-DF →=FE →, ∴AG →+13BE →-12AC →=AG →+GE →-FE →=AF →(如图所示).10.在长方体ABCD -A 1B 1C 1D 1中,M 为DD 1的中点,点N 在AC 上,且AN ∶NC =2∶1,求证:A 1N →与A 1B →,A 1M →共面.[证明] ∵A 1B →=AB →-AA 1→, A 1M →=A 1D 1→+D 1M →=AD →-12AA 1→, AN →=23AC →=23(AB →+AD →), ∴A 1N →=AN →-AA 1→ =23(AB →+AD →)-AA 1→=23(AB →-AA 1→)+23(AD →-12AA 1→) =23A 1B →+23A 1M →, ∴A 1N →与A 1B →,A 1M →共面.11.(多选题)若A ,B ,C ,D 为空间不同的四点,则下列各式为零向量的是( ) A .AB →+2BC →+2CD →+DC → B .2AB →+2BC →+3CD →+3DA →+AC →C.AB →+CA →+BD →D.AB →-CB →+CD →-AD →BD [A 中,AB →+2BC →+2CD →+DC →=AB →+2BD →+DC →=AB →+BD →+BD →+DC →=AD →+BC →;B 中,2AB →+2BC →+3CD →+3DA →+AC →=2AC →+3CA →+AC →=0;C 中,AB →+CA →+BD →=AD →+CA →;D 中,AB →-CB →+CD →-AD →=AB →+BC →+CD →+DA →表示A →B →C →D →A 恰好形成一个回路,结果必为0.]12.(多选题)有下列命题,其中真命题的有( ) A .若AB →∥CD →,则A ,B ,C ,D 四点共线 B .若AB →∥AC →,则A ,B ,C 三点共线C .若e 1,e 2为不共线的非零向量,a =4e 1-25e 2,b =-e 1+110e 2,则a ∥b D .若向量e 1,e 2,e 3是三个不共面的向量,且满足等式k 1e 1+k 2e 2+k 3e 3=0,则k 1=k 2=k 3=0BCD [根据共线向量的定义,若AB →∥CD →,则AB ∥CD 或A ,B ,C ,D 四点共线,故A 错;因为AB →∥AC →且AB →,AC →有公共点A ,所以B 正确;由于a =4e 1-25e 2=-4-e 1+110e 2=-4b ,所以a ∥b ,故C 正确;易知D 也正确.]13.(一题两空)已知A ,B ,C 三点共线,则对空间任一点O ,若OA →=2OB →+μOC →,则μ=________;存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________.-1 0 [由A 、B 、C 三点共线,∴2+μ=1,∴μ=-1,又由λOA →+mOB →+nOC →=0得OA →=-m λOB →-n λOC →由A ,B ,C 三点共线知-m λ-nλ=1,则λ+m +n =0.]14.设e 1,e 2是平面上不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,若A ,B ,D 三点共线,则实数k 为________.-8 [因为BD →=CD →-CB →=e 1-4e 2,AB →=2e 1+k e 2,又A ,B ,D 三点共线,由共线向量定理得12=-4k ,所以k =-8.]15.如图所示,已知四边形ABCD 是平行四边形,点P 是ABCD 所在平面外的一点,连接P A ,PB ,PC ,PD .设点E ,F ,G ,H 分别为△P AB ,△PBC ,△PCD ,△PDA 的重心.(1)试用向量方法证明E ,F ,G ,H 四点共面;(2)试判断平面EFGH 与平面ABCD 的位置关系,并用向量方法证明你的判断. [证明] (1)分别连接PE ,PF ,PG ,PH 并延长,交对边于点M ,N ,Q ,R ,连接MN ,NQ ,QR ,RM ,∵E ,F ,G ,H 分别是所在三角形的重心,∴M ,N ,Q ,R 是所在边的中点,且PE →=23PM →,PF →=23PN →,PG →=23PQ →,PH →=23PR →.由题意知四边形MNQR 是平行四边形,∴MQ →=MN →+MR →=(PN →-PM →)+(PR →-PM →)=32(PF →-PE →)+32(PH →-PE →)=32(EF →+EH →).又MQ →=PQ →-PM →=32PG →-32PE →=32EG →.∴EG →=EF →+EH →,由共面向量定理知,E ,F ,G ,H 四点共面.(2)平行.证明如下:由(1)得MQ →=32EG →,∴MQ →∥EG →, ∴EG →∥平面ABCD .又MN →=PN →-PM →=32PF →-32PE → =32EF →,∴MN →∥EF →. 即EF ∥平面ABCD . 又∵EG ∩EF =E ,∴平面EFGH 与平面ABCD 平行1.1.2空间向量的数量积运算一、选择题1.已知a ⊥b ,|a |=2,|b |=3,且(3a +2b )⊥(λa -b ),则λ等于( ) A .32 B .-32 C .±32 D .1A [∵a ⊥b ,∴a ·b =0,∵3a +2b ⊥λa -b ,∴(3a +2b )·(λa -b )=0, 即3λa 2+(2λ-3)a ·b -2b 2=0,∴12λ-18=0,解得λ=32.]2.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( )A .a 2B .12a 2C .14a 2D .34a 2C [AE →·AF →=12(AB →+AC →)·12AD →=14(AB →·AD →+AC →·AD →)=14⎝ ⎛⎭⎪⎫a ×a ×12+a ×a ×12=14a 2.]3.已知长方体ABCD -A 1B 1C 1D 1,则下列向量的数量积一定不为0的是( ) A .AD 1→·B 1C →B .BD 1→·AC →C .AB →·AD 1→ D .BD 1→·BC →D [对于选项A ,当四边形ADD 1A 1为正方形时,可得AD 1⊥A 1D ,而A 1D ∥B 1C ,可得AD 1⊥B 1C ,此时有AD 1→·B 1C →=0;对于选项B ,当四边形ABCD 为正方形时,AC ⊥BD ,易得AC ⊥平面BB 1D 1D ,故有AC ⊥BD 1,此时有BD 1→·AC →=0;对于选项C ,由长方体的性质,可得AB ⊥平面ADD 1A 1,可得AB ⊥AD 1,此时必有AB →·AD 1→=0;对于选项D ,由长方体的性质,可得BC ⊥平面CDD 1C 1,可得BC ⊥CD 1,△BCD 1为直角三角形,∠BCD 1为直角,故BC 与BD 1不可能垂直,即BD 1→·BC →≠0.故选D.]4.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,向量BA 1→与向量AC →所成的角为( )A .60°B .150°C .90°D .120°D [BA 1→=BA →+AA 1→,|BA 1→|=2a ,AC →=A B →+AD →,|AC →|=2a .∴BA 1→·AC →=BA →·AB →+BA →·AD →+AA 1→·AB →+AA 1→·AD →=-a 2. ∴cos 〈BA 1→,AC →〉=-a 22a ·2a =-12.∴〈BA 1→,AC →〉=120°.]5.如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,AB =1,AD =2,AA ′=3,∠BAD =90°,∠BAA ′=∠DAA ′=60°,则AC ′的长为( )A .13B .23C .33D .43B [∵AC ′→=AB →+BC →+CC ′→,∴AC ′→2=(AB →+BC →+CC ′→)2=AB →2+BC →2+CC ′→2+2(AB →·BC →+AB →·CC ′→+BC →·CC ′→) =12+22+32+2(0+1×3cos 60°+2×3cos 60°) =14+2×92=23,∴|AC ′→|=23,即AC ′的长为23.] 二、填空题6.已知a ,b 是空间两个向量,若|a |=2,|b |=2,|a -b |=7,则cos 〈a ,b 〉=________.18[将|a -b |=7两边平方,得(a -b )2=7. 因为|a |=2,|b |=2,所以a ·b =12.又a ·b =|a ||b |cos 〈a ,b 〉,故cos 〈a ,b 〉=18.]7.已知a ,b 是异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b ,且AB =2,CD =1,则a ,b 所成的角是________.60° [AB →=AC →+CD →+DB →,∴CD →·AB →=CD →·(AC →+CD →+DB →)=|CD →|2=1, ∴cos 〈CD →,AB →〉=CD →·AB →|CD →||AB →|=12,∴异面直线a ,b 所成角是60°.]8.已知|a |=2,|b |=1,〈a ,b 〉=60°,则使向量a +λb 与λa -2b 的夹角为钝角的实数λ的取值范围是________.(-1-3,-1+3) [由题意知 ⎩⎨⎧(a +λb )·(λa -2b )<0,cos 〈a +λb ,λa -2b 〉≠-1. 即⎩⎨⎧(a +λb )·(λa -2b )<0,(a +λb )·(λa -2b )≠-|a +λb ||λa -2b |,得λ2+2λ-2<0.∴-1-3<λ<-1+ 3.] 三、解答题9.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB →=a ,AD →=b ,AP →=c .(1)试用a ,b ,c 表示出向量BM →; (2)求BM 的长.[解] (1)∵M 是PC 的中点,∴BM →=12(BC →+BP →)=12[AD →+(AP →-AB →)] =12[b +(c -a )]=-12a +12b +12c .(2)由于AB =AD =1,P A =2,∴|a |=|b |=1,|c |=2,由于AB ⊥AD ,∠P AB =∠P AD =60°,∴a·b =0,a·c =b·c =2·1·cos 60°=1, 由于BM →=12(-a +b +c ),|BM →|2=14(-a +b +c )2=14[a 2+b 2+c 2+2(-a·b -a·c +b·c )]=14[12+12+22+2(0-1+1)]=32.∴|BM →|=62,∴BM 的长为62.10.如图,已知直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值. [解] (1)证明:设CA →=a ,CB →=b ,CC ′→=c , 根据题意得|a |=|b |=|c |,且a·b =b·c =c·a =0. ∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=⎝ ⎛⎭⎪⎫b +12c ·⎝ ⎛⎭⎪⎫-c +12b -12a =-12c 2+12b 2=0, ∴CE →⊥A ′D →,即CE ⊥A ′D .(2)∵AC ′→=-a +c ,∴|AC ′→|=2|a |,|CE →|=52|a |, ∵AC ′→·CE →=(-a +c )·⎝ ⎛⎭⎪⎫b +12c =12c 2=12|a |2, ∴cos 〈AC ′→,CE →〉=12|a |22×52|a |2=1010.∴异面直线CE 与AC ′所成角的余弦值为1010.11.(多选题)在正方体ABCD -A 1B 1C 1D 1中,下列命题正确的有( ) A .(AA 1→+AD →+AB →)2=3AB →2 B .A 1C →·(A 1B 1→-A 1A →)=0 C .AD 1→与A 1B →的夹角为60° D .正方体的体积为|AB →·AA 1→·AD →|AB [如图,(AA 1→+AD →+AB →)2=(AA 1→+A 1D 1→+D 1C 1→)2=AC 1→2=3AB →2;A 1C →·(A 1B 1→-A 1A →)=A 1C →·AB 1→=0;AD 1→与A 1B →的夹角是D 1C →与D 1A →夹角的补角,而D 1C →与D 1A →的夹角为60°,故AD 1→与A 1B →的夹角为120°;正方体的体积为|AB →||AA 1→||AD →|.故选AB.]12.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,若E 是底面正方形A 1B 1C 1D 1的中心, 则AC 1→与CE →( )A .重合B .平行但不重合C .垂直D .无法确定C [AC 1→=AB →+AD →+AA 1→,CE →=CC 1→+C 1E →=AA 1→-12(AB →+AD →),于是AC 1→·CE →=(AB →+AD →+AA 1→)·⎣⎢⎡⎦⎥⎤AA 1-12(AB →+AD →)=AB →·AA 1→-12AB →2-12AB →·AD →+AD →·AA 1→-12AD →·AB →-12AD →2+AA 1→2-12AA 1→·AB →-12AA 1→·AD →=0-12-0+0-0-12+1-0-0=0,故AC 1→⊥CE →.]13.(一题两空)如图,在长方体ABCD -A 1B 1C 1D 1中,设AD =AA 1=1,AB =2,P 是C 1D 1的中点,则B 1C →·A 1P →=________,B 1C →与A 1P →所成角的大小为________.1 60° [法一:连接A 1D ,则∠P A 1D 就是B 1C →与A 1P →所成角.连接PD ,在△P A 1D 中,易得P A 1=DA 1=PD =2,即△P A 1D 为等边三角形,从而∠P A 1D =60°,即B 1C →与A 1P →所成角的大小为60°.因此B 1C →·A 1P →=2×2×cos 60°=1.法二:根据向量的线性运算可得B 1C →·A 1P →=(A 1A →+AD →)·⎝⎛⎭⎪⎫AD →+12AB →=AD →2=1. 由题意可得P A 1=B 1C =2,则2×2×cos 〈B 1C →,A 1P →〉=1,从而〈B 1C →,A 1P →〉=60°.]14.已知在正四面体D -ABC 中,所有棱长都为1,△ABC 的重心为G ,则DG 的长为________.63 [如图,连接AG 并延长交BC 于点M ,连接DM ,∵G 是△ABC 的重心,∴AG =23AM ,∴AG →=23AM →,DG →=DA →+AG →=DA →+23AM →=DA →+23(DM →-DA →)=DA →+23⎣⎢⎡⎦⎥⎤12(DB →+DC →)-DA →=13(DA →+DB →+DC →),而(DA →+DB →+DC →)2=DA →2+DB →2+DC →2+2DA →·DB →+2DB →·DC →+2DC →·DA →=1+1+1+2(cos 60°+cos 60°+cos 60°)=6,∴|DG →|=63.]15.如图,正四面体V -ABC 的高VD 的中点为O ,VC 的中点为M .(1)求证:AO ,BO ,CO 两两垂直;(2)求〈DM →,AO →〉.[解] (1)证明:设VA →=a ,VB →=b ,VC →=c ,正四面体的棱长为1, 则VD →=13(a +b +c ),AO →=16(b +c -5a ), BO →=16(a +c -5b ),CO →=16(a +b -5c ),所以AO →·BO →=136(b +c -5a )·(a +c -5b )=136(18a ·b -9|a |2)=136(18×1×1×cos 60°-9)=0,所以AO →⊥BO →,即AO ⊥BO .同理,AO ⊥CO ,BO ⊥CO . 所以AO ,BO ,CO 两两垂直.(2)DM →=DV →+VM →=-13(a +b +c )+12c =16(-2a -2b +c ),所以|DM →|=⎣⎢⎡⎦⎥⎤16(-2a -2b +c )2=12. 又|AO →|=⎣⎢⎡⎦⎥⎤16(b +c -5a )2=22,DM →·AO →=16(-2a -2b +c )·16(b +c -5a )=14, 所以cos 〈DM →,AO →〉=1412×22=22. 又〈DM →,AO →〉∈[0,π], 所以〈DM →,AO →〉=π4.1.2空间向量基本定理一、选择题1.若向量{a ,b ,c }是空间的一个基底,则一定可以与向量p =2a +b ,q =2a-b 构成空间的另一个基底的向量是( )A .aB .bC .cD .a +bC [由p =2a +b ,q =2a -b 得a =14p +14q ,所以a 、p 、q 共面,故a 、p 、q 不能构成空间的一个基底,排除A ;因为b =12p -12q ,所以b 、p 、q 共面,故b 、p 、q 不能构成空间的一个基底,排除B ;因为a +b =34p -14q ,所以a +b 、p 、q 共面,故a +b 、p 、q 不能构成空间的一个基底,排除D.]2.在平行六面体ABCD -A 1B 1C 1D 1中,M 是上底面对角线AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则B 1M →可表示为( )A .12a +12b +cB .12a -12b +cC .-12a -12b +cD .-12a +12b +cD [由于B 1M →=B 1B →+BM →=B 1B →+12(BA →+BC →) =-12a +12b +c ,故选D.]3.若向量MA →,MB →,MC →的起点M 与终点A ,B ,C 互不重合,且点M ,A ,B ,C 中无三点共线,满足下列关系(O 是空间任一点),则能使向量MA →,MB →,MC →成为空间一个基底的关系是( )A .OM →=13OA →+13OB →+13OC → B .MA →≠MB →+MC → C .OM →=OA →+OB →+OC →D .MA →=2MB →-MC →C [若MA →,MB →,MC →为空间一组基向量,则M ,A ,B ,C 四点不共面.选项A 中,因为13+13+13=1,所以点M ,A ,B ,C 共面;选项B 中,MA →≠MB →+MC →,但可能存在实数λ,μ使得MA →=λMB →+μMC →,所以点M ,A ,B ,C 可能共面;选项D 中,四点M ,A ,B ,C 显然共面.故选C.]4.空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM →=2MA →,N 为BC 中点,则MN →为( )A .12a -23b +12cB .-23a +12b +12cC .12a +12b -23cD .23a +23b -12cB [MN →=MA →+AB →+BN →=13OA →+OB →-OA →+12(OC →-OB →)=-23OA →+12OB →+12OC →=-23a +12b +12c .]5.平行六面体ABCD -A 1B 1C 1D 1中,向量AB →,AD →,AA 1→两两的夹角均为60°且|AB →|=1,|AD →|=2,|AA 1→|=3,则|AC 1→|等于( )A .5B .6C .4D .8A [在平行六面体ABCD -A 1B 1C 1D 1中有,AC 1→=AB →+AD →+CC 1→=AB →+AD →+AA 1→所以有|AC 1→|=|AB →+AD →+AA 1→|,于是有|AC 1→|2=|AB →+AD →+AA 1→|2=|AB →|2+|AD →|2+|AA 1→|2+2|AB →|·|AD →|·cos 60°+2|AB →|·|AA 1→|·cos 60°+2|AD →||AA 1→|·cos 60°=25,所以|AC 1→|=5.]二、填空题6.在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________.(用a ,b ,c 表示)12a +14b +14c [因为在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,所以OE →=12(OA →+OD →)=12OA →+12OD →=12a +12×12(OB →+OC →)=12a +14(b +c )=12a +14b +14c .]7.已知{a ,b ,c }是空间的一个单位正交基底,{a +b ,a -b ,c }是空间的另一个基底,若向量m 在基底{a ,b ,c }下表示为m =3a +5b +9c ,则m 在基底{a +b ,a -b,3c }下可表示为________.4(a +b )-(a -b )+3(3c ) [由题意知,m =3a +5b +9c ,设m =x (a +b )+y (a -b )+z (3c )则有⎩⎨⎧ x +y =3x -y =53z =9,解得⎩⎨⎧x =4y =-1z =3.则m 在基底{a +b ,a -b,3c }可表示为m =4(a +b )-(a -b )+3(3c ).] 8.在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,P A →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →=________.23a -13b +23c [因为BG =2GD ,所以BG →=23BD →. 又BD →=BA →+BC →=P A →-PB →+PC →-PB →=a +c -2b , 所以PG →=PB →+BG →=b +23(a +c -2b ) =23a -13b +23c .] 三、解答题9.如图所示,正方体OABC -O ′A ′B ′C ′,且OA →=a ,OC →=b ,OO ′→=c .(1)用a ,b ,c 表示向量OB ′→,AC ′→;(2)设G ,H 分别是侧面BB ′C ′C 和O ′A ′B ′C ′的中心,用a ,b ,c 表示GH →.[解] (1)OB ′→=OB →+BB ′→=OA →+OC →+OO ′→=a +b +c . AC ′→=AC →+CC ′→=AB →+AO →+AA ′→=OC →+OO ′→-OA →=b +c -a . (2)法一:连接OG ,OH (图略), 则GH →=GO →+OH →=-OG →+OH → =-12(OB ′→+OC →)+12(OB ′→+OO ′→) =-12(a +b +c +b )+12(a +b +c +c ) =12(c -b ).法二:连接O ′C (图略),则GH →=12CO ′→=12(OO ′→-OC →) =12(c -b ).10.如图,在平行六面体ABCD -A 1B 1C 1D 1中,MA →=-13AC →,ND →=13A 1D →,设AB →=a ,AD →=b ,AA 1→=c ,试用a ,b ,c 表示MN →.[解] 连接AN ,则MN →=MA →+AN →.由已知可得四边形ABCD 是平行四边形,从而可得 AC →=AB →+AD →=a +b , MA →=-13AC →=-13(a +b ), 又A 1D →=AD →-AA 1→=b -c ,故AN →=AD →+DN →=AD →-ND →=AD →-13A 1D →=b -13(b -c ), 所以MN →=MA →+AN → =-13(a +b )+b -13(b -c ) =13(-a +b +c ).11.(多选题)已知a ,b ,c 是不共面的三个向量,则下列向量组中,不能构成一个基底的一组向量是( )A .2a ,a -b ,a +2bB .2b ,b -a ,b +2aC .a,2b ,b -cD .c ,a +c ,a -cABD [对于A ,因为2a =43(a -b )+23(a +2b ),得2a 、a -b 、a +2b 三个向量共面,故它们不能构成一个基底;对于B ,因为2b =43(b -a )+23(b +2a ),得2b 、b -a 、b +2a 三个向量共面,故它们不能构成一个基底;对于C ,因为找不到实数λ、μ,使a =λ·2b +μ(b -c )成立,故a 、2b 、b -c 三个向量不共面,它们能构成一个基底;对于D ,因为c =12(a +c )-12(a -c ),得c 、a +c 、a -c 三个向量共面,故它们不能构成一个基底,故选ABD.]12.(多选题)给出下列命题,正确命题的有( )A .若{a ,b ,c }可以作为空间的一个基底,d 与c 共线,d ≠0,则{a ,b ,d }也可以作为空间的一个基底B .已知向量a ∥b ,则a ,b 与任何向量都不能构成空间的一个基底C .A ,B ,M ,N 是空间四点,若BA →,BM →,BN →不能构成空间的一个基底,则A ,B ,M ,N 四点共面D .已知{a ,b ,c }是空间的一个基底,若m =a +c ,则{a ,b ,m }也是空间的一个基底ABCD [根据基底的概念,知空间中任何三个不共面的向量都可作为空间的一个基底.显然B 正确.C 中由BA →,BM →,BN →不能构成空间的一个基底,知BA →,BM →,BN →共面.又BA →,BM →,BN →过相同点B ,知A ,B ,M ,N 四点共面.所以C 正确.下面证明AD 正确:A 假设d 与a ,b 共面,则存在实数λ,μ,使得d =λa +μb ,∵d 与c 共线,c ≠0,∴存在实数k ,使得d =k c .∵d ≠0,∴k ≠0,从而c =λk a +μk b ,∴c 与a ,b 共面,与条件矛盾,∴d 与a ,b 不共面.同理可证D 也是正确的.于是ABCD 四个命题都正确,故选ABCD.]13.(一题两空)已知空间的一个基底{a ,b ,c },m =a -b +c ,n =x a +y b +c ,若m 与n 共线,则x =________,y =________.1 -1 [因为m 与n 共线, 所以存在实数λ,使m =λn ,即a -b +c =λx a +λy b +λc ,于是有⎩⎨⎧1=λx ,-1=λy ,1=λ,解得⎩⎨⎧x =1,y =-1.]14.(一题多空)已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=________,y 0=________,|b |=________.1 2 22 [由题意可令b =x 0e 1+y 0e 2+e 3,其中|e 3|=1,e 3⊥e i ,i =1,2.由b ·e 1=2得x 0+y 02=2,由b ·e 2=52得x 02+y 0=52,解得x 0=1,y 0=2,∴|b |=(e 1+2e 2+e 3)2=2 2.]15.在平行六面体ABCD -A 1B 1C 1D 1中,设AB →=a ,AD →=b ,AA 1→=c ,E ,F 分别是AD 1,BD 的中点.(1)用向量a ,b ,c 表示D 1B →,EF →;(2)若D 1F →=x a +y b +z c ,求实数x ,y ,z 的值. [解] (1)如图,D 1B →=D 1D →+DB →=-AA 1→+AB →-AD →=a -b -c ,EF →=EA →+AF →=12D 1A →+12AC →=-12(AA 1→+AD →)+12(AB →+AD →)=12(a -c ). (2)D 1F →=12(D 1D →+D 1B →)=12(-AA 1→+AB →-AD 1→) =12(-AA 1→+AB →-AD →-DD 1→) =12(a -c -b -c )=12a -12b -c , ∴x =12,y =-12,z =-1.1.3.1空间直角坐标系一、选择题1.空间两点A ,B 的坐标分别为(x ,-y ,z ),(-x ,-y ,-z ),则A ,B 两点的位置关系是( )A .关于x 轴对称B .关于y 轴对称C .关于z 轴对称D .关于原点对称B [纵坐标相同,横坐标和竖坐标互为相反数,故两点关于y 轴对称.] 2.已知A (1,2,-1),B (5,6,7),则直线AB 与平面xOz 交点的坐标是( ) A .(0,1,1) B .(0,1,-3)C .(-1,0,3)D .(-1,0,-5)D [设直线AB 与平面xoz 交点坐标是M (x ,y ,z ),则AM →=(x -1,-2,z +1),AB →=(4,4,8),又AM →与AB →共线,∴AM →=λAB →,即⎩⎨⎧x -1=4λ,-2=4λ,z +1=8λ,解得x =-1,z =-5,∴点M (-1,0,-5).故选D.]3.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM |=( ) A .534 B .532 C .532D .132 C [M ⎝ ⎛⎭⎪⎫2,32,3 ,|CM |=4+⎝ ⎛⎭⎪⎫32-12+9=532.] 4.如图,在空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1的棱长为1,B 1E =14A 1B 1,则BE →等于( )A .⎝ ⎛⎭⎪⎫0,14,-1B .⎝ ⎛⎭⎪⎫-14,0,1C .⎝ ⎛⎭⎪⎫0,-14,1D .⎝ ⎛⎭⎪⎫14,0,-1C [{DA →,DC →,DD 1→}为单位正交向量,BE →=BB 1→+B 1E →=-14DC →+DD 1→,∴BE →=⎝ ⎛⎭⎪⎫0,-14,1.] 5.设{i ,j ,k }是单位正交基底,已知向量p 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则向量p 在基底{i ,j ,k }下的坐标是( )A .(12,14,10)B .(10,12,14)C .(14,12,10)D .(4,3,2)A [依题意,知p =8a +6b +4c =8(i +j )+6(j +k )+4(k +i )=12i +14j +10k ,故向量p 在基底{i ,j ,k }下的坐标是(12,14,10).]二、填空题6.在空间直角坐标系中,已知点P (1,2,3),过点P 作平面yOz 的垂线PQ ,则垂足Q 的坐标为________.(0,2,3) [过P 的垂线PQ ⊥面yOz ,则Q 点横坐标为0,其余不变,故Q (0,2,3).]7.设{e 1,e 2,e 3}是空间向量的一个单位正交基底,a =4e 1-8e 2+3e 3,b =-2e 1-3e 2+7e 3,则a ,b 的坐标分别为________.(4,-8,3),(-2,-3,7) [由题意可知a =(4,-8,3),b =(-2,-3,7).] 8.如图所示,以长方体ABCD -A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若DB 1→的坐标为(4,3,2),则AC 1→的坐标为________.(-4,3,2) [由DB 1→=DA →+DC →+DD 1→,且DB 1→=(4,3,2),∴|DA →|=4,|DC →|=3,|DD 1→|=2,又AC 1→=-DA →+DC →+DD 1→,∴AC 1→=(-4,3,2).]三、解答题9.已知三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,所有的棱长都是1,建立适当的坐标系,并写出各点的坐标.[解] 如图所示,取AC 的中点O 和A 1C 1的中点O 1,可得BO ⊥AC ,OO 1⊥AC ,分别以OB ,OC ,OO 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.∵三棱柱各棱长均为1,∴OA =OC =O 1C 1=O 1A 1=12,OB =32. ∵A ,B ,C 均在坐标轴上,∴A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0.∵点A 1与C 1在yOz 平面内, ∴A 1⎝ ⎛⎭⎪⎫0,-12,1,C 1⎝ ⎛⎭⎪⎫0,12,1.∵点B 1在xOy 平面内的射影为B ,且BB 1=1,∴B 1⎝ ⎛⎭⎪⎫32,0,1,即各点的坐标为A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0,A 1⎝ ⎛⎭⎪⎫0,-12,1,B 1⎝ ⎛⎭⎪⎫32,0,1,C 1⎝ ⎛⎭⎪⎫0,12,1. 10.棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别为棱DD 1,D 1C 1,BC 的中点,以{AB →,AD →,AA 1→}为正交基底,求下列向量的坐标:(1)AE →,AF →,AG →; (2)EF →,EG →,DG →.[解] 在正交基底{AB →,AD →,AA 1→}下,(1)AF →=12AB →+AD →+AA 1→, AE →=AD →+12AA 1→,AG →=AB →+12AD →,∴AE →=⎝ ⎛⎭⎪⎫0,1,12,AF →=⎝ ⎛⎭⎪⎫12,1,1,AG →=⎝ ⎛⎭⎪⎫1,12,0.(2)EF →=AF →-AE →=12AB →+12AA 1→,∴EF →=⎝ ⎛⎭⎪⎫12,0,12;EG →=AG →-AE →=AB →-12AD →-12AA 1→,∴EG →=⎝ ⎛⎭⎪⎫1,-12,-12;DG →=AG →-AD →=AB→-12AD →,∴DG →=⎝ ⎛⎭⎪⎫1,-12,0.11.(多选题)下列各命题正确的是( ) A .点(1,-2,3)关于平面xOz 的对称点为(1,2,3) B .点⎝ ⎛⎭⎪⎫12,1,-3关于y 轴的对称点为⎝ ⎛⎭⎪⎫-12,1,3C .点(2,-1,3)到平面yOz 的距离为1D .设{i ,j ,k }是空间向量的单位正交基底,若m =3i -2j +4k ,则m =(3,-2,4).ABD [“关于谁对称谁不变”,∴A 正确,B 正确,C 中(2,-1,3)到面yOz 的距离为2,∴C 错误.根据空间向量的坐标定义,D 正确.]12.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 为正方体内一动点(包括表面),若AP →=xAB →+yAD →+zAA 1→,且0≤x ≤y ≤z ≤1.则点P 所有可能的位置所构成的几何体的体积是( )A .1B .12C .13D .16D [根据向量加法的几何意义和空间向量基本定理,满足0≤x ≤y ≤1的点P 在三棱柱ACD -A 1C 1D 1内;满足0≤y ≤z ≤1的点P 在三棱柱AA 1D 1-BB 1C 1内,故同时满足0≤x ≤y ≤1,0≤y ≤z ≤1的点P 在这两个三棱柱的公共部分(如图),即三棱锥A -A 1C 1D 1,其体积是13×12×1×1×1=16.]13.三棱锥P -ABC 中,∠ABC 为直角,PB ⊥平面ABC ,AB =BC =PB =1,M为PC 的中点,N 为AC 的中点,以{BA →,BC →,BP →}为基底,则MN →的坐标为________.⎝ ⎛⎭⎪⎫12,0,-12 [MN →=BN →-BM → =12(BA →+BC →)-12(BP →+BC →) =12BA →-12BP →, 故MN →=⎝ ⎛⎭⎪⎫12,0,-12.] 14.已知O 是坐标原点,点A (2,0,-2),B (3,1,2),C (2,-1,7). (1)若点P 满足OP →=OA →+OB →+OC →,则点P 的坐标为________; (2)若点P 满足AP →=2AB →-AC →,则点P 的坐标为________.(1)(7,0,7) (2)(4,3,-3) [(1)中OP →=OA →+OB →+OC →=(2i -2k )+(3i +j +2k )+(2i -j +7k )=7i +0j +7k ,∴P (7,0,7).(2)中,AP →=2AB →-AC →得OP →-OA →=2OB →-2OA →-OC →+OA →,∴OP →=2OB →-OC →=2(3i +j +2k )-(2i -j +7k ) =4i +3j -3k ,∴P (4,3,-3).]15.如图,在正四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,O 是AC 与BD 的交点,PO =1,M 是PC 的中点.设AB →=a ,AD →=b ,AP →=c .(1)用向量a ,b ,c 表示BM →.(2)在如图的空间直角坐标系中,求BM →的坐标.[解] (1)∵BM →=BC →+CM →,BC →=AD →,CM →=12CP →,CP →=AP →-AC →,AC →=AB →+AD →,∴BM →=AD →+12(AP →-AC →)=AD →+12AP →-12(AB →+AD →)=-12AB →+12AD →+12AP →=-12a +12b +12c .(2)a =AB →=(1,0,0),b =AD →=(0,1,0).∵A (0,0,0),O ⎝ ⎛⎭⎪⎫12,12,0,P ⎝ ⎛⎭⎪⎫12,12,1,∴c =AP →=OP →-OA →=⎝ ⎛⎭⎪⎫12,12,1,∴BM →=-12a +12b +12c =-12(1,0,0)+12(0,1,0)+12⎝ ⎛⎭⎪⎫12,12,1=⎝ ⎛⎭⎪⎫-14,34,12.1.3.2空间运算的坐标表示一、选择题1.已知三点A (1,5,-2),B (2,4,1),C (a,3,b +2)在同一条直线上,那么( ) A .a =3,b =-3 B .a =6,b =-1 C .a =3,b =2D .a =-2,b =1C [根据题意AB →=(1,-1,3),AC →=(a -1,-2,b +4), ∵AB →与AC →共线,∴AC →=λAB →, ∴(a -1,-2,b +4)=(λ,-λ,3λ),∴⎩⎨⎧a -1=λ,-2=-λ,b +4=3λ,解得⎩⎨⎧a =3,b =2,λ=2.故选C.]2.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于( ) A .(0,3,-6) B .(0,6,-20) C .(0,6,-6)D .(6,6,-6)B [由题a =(2,3,-4),b =(-4,-3,-2),设x =(w ,y ,z )则由b =12x -2a ,可得(-4,-3,-2)=12(w ,y ,z )-2(2,3,-4)=⎝ ⎛⎭⎪⎫12w ,12y ,12z-(4,6,-8)=⎝ ⎛⎭⎪⎫12w -4,12y -6,12z +8,解得w =0,y =6,z =-20,即x =(0,6,-20).]3.已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A .(-1,1,0) B .(1,-1,0) C .(0,-1,1)D .(-1,0,1)B [不妨设向量为b =(x ,y ,z ),A .若b =(-1,1,0),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. B .若b =(1,-1,0),则cos θ=a ·b |a |·|b |=12×2=12,满足条件. C .若b =(0,-1,1),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. D .若b =(-1,0,1),则cos θ=a ·b |a |·|b |=-22×2=-1≠12,不满足条件.故选B.]4.已知向量a =(-2,x,2),b =(2,1,2),c =(4,-2,1),若a ⊥(b -c ),则x 的值为( )A .-2B .2C .3D .-3A [∵b -c =(-2,3,1),a ·(b -c )=4+3x +2=0,∴x =-2.]5.已知A 、B 、C 三点的坐标分别为A (4,1,3),B (2,-5,1),C (3,7,λ),若AB →⊥AC →,则λ等于( )A .28B .-28C .14D .-14D [AB →=(-2,-6,-2),AC →=(-1,6,λ-3),∵AB →⊥AC →,∴AB →·AC →=-2×(-1)-6×6-2(λ-3)=0,解得λ=-14.] 二、填空题6.已知a =(1,1,0),b =(0,1,1),c =(1,0,1),p =a -b ,q =a +2b -c ,则p ·q =________.-1 [∵p =a -b =(1,0,-1),q =a +2b -c =(0,3,1), ∴p ·q =1×0+0×3+(-1)×1=-1.]7.已知空间三点A (1,1,1),B (-1,0,4),C (2,-2,3),则AB →与CA →的夹角θ的大小是________.120° [AB →=(-2,-1,3),CA →=(-1,3,-2),cos 〈AB →,CA →〉=(-2)×(-1)+(-1)×3+3×(-2)14·14=-12,∴θ=〈AB →,CA →〉=120°.]8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.1 [以D 1A 1、D 1C 1、D 1D 分别为x ,y ,z 轴建立空间直角坐标系(图略),设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),∴B 1E →=(x -1,0,1),又F (0,0,1-y ),B (1,1,1),∴FB →=(1,1,y ),由于AB ⊥B 1E ,若B 1E ⊥平面ABF ,只需FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.] 三、解答题9.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)求向量a 与向量b 的夹角的余弦值;(2)若k a +b 与k a -2b 互相垂直,求实数k 的值.[解] (1)∵a =(1,1,0),b =(-1,0,2),∴a·b =(1,1,0)·(-1,0,2)=-1, 又|a |=12+12+02=2,|b |=(-1)2+02+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=-110=-1010,即向量a 与向量b 的夹角的余弦值为-1010.(2)法一:∵k a +b =(k -1,k,2),k a -2b =(k +2,k ,-4),且k a +b 与k a -2b 互相垂直,∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0,∴k =2或k =-52, ∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52. 法二:由(1)知|a |=2,|b |=5,a·b =-1,∴(k a +b )·(k a -2b )=k 2a 2-k a ·b -2b 2=2k 2+k -10=0,得k =2或k =-52. 10.已知正三棱柱ABC -A 1B 1C 1,底面边长AB =2,AB 1⊥BC 1,点O ,O 1分别是边AC ,A 1C 1的中点,建立如图所示的空间直角坐标系.(1)求正三棱柱的侧棱长;(2)求异面直线AB 1与BC 所成角的余弦值. [解] (1)设正三棱柱的侧棱长为h ,由题意得A (0,-1,0),B (3,0,0),C (0,1,0),B 1(3,0,h ),C 1(0,1,h ), 则AB 1→=(3,1,h ),BC 1→=(-3,1,h ), 因为AB 1⊥BC 1,所以AB 1→·BC 1→=-3+1+h 2=0, 所以h = 2.(2)由(1)可知AB 1→=(3,1,2),BC →=(-3,1,0), 所以AB 1→·BC →=-3+1=-2.因为|AB 1→|=6,|BC →|=2,所以cos 〈AB 1→,BC →〉=-226=-66.所以异面直线AB 1与BC 所成角的余弦值为66.11.(多选题)若向量a =(1,2,0),b =(-2,0,1),则下列结论正确的是( )。
高中数学第二章综合检测题课后强化训练(含详解)新人教A版必修
1[答案]C[解析]••• a + 2b= (—5,6), c= (3,2),(a + 2b) c = —5x 3 + 6 x 2 = —3.[答案]D2[解析]由条件知,ab=入一1<0, ••• X1 ,当a与b反向时,假设存在负数k,使b= k a,=k k=—1… ,….11 = —k | ^=—1•• ?<1 且—1.3 [答案]A[解析]由AB CD = —AB||CD可知AB与CD的夹角为180° • AB// CD. 又由BC AD = AD||BC|知B C与AD的夹角为0°• BC // AD, •四边形ABCD是平行四边形.4 [答案]B[解析]由a i+ |b|= |a+ b知,a与b同向,故夹角为0°• a b= |a| |b|cos0 = |a| |b|.5 [答案]A[解析]AD + BE + CF = AB + BD + BC + CE + BF —BC = AB + 3T 1 T T 2 T T 1 T 2 T 1 T 1 T ,AC —§AB —BC = $AB —AC)+ 3BC = §CB + 3BC = —3BC,故选A.6 [答案]D[解析]设AB = a, AD = b,贝U a + b= AC= (—4,2), b—a= BD = (2, —6), • b= (—1, —2), a = (—3,4),• 2AB+ AD = 2a + b= (—7,6),••• |2AB) + AD|= ' (- 7)2+ 62= 85. 7 [答案]C -> -> -> 1 -> -> 1 -> -> [解析]T EF = OF — OE = 2(0C + OD) — 2(0A + OB) 1 1 =2(c + d ) — 2( a + b ), •-辞=i ( c + d — a — b ). 8 [答案]D ,_ , ~~1 -> 1 -> [解析]如图,•/ EF = EB + BF = 2AB + qAD =但 0 \ L b L i 自 H =\2,0 广 E ,2.厂 \2,2)-- -- -- -- 1 -- 又•/ DE = DA + AE =— AD + ?AB =(0, — b) + |, 2 ~ I ~- a T EF 丄 DE , •— 4 9 [答案]A [解析]设 P(x o,O),且 AP = (x o — 2, — 2),• • Ap BP = (x o — 2)(x °- 4) + 2=X o — 6x o + 10= (x o — 3) + 1,• X o = 3时,Ap Bp 取最小值.1o [答案]C2 2[解析] 由(a — c )(b — c ) = o 得 a b — (a + b ) c + c = o ,即卩 c = (a + b )c ,BP =(x —故|C ||C |W |a + b | •,即 |C |W a + b |= 2,故选 C.11 [答案]B[解析]••• a = (2,0),2,2 2 2 a + 2b | = a | + 4|b | + 4a b=4 + 4+ 4X 2 X 1 X cos60 °= 12,• |a + 2b |= 2 3, •••选 B.12.[答案]A[解析]■/ BD = BC + CD = — 4e 1 + 6e 2=-2(2e 1 — 3e 2)= — 2AB , • AB // BD ,••• ABWBD 有公共点 B,「. A 、B 、D 三点共线.[解析]•/ a i = 13,•与a 共线的单位向量为±i =±-153,怎14 [答案]5 -> 1 -> ->[解析]由已知得AD = ^(AB + AC), —————1————BC = AC — AB , • AD BC = §(AB AC) (AC — AB)1 —2 — 2 1 5=2(|AC| — |AB| )= 2(9 — 4) = 2.15 [答案]—63a +b = 2e 1— 8 e 2[解析]解方程组得,a —b =— 8&+ 16e 2a =— 3 e 1+ 4 e 2b = 5e 1 — 12e 2• a b = (— 3e + 4e 2) (5e 1 — 12e 2)2 2 =—15|e 11 + 56e 1 e 2 — 48|e 2| = — 63.16 [解析]AB = O )B — O )A = (1 — k,2k — 2),13[答案] —表,J!和告-背学习必备 欢迎下载•••A 、B 、C 三点共线,••• AB // AC , /. (1 — k) (- — 3) — (2 k — 2)(1 — 2k) = 0, /• k = 1 或一4.1 ••• A 、B 、C 是不同三点,•心1, • — 117 [解析]•/a 与a + 2b 方向相同,且a 丰0,1•••存在正数 入使a + 2b =扫,• b =只入—1)a .• a b = a • * 入一1)a 1= *「1)|a |2=入一 1>— 1.即a b 的取值范围是(一1,+s ).18 [解析](1)k a + b = k x (1,2) + (— 3,2)=(k — 3,2k + 2), a — 3b = (1,2) — 3x (— 3,2)= (10,— 4).当(k a + b ) (a — 3b ) = 0时,这两个向量垂直.由 10(k — 3) + (2k + 2)( — 4) = 0,解得k = 19.即当k = 19时,k a + b 与a — 3b 垂直.⑵当k a + b 与a — 3b 平行时,存在唯一的实数 入使k a + b = ?(a — 3b ).由(k — 3,2k + 2)= X 10,— 4)得,1 一即当k =— 3■时,两向量平行. 1•—尹+ b 与a — 3b 反向.AC = OC -OA = (1 — 2k , —3), k — 3 = 10 X,2k + 2=— 4 人 解得 1 3’1 X =— 319 [解析](1)b = (a + b ) - a = i + j,设a 与b 夹角为B,根据两向量夹角公式: a b 3 —4 72 COS 0=' = ------ = —. |a ||b | 如 10 ⑵设存在不为零的常数 a, B 使得《a +旳=0, [3 a+ 3= 0 [ a=0 那么 ?| — 4 a+ 3= 0 3= 0所以不存在非零常数 a 3,使得 a +旳=0成立.故a 和b 线性无关. 20.[证明]以A 为原点,AB 、AD 分别为x 轴、y 轴建设正方形边长为1,则AB = (1,0), AD = (0,1). 由已知,可设 AP = (a , a),并可得 EB = (1 — a,0), BF = (0, a), DP = AP — AD = (a , a — 1),立直角坐标系, a), EF = (1— a ,T DP EF = (1 — a , a) (a , a — 1)=(1 — a)a + a(a — 1)= 0.••• DP 丄 EF ,因此 DP 丄 EF.21.[解析](1)P 与 A 重合时,m x (— 2) + 3 + 2= 0, • m = 54 P 与 B 重合时,3m + 2+ 2= 0, • m = — 3. ⑵P 与A 、B 不重合时,设AP = ?PB ,贝U 40. 设 P(x , y),则 AP = (x + 2, y — 3), PB = (3 — x,2— y). 3 X — 2 x + 2= ?{3 — x) i y — 3 = X 2 — y) x = X+12m—5把x, y代入mx+ y+ 2= 0可解得k=—,3m+ 42m —5 d 5又:>, ------------------- 0. ••• m<—忘或m>~.3m + 4 3 34 _5 、由(1)(2)知,所求实数m的取值范围是一g,— 3U 2,+ m:2 2 2 222.[解析](1)|a+1b| = a + 2t a b+ t b3 2 2 = |b|t + 2|a|b Icos B t +|a| .•当t=—创器时,a+1b|有最小值., |a|cos 仁⑵当t=—节时,b (a+ t b) = a b+ t|b|2=|a| | b|cos 0—JaJ cO S^ |b|2= 0.• b± (a+1 b),即b与a+1 b的夹角为90°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一、二章综合能力检测题本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.点C 在线段AB 上,且AC →=25AB →,若AC →=λBC →,则λ等于( )A.23 B.32 C .-23D .-32[答案] C[解析] 由AC →=25AB →知,|AC →||BC →|=23,且方向相反,∴AC →=-23BC →,∴λ=-23.2.要想得到函数y =sin ⎝⎛⎭⎫x -π3的图象,只须将y =cos x 的图象( ) A .向右平移π3个单位B .向左平移π3个单位C .向右平移5π6个单位D .向左平移5π6个单位[答案] C[解析] ∵y =sin ⎝⎛⎭⎫x -π3=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫x -π3 =cos ⎝⎛⎭⎫5π6-x =cos ⎝⎛⎭⎫x -5π6, ∴将y =cos x 的图象向右移5π6个单位可得到 y =sin ⎝⎛⎭⎫x -π3的图象.3.设e 1与e 2是不共线向量,a =k e 1+e 2,b =e 1+k e 2,若a ∥b 且a ≠b ,则实数k 的值为( ) A .1 B .-1 C .0 D .±1 [答案] B[解析] ∵a ∥b ,∴存在实数λ,使a =λb (b ≠0), ∴k e 1+e 2=λ(e 1+k e 2),∴(k -λ)e 1=(λk -1)e 2,∵e 1与e 2不共线,∴⎩⎪⎨⎪⎧k -λ=0λk -1=0,∴λ=k =±1,∵a ≠b ,∴k ≠1.[点评] e 1与e 2不共线,又a ∥b ,∴可知1k =k1,∴k =±1,∵a ≠b ,∴k =-1.一般地,若e 1与e 2不共线,a =m e 1+n e 2,b =λe 1+μe 2,若a ∥b ,则有m λ=nμ.4.若sin θ=m ,|m |<1,-180°<θ<-90°,则tan θ等于( ) A.m1-m 2B .-m1-m 2 C .±m1-m 2D .-1-m 2m[答案] B[解析] ∵-180°<θ<-90°, ∴sin θ=m <0,tan θ>0, 故可知tan θ=-m1-m 2.5.△ABC 中,AB →·BC →<0,BC →·AC →<0,则该三角形为( ) A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 [答案] C[解析] 由AB →·BC →<0知,∠ABC 为锐角;由BC →·AC →<0知∠ACB 为钝角,故选C. 6.设α是第二象限的角,且⎪⎪⎪⎪cos α2=-cos α2,则α2所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 [答案] C[解析] ∵α为第二象限角,∴α2为第一或三象限角,∵⎪⎪⎪⎪cos α2=-cos α2,∴cos α2≤0,∴选C. 7.已知点A (2,-1),B (4,2),点P 在x 轴上,当P A →·PB →取最小值时,P 点的坐标是( ) A .(2,0) B .(4,0) C.⎝⎛⎭⎫103,0 D .(3,0) [答案] D[解析] 设P (x,0),则P A →=(2-x ,-1),PB →=(4-x,2),P A →·PB →=(2-x )(4-x )-2=x 2-6x +6=(x -3)2-3,当x =3时,取最小值-3,∴P (3,0).8.O 是△ABC 所在平面内一点,且满足|OB →-OC →|=|OB →+OC →-2OA →|,则△ABC 为( ) A .等腰三角形 B .直角三角形 C .等边三角形 D .等腰直角三角形 [答案] B[解析] ∵|OB →-OC →|=|OC →+OB →-2OA →|,∴|CB →|=|AB →+AC →|,由向量加法的平行四边形法则知,以AB 、AC 为邻边的平行四边形两对角线长度相等,∴AB →⊥AC →.9.如图是函数f (x )=A sin ωx (A >0,ω>0)一个周期的图象,则f (1)+f (2)+f (3)+f (4)+f (5)+f (6)的值等于( )A. 2B.22C .2+ 2D .2 2 [答案] A[解析] 由图知:T =8=2πω,∴ω=π4,又A =2,∴f (x )=2sin π4x ,∴f (1)+f (2)+f (3)+f (4)+(5)+f (6)=2sin π4+sin 2π4+sin 3π4+sin 4π4+sin 5π4+sin 6π4=2sin 3π4= 2.[点评] 观察图象可知f (x )的图象关于点(4,0)中心对称,故f (3)+f (5)=0,f (2)+f (6)=0,又f (4)=0,故原式=f (1)= 2.10.已知y =A sin(ωx +φ)在同一周期内,x =π9时有最大值12,x =4π9时有最小值-12,则函数的解析式为( )A .y =2sin ⎝⎛⎭⎫x 3-π6 B .y =12sin ⎝⎛⎭⎫3x +π6 C .y =2sin ⎝⎛⎭⎫3x -π6 D .y =12sin ⎝⎛⎭⎫3x -π6 [答案] B[解析] 由条件x =π9时有最大值12,x =4π9时有最小值-12可知,A =12,T 2=4π9-π9,∴T =2π3,∴ω=3,∴y =12sin(3x +φ),将⎝⎛⎭⎫π9,12代入得,12=12sin ⎝⎛⎭⎫π3+φ, ∴π3+φ=2k π+π2(k ∈Z ),∴φ=2k π+π6, 取k =0知选B.11.设点O 是面积为4的△ABC 内部一点,且有OA →+OB →+2OC →=0,则△AOC 的面积为( ) A .2 B .1 C.12 D.13 [答案] B[解析] 如图,以OA 、OB 为邻边作▱OADB ,则OD →=OA →+OB →,结合条件OA →+OB →+2OC →=0知,OD →=-2OC →,设OD 交AB 于M ,则OD →=2OM →,∴OM →=-OC →, 故O 为CM 的中点,∴S △AOC =12S △CAM =14S △ABC =14×4=1.12.已知sin α+cos α=713 (0<α<π),则tan α=( )A .-512B .-125C.512D .-125或-512[答案] B[解析] 解法一:∵sin α+cos α=713,0<713<1,0<α<π,∴π2<α<π,∴sin α>0,cos α<0,且|sin α|>|cos α|, ∴tan α<0且|tan α|>1,故选B.解法二:两边平方得sin αcos α=-60169,∴tan αtan 2α+1=-60169,∴60tan 2α+169tan α+60=0, ∴(12tan α+5)(5tan α+12)=0, ∴tan α=-125或-512,∵0<α<π,sin α+cos α=713>0,∴tan α=-125.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.已知扇形的圆心角为72°,半径为20cm ,则扇形的面积为________. [答案] 8πcm 2[解析] ∵72°=π180×72=2π5,∴l =2π5×20=8π,S =12l ·r =12×8π×20=80π(cm 2). 14.已知a =(3,4),b =(2,m )且a 与b 夹角为锐角,则m 的取值范围是________. [答案] m >-32且m ≠83[解析] a ·b =6+4m >0,∴m >-32,又当a 与b 同向时,23=m 4,∴m =83,故m >-32且m ≠83.15.集合A ={x |k π-π4<x <k π+π4,k ∈Z },B ={x |sin x >12},则A ∩B =________.[答案] {x |π6+2k π<x <π4+2k π,k ∈Z }∪{x |3π4+2k π<x <5π6+2k π,k ∈Z }[解析] B ={x |π6+2k π<x <5π6+2k π,k ∈Z }.如图可求A ∩B .16.已知θ为第三象限角,1-sin θcos θ-3cos 2θ=0,则5sin 2θ+3sin θcos θ=________. [答案]265[解析] ∵1-sin θcos θ-3cos 2θ=0, ∴sin 2θ-sin θcos θ-2cos 2θ=0, ∴(sin θ-2cos θ)(sin θ+cos θ)=0, ∵θ为第三象限角,∴sin θ+cos θ<0, ∴sin θ=2cos θ,∴tan θ=2, ∴5sin 2θ+3sin θcos θ=5tan 2θ+3tan θtan 2θ+1=265. 三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)已知cos ⎝⎛⎭⎫θ+π2=-12,求 cos(θ+π)sin ⎝⎛⎭⎫π2-θ[]cos(3π-θ)-1+cos(θ-2π)cos(-θ)·cos(π-θ)+sin ⎝⎛⎭⎫θ+5π2的值.[解析] ∵cos ⎝⎛⎭⎫θ+π2=-12,∴sin θ=12, 原式=-cos θcos θ(-cos θ-1)+cos θcos θ·(-cos θ)+cos θ=11+cos θ+11-cos θ=2sin 2θ=8.18.(本题满分12分)已知A (-1,2),B (2,8). (1)若AC →=13AB →,DA →=-23AB →,求CD →的坐标;(2)设G (0,5),若AE →⊥BG →,BE →∥BG →,求E 点坐标. [解析] (1)∵AB →=(3,6),AC →=13AB →=(1,2),DA →=-23AB →=(-2,-4),∴C (0,4),D (1,6),∴CD →=(1,2).(2)设E (x ,y ),则AE →=(x +1,y -2),BE →=(x -2,y -8),∵BG →=(-2,-3),AE →⊥BG →,BE →∥BG →,∴⎩⎪⎨⎪⎧-2(x +1)-3(y -2)=0-3(x -2)+2(y -8)=0,∴⎩⎨⎧x =-2213y =3213.∴E 点坐标为⎝⎛⎭⎫-2213,3213. 19.(本题满分12分)在▱ABCD 中,点M 在AB 上,且AM =3MB ,点N 在BD 上,且BN →=λBD →,C 、M 、N 三点共线,求λ的值.[证明] 设AB →=e 1,AD →=e 2,则BD →=e 2-e 1, BN →=λBD →=λ(e 2-e 1),MB →=14AB →=14e 1,BC →=AD →=e 2,∴MC →=MB →+BC →=14e 1+e 2, MN →=MB →+BN →=14e 1+λ(e 2-e 1)=λe 2+⎝⎛⎭⎫14-λe 1,∵M 、N 、C 共线,∴MN →与MC →共线, ∵e 1与e 2不共线,∴14-λ14=λ1,∴λ=15.20.(本题满分12分)是否存在实数a ,使得函数y =sin 2x +a cos x -1+58a 在闭区间⎣⎡⎦⎤0,π2上最大值为1?若存在,求出对应的a 值,若不存在,说明理由.[解析] y =-cos 2x +a cos x +5a 8=-(cos x -a 2)2+a 24+5a8,∵0≤x ≤π2,∴0≤cos x ≤1,∵最大值为1,∴(Ⅰ)⎩⎨⎧0≤a 2≤1a 24+5a8=1或(Ⅱ)⎩⎨⎧a 2<05a8=1或(Ⅲ)⎩⎨⎧a 2>1-1+a +5a8=1,由(Ⅰ)解得a =89-54,(Ⅱ)(Ⅲ)无解, ∴a =89-54. [点评] 此类问题一般把cos x (或sin x )看成未知数整理为二次函数,然后由x 的范围,得出cos x (或sin x )的取值范围A 后,分为①A 在对称轴左侧(或右侧),用单调性讨论;②对称轴在A 内,在顶点处取得最值.试一试解答下题:是否存在实数λ,使函数f (x )=-2sin 2x -4λcos x +1⎝⎛⎭⎫0≤x ≤π2的最小值是-32?若存在,求出对应的λ值,若不存在,试说明理由.答案为λ=58或12.21.(本题满分12分)(1)角α的终边经过点P (sin150°,cos150°),求tan α. (2)角α的终边在直线y =-3x 上,求sin α、cos α.[解析] (1)∵P ⎝⎛⎭⎫12,-32,∴tan α=-3212=- 3.(2)在角α终边上任取一点P (x ,y ),则y =-3x , P 点到原点距离r =x 2+y 2=10|x |,当x >0时,r =10x ,∴sin α=y r =-3x 10x =-31010,cos α=x r =x 10x =1010,当x <0时,r =-10x ,∴sin α=y r =31010,cos α=x r =-1010.22.(本题满分14分)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的一段图象如图所示.(1)求f (x )的解析式;(2)求f (x )的单调减区间,并指出f (x )的最大值及取到最大值时x 的集合;(3)把f (x )的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数? [解析] (1)由图知A =3,34T =4π-π4=15π4,∴T =5π,∴ω=25,∴f (x )=3sin ⎝⎛⎭⎫25x +φ, ∵过(4π,-3),∴-3=3sin ⎝⎛⎭⎫8π5+φ, ∴8π5+φ=2k π-π2,∴φ=2k π-21π10, ∵|φ|<π2,∴φ=-π10,∴f (x )=3sin ⎝⎛⎭⎫25x -π10.(2)由2k π+π2≤25x -π10≤2k π+3π2得, 5k π+3π2≤x ≤5k π+4π (k ∈Z ), ∴函数f (x )的单调减区间为⎣⎡⎦⎤5k π+3π2,5k π+4π (k ∈Z ). 函数f (x )的最大值为3,取到最大值时x 的集合为{x |x =5k π+3π2,k ∈Z }. (3)解法一:f (x )=3sin ⎝⎛⎭⎫2x 5-π10=3cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫2x 5-π10=3cos ⎝⎛⎭⎫2x 5-3π5 =3cos ⎣⎡⎦⎤25⎝⎛⎭⎫x -3π2, 故至少须左移3π2个单位才能使所对应函数为偶函数. 解法二:f (x )=3sin ⎝⎛⎭⎫2x 5-π10的图象的对称轴方程为25x -π10=k π+π2,∴x =5k π2+3π2,当k =0时,x =3π2,k =-1时,x =-π,故至少左移3π2个单位. 解法三:函数f (x )在原点右边第一个最大值点为2x 5-π10=π2,∴x =3π2,把该点左移到y 轴上,需平移3π2个单位.解法四:观察图象可知,欲使函数图象左移后为偶函数,由其周期为5π可知,须把⎝⎛⎭⎫π4,0点变为⎝⎛⎭⎫-5π4,0或把点(4π,-3)变为⎝⎛⎭⎫5π2,-3等,可知应左移3π2个单位.。