2016年江苏高考数学一轮复习1
2016年高考数学一轮复习小专题第⑧专题解三角形:第4节 求三角形的面积

第4节 求三角形面积【基础知识】三角形的面积求法最常用的是利用公式S =12ab sin C =12ac sin B =12bc sin A 去求.【规律技巧】计算时注意整体运算及正、余弦定理的应用.【典例讲解】例1、在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c .已知cos 2A -3cos(B +C )=1.(1)求角A 的大小;(2)若△ABC 的面积S =53,b =5,求sin B sin C 的值.【解析】(1)由cos 2A -3cos(B +C )=1,得2cos 2A +3cos A -2=0, 即(2cos A -1)(cos A +2)=0,解得cos A =12或cos A =-2(舍去).因为0<A <π,所以A =π3.(2)由S =12bc sin A =12bc ·32=34bc =53,得bc =20.又b =5,知c =4.由余弦定理得a 2=b 2+c 2-2bc cos A =25+16-20=21,故a = 21.又由正弦定理得sin B sin C =b a sin A ·c a sin A =bc a 2sin 2A =2021×34=57.【变式探究】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a cos 2C 2+c cos 2A 2=32b .(1)求证:a ,b ,c 成等差数列;(2)若∠B =60°,b =4,求△ABC 的面积.【针对训练】1.已知ABC ∆的三边长分别为4,5,6,则ABC ∆的面积为__________.【解析】试题分析:ABC ∆的边长4,a =5,6,b c ==∴由余弦定理得2224561cos 2458C +-==⨯⨯,sin C ∴===,所以三角形的面积为11sin 4522S ab C ==⨯⨯=考点:1、余弦定理的运用;2、三角形的面积公式.2.在ABC ∆中,内角,,A B C 的对边分别为,,a b c,且2,c b ==,则ABC ∆的面积最大值为 . 【答案】22 【解析】试题分析:由余弦定理得:C ab b a c cos 2222-+=,代入a b c 2,2==得C a a cos 223422-=解得222243cos aa C -=,那么4244242816248162491sin a a a a a a c -+-=+--= 根据三角形面积公式()12812411624418162422sin 2122244242+--⨯=-+-⨯=-+-⨯==a a a a a a a C ab S所以当12=a 时,面积取得最大值2212841=⨯=S . 考点:1.余弦定理;2.三角形面积公式.【方法点睛】考察到了解三角形的最值问题,属于中档题型,解决此问题的关键是面积的表达公式,C ab S sin 21=,将这样的三个量用一个量表示,尤其是C sin ,但不可用正弦定理, 而要用余弦定理C ab b a c cos 2222-+=,用a 表示出C cos ,再转化为C sin ,最后代入面积公式,将面积表示为a 的函数关系求最值.3.已知ABC ∆中,01,30a b B ===,则其面积为 .【解析】试题分析:由余弦定理,得2332312⨯⨯-+=c c ,即0232=+-c c ,即2=c 或1=c ,则三角形的面积为43211321sin 21=⨯⨯⨯==B ac S 或23212321sin 21=⨯⨯⨯==B ac S 考点:1.余弦定理;2.三角形的面积公式.【巩固提升】1.已知ABC ∆的面积为S ,且AB AC S ⋅=. (1)求A 2tan 的值; (2)若4π=B ,3CB CA -=,求ABC ∆的面积S .【答案】(1)43-;(2)3 【解析】 试题分析:(1)利用平面向量的数量积运算法则及面积公式化简已知等式,求出tan A 的值即可;(2)由tan A 与tan B 的值,利用两角和与差的正切函数公式求出tan C 的值,进而求出sin C 的值,利用正弦定理求出b 的值,再利用三角形面积公式即可求出S . 试题解析:解:(1)设ABC ∆的角C B A ,,所对应的边分别为c b a ,,, ∵AB AC S ⋅=,∴A bc A bc sin 21cos =,∴A A sin 21cos =,∴2tan =A . ∴34tan 1tan 22tan 2-=-=A A A . (2)3CB CA -=,即3AB c ==,∵2tan =A ,20π<<A ,∴552sin =A ,55cos =A . ∴10103225522552sin cos cos sin )sin(sin =⋅+⋅=+=+=B A B A B A C . 由正弦定理知:5sin sin sin sin =⋅=⇒=B Ccb B b Cc , 35523521sin 21=⋅⋅==A bc S . 考点:1.正弦定理;2.平面向量数量积的运算.2.在ABC ∆中,角A ,B ,C 的对边分别为,,a b c ,且满足cos sin a B A =.(1)求B 的大小;(2)若sin sin 2C A π⎛⎫-+= ⎪⎝⎭a =ABC ∆的面积. 【答案】(1);(2).【解析】 试题分析:本题考查解三角形正弦定理的应用和三角形中的面积公式.第一问应有正弦定理实现化边为角,在进行三角恒等变换,可得到B 的大小;第二问可由题目条件算出角A ,得到直角三角形,从而很容易算出边b 、c ,从而算出面积. 试题解析:(1)由题意得,acosB=bsinA , 则由正弦定理得,sinAcosB=sinBsinA , 因为0<A <π,则sinA≠0, 所以cosB=sinB ,则tanB=,由0<B <π得,B=;(2)由(1)得,C=π﹣A ﹣B=,则0<A <, 代入sinC ﹣sin (A+)=化简得,sin ()﹣cosA=,则cosA+sinA ﹣cosA=,即sinA ﹣cosA=,所以sin ()=,由0<A <得,则=,所以A=,则C=,在RT △ABC 中,由a=得c=、b=, 所以△ABC 的面积S=bc==.考点:1、正弦定理;2、面积公式.3.已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =. (1)若a b =,求cos ;B(2)若90B =,且a = 求ABC ∆的面积.【答案】(1)14;(2)1 【解析】试题分析:(1)由2sin 2sin sin B A C =,结合正弦定理可得:22b ac =,再利用余弦定理即可得出cos ;B(2)利用(1)及勾股定理可得c ,再利用三角形面积计算公式即可得出 试题解析:(1)由题设及正弦定理可得22b ac = 又a b =,可得2,2b c a c ==由余弦定理可得2221cos 24a cb B ac +-==(2)由(1)知22b ac =因为90B =,由勾股定理得222a c b +=故222a c ac +=,得c a ==所以ABC ∆的面积为1考点:正弦定理,余弦定理解三角形4.在△ABC 中,已知2sinBcosA=sin (A+C ). (Ⅰ)求角A ;(Ⅱ)若BC=2,△ABC 的面积是,求AB . 【答案】(Ⅰ)A=;(Ⅱ)AB=2.【解析】 试题分析:(Ⅰ)由三角形的内角和定理及诱导公式得到sin (A+C )=sinB ,代入已知的等式,根据sinB 不为0,可得出cosA 的值,再由A 为三角形的内角,利用特殊角的三角函数值即可求出A 的度数;(Ⅱ)由A 的度数求出cosA 的值,再由三角形的面积公式表示出三角形ABC 的面积,将已知的面积及sinA 的值代入求出AB•AC 的值,记作①,利用余弦定理得到BC 2=AB 2+AC 2﹣2AB•AC•cosA,求出将cosA ,BC 及AB•AC 的值代入,整理后求出AB 2+AC 2的值,再根据AB•AC 的值,利用完全平方公式变形,开方求出AB+AC 的值,记作②,联立①②即可求出AB 的长. 解:(Ⅰ)∵A+B+C=π,∴sin (A+C )=sin (π﹣B )=sinB ,∴2sinBcosA=sin (A+C )化为:2sinBcosA=sinB , ∵B ∈(0,π),∴sinB >0, ∴cosA=, ∵A ∈(0,π), ∴A=;(Ⅱ)∵A=,∴cosA=,又BC=2,S △ABC =AB•AC•sin=,即AB•AC=4①,∴由余弦定理得:BC2=AB2+AC2﹣2AB•AC•cosA=AB2+AC2﹣AB•AC,∴AB2+AC2=BC2+AB•AC=4+4=8,∴(AB+AC)2=AB2+AC2+2AB•AC=8+8=16,即AB+AC=4②,联立①②解得:AB=AC=2,则AB=2.考点:余弦定理.5.已知△ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC的面积为.【答案】15【解析】试题分析:因为三角形三边构成公差为4的等差数列,设中间的一条边为x,则最大的边为x+4,最小的边为x﹣4,根据余弦定理表示出cos120°的式子,将各自设出的值代入即可得到关于x的方程,求出方程的解即可得到三角形的边长,然后利用三角形的面积公式即可求出三角形ABC的面积.解:设三角形的三边分别为x﹣4,x,x+4,则cos120°==﹣,化简得:x﹣16=4﹣x,解得x=10,所以三角形的三边分别为:6,10,14则△ABC的面积S=×6×10sin120°=15.故答案为:15考点:余弦定理;数列的应用;正弦定理.6.设的内角所对的边长分别为,且,.(Ⅰ)求及边长的值;(Ⅱ)若的面积,求的周长.【答案】(I),;(II).【解析】试题分析:(I)由题设条件,,得到,利用三角形的正弦定理,求解,从而求解a的值;(II)由面积公式解出边长c,再由余弦定理求解边长b,从而求解三边的和即三角形的周长.试题解析:(Ⅰ)由,,∴,由正弦定理,得,∵,∴,∴,∴,又,∴.(Ⅱ)由,得到.由,∴,∴,即的周长为.考点:解三角形. 7.(2015秋•水富县校级月考)在△ABC 中,(2a ﹣c )cosB=bcosC . (1)求角B ; (2)若,求△ABC 的面积.【答案】(1)60°; (2)【解析】 试题分析:(1)由正弦定理化简已知等式可得:2sinAcosB=sinA ,结合A 为三角形内角,解得cosB ,由B 为三角形内角,可得B 的值;(2)由余弦定理可得:b 2=(a ﹣c )2+2ac ﹣2accosB ,得ac=10,利用三角形面积公式即可得解. 解:(1)∵(2a ﹣c )cosB=bcosC .∴由正弦定理可得:(2sinA ﹣sinC )cosB=sinBcosC ,整理可得:2sinAcosB=sinBcosC+sinCcosB=sin (B+C )=sinA , ∵A 为三角形内角,sinA≠0, ∴解得:cosB=,∴由B 为三角形内角,可得:B=60°;(2)∵,∴由余弦定理可得:b 2=a 2+c 2﹣2accosB=(a ﹣c )2+2ac ﹣2accosB ,得ac=10, ∴S △ABC =acsinB=.考点:余弦定理;正弦定理.8.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且22()(2a b c bc --=-,2sin sin cos2C A B =,BC 边上的中线AM .(1)求角A 和角B 的大小; (2)求ABC ∆的面积【答案】(1)6π,6π;(2【解析】试题分析:(1)在ABC ∆中,因为22()(2ab c bc --=,所以222b c a +-=,由三角形的余弦定理得222cos 2b c a A bc +-===,又因为A 为ABC ∆的内角,所以6A π=;由半角公式得211cos cos 222C C =+,因为2sin sin cos 2CA B =,所以11sin sin sin 22A B C =+,又6A π=,所以sin cos 1B C =+,由三角函数的有界性,所以C 为钝角,结合56B C π+=,求得6B π=;(2)先设出AC x =的长,根据余弦定理可求出x ,再由三角形的面积公式可得答案.试题解析:(1)在ABC ∆中,因为22()(2a b c bc --=,所以222b c a +-=,由三角形的余弦定理得222cos 2b c a A bc +-===, 又因为A 为ABC ∆的内角,所以6A π=;由半角公式得211cos cos 222C C =+, 因为2sin sin cos2C A B =,所以11sin sin sin 22A B C =+, 又6A π=,所以sin cos 1B C =+,由三角函数的有界性sin 1B ≤, 所以cos 0C ≤,结合56B C π+=,所以C 为钝角所以5sin()1cos 6C C π-=+所以cos()13C π+=-所以3C ππ+= 解得23C π=所以6B π=(2)设AC x =,由(1)知,A B =,所以AC BC x ==在AMC ∆中由余弦定理得2222cos AM AC CM AC CM C =+-⨯⨯⨯所以22222cos423x x x x π=+-⋅ 解得2x =所以11sin 2222ABC S AC BC C ∆=⨯⨯=⨯⨯=考点:1,解三角形;2.三角形的面积.。
高考数学一轮复习排列与组合专题练习及答案

高考数学一轮复习排列与组合专题练习及答案高考数学一轮复习排列与组合专题练习及答案一、填空题1.市内某公共汽车站有6个候车位(成一排),现有3名乘客随便坐在某个座位上候车,则恰好有2个连续空座位的候车方式的种数是________.[解析] 由于题目要求的是奇数,那么对于此三位数可以分成两种情况:奇偶奇,偶奇奇.如果是第一种奇偶奇的情况,可以从个位开始分析(3种选择),之后十位(2种选择),最后百位(2种选择),共322=12种;如果是第二种偶奇奇的情况,个位(3种情况),十位(2种情况),百位(不能是0,1种情况),共321=6种,因此总共12+6=18种情况.[答案] 182.若从1,2,3,,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种.[解析] 满足题设的取法可分为三类:一是四个奇数相加,其和为偶数,在5个奇数1,3,5,7,9中,任意取4个,有C=5(种);二是两个奇数加两个偶数其和为偶数,在5个奇数中任取2个,再在4个偶数2,4,6,8中任取2个,有CC=60(种);三是四个偶数相加,其和为偶数,4个偶数的取法有1种,所以满足条件的`取法共有5+60+1=66(种).[答案] 663.(2014福州调研)若一个三位数的十位数字比个位数字和百位数字都大,称这个数为伞数.现从1,2,3,4,5,6这六个数字中取3个数,组成无重复数字的三位数,其中伞数有________个.[解析] 分类讨论:若十位数为6时,有A=20(个);若十位数为5时,有A=12(个);若十位数为4时,有A=6(个);若十位数为3时,有A=2(个).因此一共有40个.[答案] 404.一个平面内的8个点,若只有4个点共圆,其余任何4点不共圆,那么这8个点最多确定的圆的个数为________.[解析] 从8个点中任选3个点有选法C种,因为有4点共圆所以减去C种再加1种,共有圆C-C+1=53个.[答案] 535.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有________种.[解析] 分两种情况:选2本画册,2本集邮册送给4位朋友有C=6(种)方法;选1本画册,3本集邮册送给4位朋友有C=4(种)方法,不同的赠送方法共有6+4=10(种).[答案] 106.用数字1,2,3,4,5,6六个数字组成一个六位数,要求数字1,2都不与数字3相邻,且该数字能被5整除,则这样的五位数有________个.[解析] 由题可知,数字5一定在个位上,先排数字4和6,排法有2种,再往排好的数字4和6形成的3个空位中插入数字1和3,插法有6种,最后再插入数字2,插法有3种,根据分步乘法计数原理,可得这样的六位数有263=36个.[答案] 367.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法有________种.[解析] 第一类,含有1张红色卡片,共有不同的取法CC=264(种);第二类,不含有红色卡片,共有不同的取法C-3C=220-12=208(种).由分类计数原理知不同的取法有264+208=472(种).[答案] 4728.在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为偶数的三位数共有________个.[解析] 在1,2,3,4,5这五个数字中有3个奇数,2个偶数,要求三位数各位数字之和为偶数,则两个奇数一个偶数,符合条件的三位数共有CCA=36(个).[答案] 36二、解答题9.从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是多少?(用数字作答).[解] 分三类:选1名骨科医生,则有C(CC+CC+CC)=360(种);选2名骨科医生,则有C(CC+CC)=210(种);选3名骨科医生,则有CCC=20(种).骨科、脑外科和内科医生都至少有1人的选派方法种数是360+210+20=590种.10.四个不同的小球放入编号为1,2,3,4的四个盒子中.(1)若每个盒子放一球,则有多少种不同的放法?(2)恰有一个空盒的放法共有多少种?[解] (1)每个盒子放一球,共有A=24(种)不同的放法;(2)法一先选后排,分三步完成.第一步:四个盒子中选一只为空盒,有4种选法;第二步:选两球为一个元素,有C种选法;第三步:三个元素放入三个盒中,有A种放法.故共有4CA=144(种)放法.法二先分组后排列,看作分配问题.第一步:在四个盒子中选三个,有C种选法;第二步:将四个球分成2,1,1三组,有C种放法;第三步:将三组分到选定的三个盒子中,有A种放法.故共有CCA=144种放法.。
高考数学一轮总复习10年高考真题分类题组5-1平面向量的概念及线性运算平面向量基本定理及坐标表示

5.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示考点一 平面向量的概念及线性运算1.(2015课标Ⅰ理,7,5分)设D 为△ABC 所在平面内一点,BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =3BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则( ) A.BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-13BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +43BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ B.BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =13BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -43BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ C.BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =43BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +13BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ D.BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =43BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -13BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 答案 ABB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +43BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +43(BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=-13BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +43BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ .故选A.2.(2014课标Ⅰ文,6,5分)设D,E,F 分别为△ABC 的三边BC,CA,AB 的中点,则BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =( )A.BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗B.12BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ C.BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ D.12BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗答案 A 设BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a,BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b,则BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-12b+a,BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-12a+b,从而BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-12B +B )+(-12B +B )=12(a+b)=BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,故选A.3.(2015课标Ⅱ理,13,5分)设向量a,b 不平行,向量λa+b 与a+2b 平行,则实数λ= . 答案 12解析 由于a,b 不平行,所以可以以a,b 作为一组基底,于是λa+b 与a+2b 平行等价于B 1=12,即λ=12.4.(2015北京理,13,5分)在△ABC 中,点M,N 满足BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ .若BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +y BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则x= ,y= .答案 12;-16解析 由BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 知M 为AC 上靠近C 的三等分点,由BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 知N 为BC 的中点,作出草图如下:则有BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ),所以BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )-23·BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -16BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ , 又因为BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +y BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,所以x=12,y=-16.5.(2013江苏,10,5分)设D,E 分别是△ABC 的边AB,BC 上的点,AD=12AB,BE=23BC.若BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λ1BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +λ2BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ (λ1,λ2为实数),则λ1+λ2的值为 .答案 12解析 BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +23BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +23(BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=-16BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +23BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ , ∵BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λ1BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +λ2BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,∴λ1=-16,λ2=23,故λ1+λ2=12.6.(2013北京理,13,5分)向量a,b,c 在正方形网格中的位置如图所示.若c=λa+μb(λ,μ∈R),则BB= .答案 4解析 以向量a 和b 的交点为坐标原点建立如图所示的坐标系,令每个小正方形的边长为1个单位,则A(1,-1),B(6,2),C(5,-1),所以a=BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,1),b=BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(6,2),c=BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,-3).由c=λa+μb 可得{-1=-B +6B ,-3=B +2B ,解得{B =-2,B =-12,所以BB =4.评析 本题主要考查平面向量的基本定理和坐标运算,考查学生的运算求解能力和在向量中解析法的应用,构建关于λ和μ的方程组是求解本题的关键. 考点二 平面向量基本定理及坐标运算1.(2015课标Ⅰ文,2,5分)已知点A(0,1),B(3,2),向量BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-4,-3),则向量BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =( )A.(-7,-4)B.(7,4)C.(-1,4)D.(1,4)答案 A 根据题意得BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(3,1),∴BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -BB ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-4,-3)-(3,1)=(-7,-4).故选A. 2.(2014北京文,3,5分)已知向量a=(2,4),b=(-1,1),则2a-b=( ) A.(5,7) B.(5,9) C.(3,7) D.(3,9)答案 A 由a=(2,4)知2a=(4,8),所以2a-b=(4,8)-(-1,1)=(5,7).故选A. 3.(2014广东文,3,5分)已知向量a=(1,2),b=(3,1),则b-a=( ) A.(-2,1) B.(2,-1) C.(2,0) D.(4,3) 答案 B b-a=(3,1)-(1,2)=(2,-1).故答案为B.4.(2014福建理,8,5分)在下列向量组中,可以把向量a=(3,2)表示出来的是( )A.e 1=(0,0),e 2=(1,2)B.e 1=(-1,2),e 2=(5,-2)C.e 1=(3,5),e 2=(6,10)D.e 1=(2,-3),e 2=(-2,3) 答案 B 设a=k 1e 1+k 2e 2,A 选项,∵(3,2)=(k 2,2k 2),∴{B 2=3,2B 2=2,无解.B 选项,∵(3,2)=(-k 1+5k 2,2k 1-2k 2), ∴{-B 1+5B 2=3,2B 1-2B 2=2,解之得{B 1=2,B 2=1. 故B 中的e 1,e 2可把a 表示出来. 同理,C 、D 选项同A 选项,无解.5.(2019课标Ⅲ文,13,5分)已知向量a=(2,2),b=(-8,6),则cos<a,b>= . 答案 -√210解析 本题考查平面向量夹角的计算,通过向量的坐标运算考查学生的运算求解能力,体现运算法则与运算方法的素养要素. 由题意知cos<a,b>=B ·B|B |·|B |=√22+22×√(-8)2+62=-√210.6.(2019北京文,9,5分)已知向量a=(-4,3),b=(6,m),且a⊥b,则m= . 答案 8解析 本题考查两向量垂直的充要条件和向量的坐标运算,考查了方程的思想方法. ∵a⊥b,∴a·b=(-4,3)·(6,m)=-24+3m=0, ∴m=8.易错警示容易把两向量平行与垂直的条件混淆.7.(2017山东文,11,5分)已知向量a=(2,6),b=(-1,λ).若a∥b,则λ=. 答案-3解析本题考查向量平行的条件.∵a=(2,6),b=(-1,λ),a∥b,∴2λ-6×(-1)=0,∴λ=-3.8.(2016课标Ⅱ文,13,5分)已知向量a=(m,4),b=(3,-2),且a∥b,则m= . 答案-6解析因为a∥b,所以B3=4-2,解得m=-6.易错警示容易把两个向量平行与垂直的条件混淆.评析本题考查了两个向量平行的充要条件.9.(2014陕西,13,5分)设0<θ<π2,向量a=(sin2θ,cosθ),b=(cosθ,1),若a∥b,则tanθ=.答案12解析∵a∥b,∴sin2θ×1-cos2θ=0,∴2sinθcosθ-cos2θ=0,∵0<θ<π2,∴cosθ>0,∴2sinθ=cosθ,∴tanθ=12.。
高三数学第一轮复习知识点总结

高三数学第一轮复习知识点总结高三数学第一轮复习知识点总结第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二:平面向量和三角函数。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。
第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。
难度比较小。
第三:数列。
数列这个板块,重点考两个方面:一个通项;一个是求和。
第四:空间向量和立体几何。
在里面重点考察两个方面:一个是证明;一个是计算。
第五:概率和统计。
这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。
第六:解析几何。
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。
考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
第七:押轴题。
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。
这是高考所考的七大板块核心的考点。
【高考调研】2016届高考数学一轮复习 第二章 第10课时 函数与方程课件 理

f(a)·f(b)<0,如图所示.
所以 f(a)·f(b)<0 是 y = f(x) 在闭区间 [a , b] 上有零点的充分 不必要条件.
课前自助餐
授人以渔 自助餐
课外阅读
题组层级快练
课前自助餐
1.函数零点的概念
零点不是点!
(1)从“数”的角度看:即是使f(x)=0的实数x; (2) 从“形”的角度看:即是函数 f(x) 的图像与 x 轴交点的 横坐标. 2.函数零点与方程根的关系
似解(精确度0.001)时,若我们选取初始区间是[1.4,1.5],则要 达到精确度要求至少需要计算的次数是________.
【解析】
1.5-1.4 设至少需要计算 n 次,由题意知 2n
<0.001,即 2n>100.由 26=64,27=128,知 n=7.
【答案】 7
1.函数零点的性质: (1) 若函数f(x) 的图像在 x =x0 处与x 轴相切,则零点x0 通常 称为不变号零点; (2) 若函数f(x) 的图像在 x =x0 处与x 轴相交,则零点x0 通常
称为变号零点.
2.函数零点的求法: 求函数y=f(x)的零点: (1)( 代数法)求方程f(x)= 0 的实数根( 常用公式法、因式分
解、直接求解等);
(2)( 几何法 ) 对于不能用求根公式的方程,可以将它与函 数y=f(x)的图像联系起来,并利用函数的性质找出零点; (3)二分法(主要用于求函数零点的近似值,所求零点都是 指此类题的解法是将f(x) = 0 ,拆成 f(x) = g(x) - h(x)
= 0 ,画出 h(x) 与 g(x) 的图像,从而确定方程 g(x) = h(x) 的根所
思考题2 在的区间为( )
(江苏专版)高考数学一轮复习 第十三章 立体几何 13.3 垂直的判定与性质讲义-人教版高三全册数学

§13.3 垂直的判定与性质考纲解读考点内容解读 要求五年高考统计常考题型 预测热度2013 2014 2015 2016 20171.线面垂直的判定与性质1.线面垂直的证明2.线面垂直的性质应用B16题14分解答题 ★★★2.面面垂直的判定与性质1.面面垂直的证明2.面面垂直的性质应用B15题14分 解答题 ★★★分析解读 空间垂直问题是某某高考的热点内容,主要考查线面垂直和面面垂直的判定与性质运用,复习时要认真掌握解决垂直问题常用的方法,识别一些基本图形如:锥体、柱体的特征.五年高考考点一 线面垂直的判定与性质1.(2016某某理,2,5分)已知互相垂直的平面α,β交于直线l.若直线m,n 满足m∥α,n⊥β,则以下说法正确的是.①m∥l;②m∥n;③n⊥l;④m⊥n. 答案 ③2.(2015某某,16,14分)如图,在直三棱柱ABC-A 1B 1C 1中,已知AC⊥BC,BC=CC 1,设AB 1的中点为D,B 1C∩BC 1=E. 求证:(1)DE∥平面AA 1C 1C; (2)BC 1⊥AB1.证明 (1)由题意知,E 为B 1C 的中点, 又D 为AB 1的中点,因此DE∥AC. 又因为DE ⊄平面AA 1C 1C,AC ⊂平面AA 1C 1C, 所以DE∥平面AA 1C 1C.(2)因为棱柱ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB1⊂平面B1AC,所以BC1⊥AB1.3.(2015某某,19,13分)如图,三棱锥P-ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥P-ABC的体积;(2)证明:在线段PC上存在点M,使得AC⊥BM,并求的值.解析(1)由题设AB=1,AC=2,∠BAC=60°,可得S△ABC=·AB·AC·sin 60°=.由PA⊥平面ABC,可知PA是三棱锥P-ABC的高,又PA=1,所以三棱锥P-ABC的体积V=·S△ABC·PA=.(2)在平面ABC内,过点B作BN⊥AC,垂足为N.在平面PAC内,过点N作MN∥PA交PC于点M,连结BM.由PA⊥平面ABC知PA⊥AC,所以MN⊥AC.由于BN∩MN=N,故AC⊥平面MBN.又BM⊂平面MBN,所以AC⊥BM.在直角△BAN中,AN=AB·cos∠BAC=,从而NC=AC-AN=.由MN∥PA,得==.4.(2015某某,20,12分)如图,三棱锥P-ABC中,平面PAC⊥平面ABC,∠ABC=,点D,E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF∥BC.(1)证明:AB⊥平面PFE;(2)若四棱锥P-DFBC的体积为7,求线段BC的长.解析(1)证明:如图,由DE=EC,PD=PC知,E为等腰△PDC中DC边的中点,故PE⊥AC.又平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PE⊂平面PAC,PE⊥AC,所以PE⊥平面ABC,从而PE⊥AB.因∠ABC=,EF∥BC,故AB⊥EF.从而AB与平面PFE内两条相交直线PE,EF都垂直,所以AB⊥平面PFE.(2)设BC=x,则在直角△ABC中,AB==,从而S△ABC=AB·BC=x.由EF∥BC知,==,得△AFE∽△ABC,故==,即S△AFE=S△ABC.由AD=AE,S△AFD=S△AFE=·S△ABC=S△ABC=x,从而四边形DFBC的面积为S DFBC=S△ABC-S△AFD=x-x=x.由(1)知,PE⊥平面ABC,所以PE为四棱锥P-DFBC的高.在直角△PEC中,PE===2.体积V P-DFBC=·S DFBC·PE=·x·2=7,故得x4-36x2+243=0,解得x2=9或x2=27,由于x>0,可得x=3或x=3,所以,BC=3或BC=3.5.(2014某某,20,13分)如图,在正方体ABCD-A1B1C1D1中,E,F,P,Q,M,N分别是棱AB,AD,DD1,BB1,A1B1,A1D1的中点. 求证:(1)直线BC1∥平面EFPQ;(2)直线AC1⊥平面PQMN.证明(1)连结AD1,由ABCD-A1B1C1D1是正方体,知AD1∥B C1,因为F,P分别是AD,DD1的中点,所以FP∥AD1.从而BC1∥FP.而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.(2)如图,连结AC,BD,则AC⊥BD.由CC1⊥平面ABCD,BD⊂平面ABCD,可得CC1⊥BD.又AC∩CC1=C,所以BD⊥平面ACC1.而AC1⊂平面ACC1,所以BD⊥AC1.因为M,N分别是A1B1,A1D1的中点,所以MN∥BD,从而MN⊥AC1.同理可证PN⊥AC1.又PN∩MN=N,所以直线AC1⊥平面PQMN.教师用书专用(6—8)6.(2014某某,19,12分)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.(1)求证:EF⊥平面BCG;(2)求三棱锥D-BCG的体积.附:锥体的体积公式V=Sh,其中S为底面面积,h为高.解析(1)证明:由已知得△ABC≌△DBC.因此AC=DC.又G为AD的中点,所以CG⊥AD.同理BG⊥AD,因此AD⊥平面BGC.又EF∥AD,所以EF⊥平面BCG.(2)在平面ABC内,作AO⊥CB,交CB延长线于O,由平面ABC⊥平面BCD,知AO⊥平面BDC.又G为AD中点,因此G到平面BDC的距离h是AO长度的一半.在△AOB中,AO=AB·sin 60°=,所以V D-BCG=V G-BCD=·S△DBC·h=×BD·BC·sin 120°·=.7.(2014某某,20,12分)如图,四棱锥P-ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上一点,且BM=.(1)证明:BC⊥平面POM;(2)若MP⊥AP,求四棱锥P-ABMO的体积.解析(1)证明:如图,连结OB,因为ABCD为菱形,O为菱形的中心,所以AO⊥OB.因为∠BAD=,所以OB=AB·sin∠OAB=2sin=1,又因为BM=,且∠OBM=,所以在△OBM中,OM2=OB2+BM2-2OB·BM·cos∠OBM=12+-2×1××cos=.所以OB2=OM2+BM2,故OM⊥BM.又PO⊥底面ABCD,所以PO⊥BC.从而BC与平面POM内两条相交直线OM,PO都垂直,所以BC⊥平面POM.(2)由(1)可得,OA=AB·cos∠OAB=2·cos=.设PO=a,由PO⊥底面ABCD知,△POA为直角三角形,故PA2=PO2+OA2=a2+3.又△POM也是直角三角形,故PM2=PO2+OM2=a2+.连结AM,在△ABM中,AM2=AB2+BM2-2AB·BM·cos∠ABM=22+-2×2××cos=.由于MP⊥AP,故△APM为直角三角形,则PA2+PM2=AM2,即a2+3+a2+=,得a=或a=-(舍去),即PO=.此时S四边形ABMO=S△AOB+S△OMB=·AO·OB+·BM·OM=××1+××=.所以V P-ABMO=·S四边形ABMO·PO=××=.8.(2013某某,18,12分)如图,四棱锥P-ABCD的底面ABCD是边长为2的菱形,∠BAD=60°.已知PB=PD=2,PA=.(1)证明:PC⊥BD;(2)若E为PA的中点,求三棱锥P-BCE的体积.解析(1)证明:连结AC,交BD于O点,连结PO.因为底面ABCD是菱形,所以AC⊥BD,BO=DO.由PB=PD知,PO⊥BD.再由PO∩AC=O知,BD⊥面APC.因此BD⊥PC.(2)因为E是PA的中点,所以V P-BCE=V C-PEB=V C-PAB=V B-APC.由PB=PD=AB=AD=2知,△ABD≌△PBD.因为∠BAD=60°,所以PO=AO=,AC=2,BO=1.又PA=,PO2+AO2=PA2,即PO⊥AC,故S△APC=PO·AC=3.由(1)知,BO⊥面APC,因此V P-BCE=V B-APC=×·BO·S△APC=.考点二面面垂直的判定与性质1.(2017某某,15,14分)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.证明(1)在平面ABD内,因为AB⊥AD,EF⊥AD,所以EF∥AB.又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC⊂平面BCD,BC⊥BD,所以BC⊥平面ABD.因为AD⊂平面ABD,所以BC⊥AD.又AB⊥AD,BC∩AB=B,AB⊂平面ABC,BC⊂平面ABC,所以AD⊥平面ABC.又因为AC⊂平面ABC,所以AD⊥AC.2.(2017某某文,18,12分)由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示.四边形ABCD 为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.证明本题考查线面平行与面面垂直.(1)取B1D1的中点O1,连结CO1,A1O1,由于ABCD-A1B1C1D1是四棱柱,所以A1O1∥OC,A1O1=OC,因此四边形A1OCO1为平行四边形,所以A1O∥O1C.又O1C⊂平面B1CD1,A1O⊄平面B1CD1,所以A1O∥平面B1CD1.(2)因为AC⊥BD,E,M分别为AD和OD的中点,所以EM⊥BD,又A1E⊥平面ABCD,BD⊂平面ABCD,所以A1E⊥BD,因为B1D1∥BD,所以EM⊥B1D1,A1E⊥B1D1,又A1E,EM⊂平面A1EM,A1E∩EM=E,所以B1D1⊥平面A1EM,又B1D1⊂平面B1CD1,所以平面A1EM⊥平面B1CD1.教师用书专用(3)3.(2016,18,14分)如图,在四棱锥P-ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面PAC;(2)求证:平面PAB⊥平面PAC;(3)设点E为AB的中点.在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.解析(1)证明:因为PC⊥平面ABCD,所以PC⊥DC.(2分)又因为DC⊥AC,AC∩PC=C,所以DC⊥平面PAC.(4分)(2)证明:因为AB∥DC,DC⊥AC,所以AB⊥AC.(6分)因为PC⊥平面ABCD,所以PC⊥AB.(7分)又AC∩PC=C,所以AB⊥平面PAC.又AB⊂平面PAB,所以平面PAB⊥平面PAC.(9分)(3)棱PB上存在点F,使得PA∥平面CEF.证明如下:(10分)取PB中点F,连结EF,CE,CF.又因为E为AB的中点,所以EF∥PA.(13分)又因为PA⊄平面CEF,所以PA∥平面CEF.(14分)三年模拟A组2016—2018年模拟·基础题组考点一线面垂直的判定与性质1.(苏教必2,一,2,变式)如图所示,已知矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一个点Q满足PQ⊥QD,则a的值等于.答案 22.(苏教必2,一,2,变式)如图,已知四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,则图中共有个直角三角形.答案 43.(2018某某海安高级中学高三阶段考试)如图,在斜三棱柱ABC-A1B1C1中,侧面A1ACC1是边长为2的菱形,∠A1AC=60°,在平面ABC中,AB=2,BC=4,M为BC的中点,过A1,B1,M三点的平面交AC于点N.(1)求证:N为AC的中点;(2)求证:AC⊥平面A1B1MN.证明(1)在三棱柱ABC-A1B1C1中,AB∥A1B1,平面ABC∥平面A1B1C1,∵平面A1B1M∩平面ABC=MN,平面A1B1M∩平面A1B1C1=A1B1,所以MN∥A1B1.因为AB∥A1B1,所以MN∥AB,所以=.因为M为BC的中点,所以N为AC的中点.(2)因为四边形A1ACC1是边长为2的菱形,∠A1AC=60°,所以在三角形A1AN中,AN=1,AA1=2,由余弦定理得A1N=,故A1A2=AN2+A1N2,所以∠A1NA=90°,即A1N⊥AC.在三角形ABC中,AC=2,AB=2,BC=4,所以BC2=AB2+AC2,所以∠BAC=90°,即AB⊥AC.又MN∥AB,所以AC⊥MN.因为MN∩A1N=N,MN⊂面A1B1MN,A1N⊂面A1B1MN,所以AC⊥平面A1B1MN.4.(2017某某某某期末调研,16)如图,在四棱锥E-ABCD中,平面EAB⊥平面ABCD,四边形ABCD为矩形,EA⊥EB,点M,N分别是AE,CD的中点.求证:(1)直线MN∥平面EBC;(2)直线EA⊥平面EBC.证明(1)取BE的中点F,连结CF,MF,因为M是AE的中点,所以MF∥AB,MF=AB,又N是矩形ABCD的边CD的中点,所以NC∥AB,NC=AB,所以MF NC,所以四边形MNCF是平行四边形,所以MN∥CF,又MN⊄平面EBC,CF⊂平面EBC,所以MN∥平面EBC.(2)在矩形ABCD中,BC⊥AB,因为平面EAB⊥平面ABCD,平面ABCD∩平面EAB=AB,BC⊂平面ABCD,所以BC⊥平面EAB,又EA⊂平面EAB,所以BC⊥EA,又EA⊥EB,BC∩EB=B,EB,BC⊂平面EBC,所以EA⊥平面EBC.5.(2017苏锡常镇四市教学情况调研(一),16)如图,在斜三棱柱ABC-A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,E是棱AB上一点,且OE∥平面BCC1B1.(1)求证:E是AB的中点;(2)若AC1⊥A1B,求证:AC1⊥CB.证明(1)连结BC1,因为OE∥平面BCC1B1,且OE⊂平面ABC1,平面BCC1B1∩平面ABC1=BC1,所以OE∥BC1.因为侧面AA1C1C是菱形,AC1∩A1C=O,所以O是AC1的中点,所以E是AB的中点.(2)因为侧面AA1C1C是菱形,所以AC1⊥A1C,又AC1⊥A1B,A1C∩A1B=A1,A1C,A1B⊂面A1BC,所以AC1⊥面A1BC,因为BC⊂平面A1BC,所以AC1⊥BC.考点二面面垂直的判定与性质6.(2018某某某某中学高三阶段测试)如图,在几何体中,四边形ABCD为菱形,对角线AC与BD的交点为O,四边形DCEF为梯形,EF∥CD,FB=FD.(1)若CD=2EF,求证:OE∥平面ADF;(2)求证:平面ACF⊥平面ABCD.证明(1)取AD的中点G,连结OG,FG,∵对角线AC与BD的交点为O,∴OG∥CD,OG=CD.∵EF∥CD,CD=2EF,∴OG∥EF,OG=EF,∴四边形OGFE为平行四边形,∴OE∥FG.∵FG⊂平面ADF,OE⊄平面ADF,∴OE∥平面ADF.(2)连结OF.∵四边形ABCD为菱形,∴OC⊥BD,∵FB=FD,O是BD的中点,∴OF⊥BD.又∵OF∩OC=O,∴BD⊥平面ACF.∵BD⊂平面ABCD,∴平面ACF⊥平面ABCD.7.(2017某某某某辅仁中学质检,16)如图,在四棱锥P-ABCD中,AB∥CD,AC⊥BD,AC与BD交于点O,且平面PAC⊥平面ABCD,E为棱PA上一点.(1)求证:BD⊥OE;(2)若AB=2CD,AE=2EP,求证:EO∥平面PBC.证明(1)因为平面PAC⊥底面ABCD,平面PAC∩底面ABCD=AC,BD⊥AC,BD⊂平面ABCD,所以BD⊥平面PAC,又因为OE⊂平面PAC,所以BD⊥OE.(2)因为AB∥CD,AB=2CD,AC与BD交于O,所以CO∶OA=CD∶AB=1∶2,又因为AE=2EP,所以CO∶OA=PE∶EA,所以EO∥PC,又因为PC⊂平面PBC,EO⊄平面PBC,所以EO∥平面PBC.8.(2017某某某某,某某一模,15)如图,在直三棱柱ABC-A1B1C1中,BC⊥AC,D,E分别是AB,AC的中点.(1)求证:B1C1∥平面A1DE;(2)求证:平面A1DE⊥平面ACC1A1.证明(1)因为D,E分别是AB,AC的中点,所以DE∥BC,又因为在三棱柱ABC-A1B1C1中,B1C1∥BC,所以B1C1∥DE.又B1C1⊄平面A1DE,DE⊂平面A1DE,所以B1C1∥平面A1DE.(2)在直三棱柱ABC-A1B1C1中,CC1⊥底面ABC,又DE⊂底面ABC,所以CC1⊥DE.又BC⊥AC,DE∥BC,所以DE⊥AC,又CC1,AC⊂平面ACC1A1,且CC1∩AC=C,所以DE⊥平面ACC1A1.又DE⊂平面A1DE,所以平面A1DE⊥平面ACC1A1.9.(苏教必2,一,2,变式)如图所示,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ABD沿对角线BD折起,记折起后A的位置为点P,且使平面PBD⊥平面BCD.求证:(1)CD⊥平面PBD.(2)平面PBC⊥平面PDC.证明(1)∵AD=AB,∠BAD=90°,∴∠ABD=∠ADB=45°,又∵AD∥BC,∴∠DBC=45°,又∠DCB=45°,∴∠BDC=90°,即BD⊥DC.∵平面PBD⊥平面BCD,平面PBD∩平面BCD=BD,∴CD⊥平面PBD.(2)由CD⊥平面PBD得CD⊥BP.又BP⊥PD,PD∩CD=D,∴BP⊥平面PDC.又BP⊂平面PBC,∴平面PBC⊥平面PDC.B组2016—2018年模拟·提升题组(满分:20分时间:10分钟)一、填空题(每小题5分,共5分)1.(苏教必2,一,2,变式)设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题正确的是.①若m⊥n,n∥α,则m⊥α;②若m∥β,β⊥α,则m⊥α;③若m⊥β,n⊥β,n⊥α,则m⊥α;④若m⊥n,n⊥β,β⊥α,则m⊥α.答案③二、解答题(共15分)2.(2017某某某某、某某、某某三模,16)如图,在四棱锥P-ABCD中,底面ABCD是矩形,平面PAD⊥平面ABCD,AP=AD,M,N分别为棱PD,PC的中点.求证:(1)MN∥平面PAB;(2)AM⊥平面PCD.证明(1)因为M,N分别为棱PD,PC的中点,所以MN∥DC,又因为底面ABCD是矩形,所以AB∥DC,所以MN∥AB.又AB⊂平面PAB,MN⊄平面PAB,所以MN∥平面PAB.(2)因为AP=AD,M为PD的中点,所以AM⊥PD.因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊥AD,CD⊂平面ABCD,所以CD⊥平面PAD.又AM⊂平面PAD,所以CD⊥AM.因为CD,PD⊂平面PCD,CD∩PD=D,所以AM⊥平面PCD.C组2016—2018年模拟·方法题组方法1 证明线面垂直的方法1.(2017某某某某师X大学附属中学调研)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,点E是PC的中点,作EF⊥PB交PB于点F.(1)求证:PA∥平面EBD;(2)求证:PB⊥平面EFD.证明(1)连结BE,BD,AC,设AC交BD于G,连结EG,则G为AC的中点,在△PAC中,E为PC的中点,G为AC的中点,故PA∥EG,又EG⊂面BED,PA⊄面BED,所以PA∥平面EBD.(2)∵PD⊥面ABCD,∴PD⊥BC.∵BC⊥CD,PD∩CD=D,PD,CD⊂面PCD,∴BC⊥面PCD,又DE⊂面PCD,∴BC⊥DE,∵PD=CD,E为PC的中点,∴DE⊥PC,又BC∩PC=C,BC,PC⊂面PBC,∴DE⊥面PBC,又PB⊂面PBC,∴DE⊥PB,又∵PB⊥EF,EF∩DE=E,EF,DE⊂面EFD,∴PB⊥平面EFD.方法2 证明面面垂直的方法2.(2017某某某某期中,17)如图,在正方体ABCD-A1B1C1D1中,E为棱DD1的中点,求证: (1)BD1∥平面EAC;(2)平面EAC⊥平面AB1C.证明(1)连结BD交AC于O,连结EO.易知O为BD的中点,因为E为DD1的中点,所以EO∥BD1. 又BD1⊄平面EAC,EO⊂平面EAC,所以BD1∥平面EAC.(2)易知AC⊥BD,DD1⊥平面ABCD,所以DD1⊥AC,因为BD∩DD1=D,所以AC⊥平面BDD1,所以AC⊥BD1,同理可证AB1⊥BD1,又AC∩AB1=A,所以BD1⊥平面AB1C,因为EO∥BD1,所以EO⊥平面AB1C,又EO⊂平面EAC,所以平面EAC⊥平面AB1C.。
高考数学一轮复习(课件+课时作业) (52)
2.用0,1,…,9十个数字,可以组成有重复数字的三位数 的个数为( ) A.243 B.252 C.261 D.279
解析:由分步乘法计数原理知:用0,1,…,9十个数字组 成三位数(可有重复数字)的个数为9×10×10=900,组成没有 重复数字的三位数的个数为9×9×8=648,则组成有重复数字 的三位数的个数为900-648=252,故选B. 答案:B
悟· 技法 利用两个计数原理解决应用问题的一般思路 (1)弄清完成一件事是做什么. (2)确定是先分类后分步,还是先分步后分类. (3)弄清分步、分类的标准是什么. (4)利用两个计数原理求解.
[变式练]——(着眼于举一反三) 1.在三位正整数中,若十位数字小于个位和百位数字,则 称该数为“驼峰数”.比如“102”,“546”为“驼峰数”, 由数字1,2,3,4可构成无重复数字的“驼峰数”有________个.
解析:因为焦点在x轴上,m>n,以m的值为标准分类,分 为四类:第一类:m=5时,使m>n,n有4种选择;第二类:m =4时,使m>n,n有3种选择;第三类:m=3时,使m>n,n有2 种选择;第四类:m=2时,使m>n,n有1种选择.由分类加法 计数原理,符合条件的椭圆共有10个. 答案:10
悟· 技法 1.分类加法计数原理的实质 分类加法计数原理针对的是“分类”问题,完成一件事要分为 若干类,各类的方法相互独立,每类中的各种方法也相对独 立,用任何一类中的任何一种方法都可以单独完成这件事. 2.使用分类加法计数原理遵循的原则 有时分类的划分标准有多个,但不论是以哪一个为标准, 都应遵循“标准要明确,不重不漏”的原则.
3.在所有的两位数中,个位数字大于十位数字的两位数共 有( ) A.50个 B.45个 C.36个 D.35个
(江苏专版)高考数学一轮复习第二章函数的概念与基本初等函数Ⅰ第五节指数与指数函数实用课件文
答案:-1967
第十页,共45页。
39
2. a 2 a-3÷ 3 a-73 a13=________.
解析:原式=(a
9 2
a
3 2
)
1 3
÷(a
7 3
a
13 3
)
1 2
=(a3)
1 3
÷(a2)
1 2
=a÷a=1.
答案:1
4
1
3. 4b
a 3 -8a 3 b
2 3
+23
ab+a
2 3
÷a
2 3
3
1.指数函数的图象
函数
y=ax(a>0,且 a≠1)
0<a<1
a>1
图象
在 x 轴_上__方_,过定点_(0_,_1_)
图象
特征 当 x 逐渐增大时,图象逐渐 当 x 逐渐增大时,图象
下___降_
逐渐_上__升_
第十五页,共45页。
2.指数函数图象画法的三个关键点 画指数函数 y=ax(a>0,且 a≠1)的图象,应抓住三个关键 点:(1,a),(0,1),-1,1a. 3.指数函数的图象与底数大小的比较 如图是指数函数(1)y=ax,(2)y=bx,(3)y=cx,(4)y=dx 的图 象,底数 a,b,c,d 与 1 之间的大小关系为 c>d>1>a>b.
2
1
2
又因为 a=2 3 =4 3 ,c=25 3 =5 3 ,
2
由函数 y=x 3 在(0,+∞)上为增函数知,a<c.
综上得 b<a<c. [答案] c>a>b
第二十九页,共45页。
[方法技巧] 比较指数式大小的方法
比较两个指数式大小时,尽量化同底或同指. (1)当底数相同,指数不同时,构造同一指数函数,然后利 用指数函数性质比较大小. (2)当指数相同,底数不同时,构造两个指数函数,利用图 象比较大小. (3)当底数不同,指数也不同时,常借助 1,0 等中间量进行 比较.
(江苏版)高考数学一轮复习 专题4.4 三角函数图像与性质(讲)-江苏版高三全册数学试题
专题4.4 三角函数图像与性质【考纲解读】【直击考点】题组一 常识题1. 函数y =2sin 12x -3的最小正周期是________.【解析】最小正周期T =2π12=4π.2. 函数y =A sin x +1(A >0)的最大值是5,则它的最小值是________.【解析】依题意得A +1=5,所以A =4,所以函数y =4sin x +1的最小值为-4+1=-3. 3.判断函数y =2cos x 在[-π,0]上的单调性:____________.(填“增函数”或“减函数”) 【解析】由余弦函数的单调性,得函数y =2cos x 在[-π,0]上是增函数. 4.不等式2sin x >3的解集为______________________________. 【解析】不等式2sin x >3,即sin x >32,由函数y =sin x 的图像得所求解集为⎩⎨⎧⎭⎬⎫x π3+2k π<x <2π3+2k π,k ∈Z .题组二 常错题5.函数y =1-2cos x 的单调递减区间是___________________________.【解析】函数y =1-2cos x 的单调递减区间即函数y =-cos x 的单调递减区间,也即函数y =cos x 的单调递增区间,即[2k π-π,2k π](k ∈Z ).6.若动直线x =a 与函数f (x )=sin x 和g (x )=cos x 的图像分别交于M ,N 两点,则|MN |的最大值为________.【解析】设直线x =a 与函数f (x )=sin x 的图像的交点为M (a ,y 1),直线x =a 与函数g (x )=cos x的图像的交点为N (a ,y 2),则|MN |=|y 1-y 2|=|sin a -cos a |=2⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫a -π4≤2,7.函数f (x )=2sin x4对任意的x ∈R ,都有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值为________.题组三 常考题8.定义在区间[0,2π]上的函数y =sin 2x 的图像与y =sin x 的图像的交点个数是________. 【解析】由sin 2x =sin x 得sin x =0或cos x =12,因为x ∈[0,2π],所以x =0,π3,π,5π3,2π,交点个数是5.9. 在函数①y =cos|2x |,②y =|sin x |,③y =sin ⎝ ⎛⎭⎪⎫2x -π3,④y =tan ⎝ ⎛⎭⎪⎫2x +π5中,最小正周期为π的所有函数是________.(填序号)【解析】函数y =cos|2x |=cos 2x ,其最小正周期为π,①正确;将函数y =sin x 的图像中位于x 轴上方的图像不变,位于x 轴下方的图像对称地翻折至x 轴上方,即可得到y =|sin x |的图像,所以其最小正周期为π,②正确;函数y =sin ⎝ ⎛⎭⎪⎫2x -π3的最小正周期为π,③正确;函数y =tan ⎝ ⎛⎭⎪⎫2x +π5的最小正周期为π2,④不正确.【知识清单】1.正弦、余弦、正切函数的图像与性质 1.三角函数线三角函数线是通过有向线段直观地表示出角的各种三角函数值的一种图示方法。
【创新设计】(江苏专用)高考数学一轮复习 第二章 第1讲 函数及其表示配套课件 理 新人教A版
【训练3】 求下列函数的值域: (1)y=x2x-2-x+x 1;(2)y=2x-1- 13-4x. 解 (1)法一 (配方法)
∵y=1-x2-1x+1,又 x2-x+1=x-122+34≥34,
∴0<x2-1x+1≤43,∴-13≤y<1.
∴函数的值域为-13,1.
法二 (判别式法) 由 y=x2x-2-x+x 1,x∈R. 得(y-1)x2+(1-y)x+y=0. ∵y=1 时,x∈∅,∴y≠1.
考向一 函数与映射的概念
【例1】 (1)(2012·临沂调研)已知a,b为两个不相等的实 数,集合M={a2-4a,-1},N={b2-4b+1,-2}, f:x―→x表示把M中的元素x映射到集合N中仍为x, 则a+b等于________. (2)已知映射f:A―→B.其中A=B=R,对应关系f: x―→y=-x2+2x,对于实数k∈B,在集合A中不存在 元素与之对应,则k的取值范围是________.
又∵x∈R,∴Δ=(1-y)2-4y(y-1)≥0,解得-13≤y≤1. 综上得-13≤y<1.∴函数的值域为-13,1.
(2)法一 (换元法) 设 13-4x=t,则 t≥0,x=13-4 t2, 于是 f(x)=g(t)=2·13-4 t2-1-t =-12t2-t+121=-12(t+1)2+6, 显然函数 g(t)在[0,+∞)上是单调递减函数,
[方法总结] (1)当所给函数是分式的形式,且分子、分母是 同次的,可考虑用分离常数法;(2)若与二次函数有关, 可用配方法;(3)若函数解析式中含有根式,可考虑用换 元法或单调性法;(4)当函数解析式结构与基本不等式有 关,可考虑用基本不等式求解;(5)分段函数宜分段求 解;(6)当函数的图象易画出时,还可借助于图象求解.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六模块高等数学初步第十一章随机变量的概率分布和期望排列组合例题精析题型一选择合适的角度开始计数1.某公司计划在北京、上海、合肥、天柱山四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该公司不同的投资方案种数是.(用数字作答)根故答案为60.--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------题型二运用分类、分布技术原理解题2.(1)用数字0,1,2可以组成多少个三位数?(数字可以重复出现)(2)用数字0,1,2可以组成多少个无重复数字的三位数?(3)用数字0,1,2可以组成多少个无重复数字的自然数?------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------题型三运用排列、组合的知识计数3.有六个球,其中3个相同的黑球,红白蓝色球各1个,现从中取出4个球排成一列,共有多少种不同的排法?----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------题型四运用直接法、间接法解带限制条件的计数问题4.五位同学参加比赛,决出了第一到第五的名次,评委告诉甲乙两位同学,你们两位都没有拿到冠军,但是也不是最差,求5位同学排名顺序有多少种不同的情况?----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------相互独立问题与独立重复试验例题精析题型一两个事件相互独立的问题1.甲、乙两人各进行一次射击,如果两人击中目标的概率都是0.8,计算:(1)两人都击中目标的概率。