材料分析方法 第3版( 周玉) 出版社配套 第8章 机械工业出版社
材料分析方法

现代材料分析方法第一章绪论1、简述材料研究的意义和内容答:意义:材料的性能取决于材料的组成、结构和外部因素(使用条件),材料的结构又取决于材料的制备工艺和材料的使用条件,而材料的性能决定着材料的使用性能。
所以研究材料对于人们生产、使用、和发展材料具有重要的指导意义。
内容:A:材料的组成B:材料的结构C:材料的性能2 材料研究方法是如何分类的?怎样理解现代研究方法的重要性?答:层次:重要性:随着现代科学的不断进步,材料研究方法不断发展,有了先进的现代的材料的分析方法(分析技术和仪器),人们对物质结构及性能的认识从而不断深入,科研工作者对材料的特殊性能成因有了更细微的探究,对材料的物理化学变化和显微结构有了深入地了解,极大的促进了材料科学的发展。
因此可以说,材料科学的发展是离不开现代材料分析方法的。
3、材料结构的层次是如何划分的?答:材料结构从尺度上来讲,可分为微观结构、亚显微结构、显微结构和宏观结构等四个不同的层次。
每个层次上观察所用的结构组成单元均不相同。
按观察用具或设备的分辨率范围来划分:A:宏观与显微结构的划分以人眼的分辨率为界;B:显微结构和亚显微结构的划分以光学显微镜的分辨率为界;C:亚显微结构和微观结构的分界相当于普通扫描电子显微镜的分辨率。
即宏观结构:肉眼的分辨率。
物体尺寸>100μm显微结构:光学显微镜(OM)的分辨率。
物体尺寸0.2μm~100μm亚显微结构:普通电子显微镜的分辨率。
物体尺寸0.01μm~0.2μm微观结构:高分辨电子显微镜的分辨率。
物体尺寸<0.01μm4、材料分析的内容是什么?答:A:表面和内部组织形貌:a材料的外观形貌(如纳米线、断口、裂纹等)b晶粒大小与形态c各种相的尺寸与形态、含量与分布d界面(表面、相界、晶界)e位向关系(新相与母相、孪生相)f晶体缺陷(点缺陷、位错、层错)、夹杂物g内应力B:晶体的相结构:a晶体结构类型b晶体常数c相组成C:化学成分和价键(电子)结构:a宏观和微区化学成分(不同相的成分、基体与析出相的成分)b同种元素的不同价键类型c化学环境D:有机物的分子结构和官能团。
材料分析方法

2014-7-25
1. 绪论 1.1材料的组织结构与性能关系 组织结构决定性能是自然界永恒的规律, 材料的性能是由其内部的微观组织结构 所决定的,而材料的结构又同其成分及 形成条件密不可分。材料科学就是研究 材料的化学成分 — 组织结构 — 性能关系 的科学。
2014-7-25
1.2 材料的微观组织结构控制
2014-7-25
• 2.2.3 X射线荧光光谱 • 发展历史:1895年德国物理学家伦琴(Rontgen W) 发现X射线,1896年法国物理学家乔治(Georges S) 发现X射线荧光,20世纪40年代末,弗利德曼 (Freedman H)和伯克斯(Birks L)研制出波长色 散X射线荧光光谱仪。此后,X射线荧光光谱仪进入蓬 勃发展阶段。经过几代人努力,已经由单一的波长色 散X射线荧光光谱仪发展成拥有波长色散、能量色散、 全反射、同步辐射、质子X射线荧光光谱仪和X射线微 荧光分析仪等一个大家族。
2014-7-25
• 紫外—可见吸光光度法 • 原理:利用被测物质的分子对紫外—可见光具 有选择性吸收的特性进行物质鉴别。 • 特点:灵敏度高,适用于微量组分测定; • 准确度较高,相对误差2~5%; • 仪器设备简单、操作简便、快速、选择 性好。 • 应用广泛,可测定大多数无机物质及具 有共轭双键的有机化合物。
2014-7-25
• X射线管所产生的X射线光谱,称作原级X射线谱,一般由连续谱 和特征谱组成。连续谱与全色光相似,是具有连续的一系列波长 的X射线;特征X射线光谱同单色光相似,具有一定波长而不连续 的线状光谱,也称为单色X射线。 • 特征X射线的起源已经十分清楚,当一束高能粒子与相互作用, 如果其能量大于或等于原子某一轨道的结合能,则可将该轨道电 子逐出,产生一个空位,使原子处于激发态。然后,原子外层的 电子填入这一位置,同时发出一个特征X线光子。而对连续谱的 产生机制,目前还不十分清楚。但是其特点和规律性,以及谱的 强度分布数据已经得到国内外学者的论述和测定。 • 用X射线管辐照样品,是产生荧光X 射线的常用方法。荧光用X射 线管与衍射用X射线管是不同的。前者主要用连续谱,后者用特 征谱。
《现代材料分析方法》考试范围

《现代材料分析方法》考试范围(主要参考教材:材料分析方法,周玉主编,机械工业出版社)一.材料X射线衍射分析(全部内容)二.材料电子显微分析(全部内容)三.材料物理性能分析1.热学性能分析2.膨胀分析3.电性能分析4.磁性能分析《材料学》考试范围(主要参考教材:材料科学基础,潘金生,清华大学出版社)该书除第12章(马氏体相变)以外的全部内容都需要很好地掌握。
《金属学》考试范围《金属学》,冶金工业出版社宋维锡主编,考试范围为上册第1至10章《金属塑性成形原理》考试范围1、金属塑性变形的一般概念?2、金属塑性变形的主要方法及其变形特点?3、应力状态与应变状态(一点的应力与应变状态;应力与应变张量;应力与应变分析;应力微分平衡方程;应力与应变状态的各种表示方法及相互的变换;一点的主应力计算)?4、金属塑性变形的物理方程?5、金属塑性变形的基本条件?6、求解塑性变形问题需要满足的基本方程?7、金属塑性变形中的摩擦与润滑?8、金属塑性变形的初等解析方法?9、滑移线法及其应用?《物理化学》考试范围参考书:南京大学物理化学教研室傅献彩、沈文霞、姚天扬编,《物理化学》(第五版),高等教育出版社。
考试大纲:1、热力学第一定律及其应用体系与环境、体系的性质、热力学平衡态和状态函数、状态方程、热和功、热力学第一定律、准静态过程与可逆过程、焓、热容、热力学第一定律对理想气体的应用、实际气体、热化学、赫斯定律、几种热效应、基尔霍夫定律、绝热反应2、热力学第二定律自发变化、热力学第二定律、卡诺定理、熵、克劳修斯不等式和熵增加原理、熵变的计算、亥姆霍兹自由能和吉布斯自由能、变化的方向和平衡条件、等温物理变化中的自由能变、化学反应的等温式、热力学基本关系式、特性函数、吉布斯-亥姆霍兹方程式、自由能与压力的关系、克拉贝龙方程式、外压与蒸气压的关系、多组分体系中物质的偏摩尔量和化学势、热力学第三定律与规定熵3、溶液溶液与偏摩尔量、溶液组成的表示法、拉乌尔定律、亨利定律、混合气体中各组分的化学势、理想溶液的定义、理想溶液的通性、稀溶液中各组分的化学势、稀溶液的依数性、吉布斯-杜亥姆公式和杜亥姆-马居耳公式、非理想溶液、分配定律4、相平衡相与自由度、相图与相平衡、多相体系平衡的一般条件、相律、单组分体系相图、二组分体系相图及其应用、三组分体系相图及其应用5、化学平衡化学反应的平衡条件和亲和势、平衡常数和等温方程式、平衡常数的表示式、复相化学平衡、平衡常数的测定和平衡转化率的计算、标准生成吉布斯自由能、外界条件对化学平衡的影响(温度、压力和惰性气体)、同时平衡、反应的耦合6、电解质溶液电化学基本概念和法拉第定律、离子的电迁移和迁移数、电导、强电解质溶液理论7、可逆电池的电动势及其应用可逆电池和可逆电极、电动势的测定、可逆电池的书写方法及电动势的取号、可逆电池热力学、电动势产生的机理、电极电势和电池的电动势、浓差电池和液体接界电势的计算公式、电动势测定的应用8、电解与极化作用分解电压、极化作用、电解时电极上的反应、金属的电化学腐蚀、金属的防腐、金属的钝化、化学电源9、化学动力学基础化学反应速率表示法、化学反应速率方程、具有简单级数的反应、典型的复杂反应(对峙、平行、连续)、阿仑尼乌斯经验式、活化能、链反应、拟定反应历程的一般方法、碰撞理论10、界面现象表面吉布斯自由能和表面张力、弯曲表面下的附加压力和蒸气压、液体界面的性质、不溶性表面膜、液-固界面现象、表面活性剂及其作用、固体表面的吸附、吸附和解吸速率方程式、气-固相表面催化反应11、胶体分散体系和大分子溶液胶体的基本特性、溶胶的制备和净化、溶胶的动力性质、溶胶的光学性质、溶胶的电学性质、溶胶的稳定性和聚沉作用、乳状液、唐南平衡、凝胶注:主要考试类型有:计算题、问答题、名词解释、选择题、判断题等多种形式。
材料分析方法 周玉主编 绪论

返回目录
2.化学分析
功能:分析试样的平均化学成分。 缺点:不能分析微区成分。 而往往微区成分会造成微观结构的不均匀 性,导致微观区域性能的不均匀性,这种不均 匀性对材料的宏观性能有很重要的影响作用。
• 4 宏观结构:人眼(或借助放大镜)可分
纯铁的室温平衡组织
铁素体
45钢的室温平衡组织 铁素体+珠 光体 T8钢的室温平衡组织 珠光体
• 五 研究方法的种类 • 图像分析方法 • • • •
光学显微镜 透射电子显微镜 扫描电子显微镜 场离子显微镜 原子力显微镜 扫描隧道显微镜
• X射线衍射 • 衍射法 电子衍射 • 中子衍射 • 非图像分析方法 光谱分析 • 能谱分析 • 成分谱分析 热谱分析 • 色谱分析
返回目录
七.本课程主要学习的分析方法 1:X射线衍射
功能:主要用来鉴定物相结构,分析晶体 结构,晶格参数(点阵常数,不同结构相的含 量及内 应力的方法。 这种方法主要利用X—ray在晶体中的衍射 花样不同,通过分析衍射花样来确定晶体结构。 貌.
不足:X—ray衍射不能直观地观察测试形
返回目录
2:电子显微镜 电子显微镜与光学显微镜最根本的区别用 高能电子束来作光源,用磁场作透镜(磁透镜) 对电子来进行聚焦放大等,因而放大倍数和分辨 率远高于光学显微镜(可见光、玻璃透镜)。 1)透射电子显微镜(TEM) TEM是用电子束透过薄膜样品成像(薄膜样品 的厚度在5~500nm之间)。 功能: a.组织形貌及微观结构观察,比如位错、孪晶 等都可在透射电镜下观察到(光镜做不到)。 b.晶体结构鉴定(同位分析),通过电子衍射 花样分析材料晶体结构。 放大倍数——106倍,分辨率----10-1nm
第1章绪论材料分析方法哈工大

第二节 X射线的产生及X射线谱
连续X射线和特征X射线
图1-2 X射线管结构示意图
图1-2所示的X射线管是产生 X射线的装置
主要由阴极 (W灯丝) 和用 (Cu, Cr,Fe,Mo) 等纯金属制 成的阳极(靶)组成
阴极通电加热,在阴、阳 极之间加以直流高压 (约数 万伏)
阴极发射的大量电子高速飞 向阳极,与阳极碰撞产生X 射线
绪论
2. 化学分析
给出平均成分,可以达到很高的精度; 实际上,材料中的成分分布存在不均匀性,
导致微观组织结构的不均匀性, 进而造成材料微观区域性能的不均匀性, 对材料的宏观性能产生影响。
不能给出所含元素的分布
10
绪论
四、X射线衍射与电子显微镜
1. X射线衍射(XRD, X-Ray Diffraction) XRD是利用X射线在晶体中的衍射现象来分析材料的 相组成、晶体结构、晶格参数、晶体缺陷(位错等)、 不同结构相的含量以及内应力的方法。
材料分析方法
第3版
主 编 哈尔滨工业大学 周 玉 参 编 漆 璿 范 雄 宋晓平
孟庆昌 饶建存 魏大庆 主 审 刘文西 崔约贤
获2002年全国普通高等学校优秀教材一等奖
1
本教材主要内容
绪论 第一篇 材料X射线衍射分析
第一章 X射线物理学基础 第二章 X射线衍射方向 第三章 X射线衍射强度 第四章 多晶体分析方法 第五章 物相分析及点阵参数精确测定 第六章 宏观残余应力的测定 第七章 多晶体织构的测定
28
第二节 X射线的产生及X射线谱
一、连续X射线谱 强度随波长连续变化的谱线称连续X射线谱,见图1-3
图1-3 管电压、管电流和阳极靶原子序数对连续谱的影响 a) 管电压的影响 b) 管电流的影响 c)阳极靶原子序数的影响 29
材料分析方法课后答案周玉

材料分析方法课后答案周玉【篇一:材料分析方法考试重点】纹衍射的图样,条纹间距随小孔尺寸的变大,衍射的图样的中心有最大的亮斑,称为埃利斑。
2、差热分析是在程序的控制条件下,测量在升温、降温或恒温过程中样品和参比物之间的温差。
3、差示扫描量热法(dsc)是在程序控制条件下,直接测量样品在升温、降温或恒温过程中所吸收的或放出的热量。
4、倒易点阵是由晶体点阵按照一定的对应关系建立的空间点阵,此对应关系可称为倒易变换。
5、干涉指数在(hkl)晶面组(其晶面间距记为dhkl)同一空间方位,设若有晶面间距为dhkl/n(n为任意整数)的晶面组(nh,nk,nl)即(h,k,l)记为干涉指数。
6、干涉面简化布拉格方程所引入的反射面(不需加工且要参与计算的面)。
7、景深当像平面固定时(像距不变)能在像清晰地范围内,允许物体平面沿透镜轴移动的最大距离。
8、焦长固定样品的条件下,像平面沿透镜主轴移动时能保持物象清晰的距离范围。
9、晶带晶体中,与某一晶向【uvw】平行的所有(hkl)晶面属于同一晶带,称为晶带11、数值孔径子午光线能进入或离开纤芯(光学系统或挂光学器件)的最大圆锥的半顶角之余弦,乘以圆锥顶所在介质的折射率。
12、透镜分辨率用物理学方法(如光学仪器)能分清两个密切相邻物体的程度 13 衍射衬度由样品各处衍射束强度的差异形成的衬度成为衍射衬度。
15质厚衬度由于样品不同区间存在原子序数或厚度的差异而形成的非晶体样品投射电子显微图像衬度,即质量衬度,简称质厚衬度。
制造水平。
(√)二、填空题6)按入射电子能量的大小,电子衍射可分为(高能电子衍射)、(低能电子衍射)及(反射式高能电子衍射)。
18)阿贝成像原理可以简单地描述为两次(干涉):平行光束受到有周期性特征物体的衍射作用形成(衍射波),各级衍射波通过(物镜)重新在像平面上形成反映物的特征的像。
12)按照出射信号的不同,成分分析手段可以分为两类:x光谱和电子能谱),出射信号分别是(x射线,电子)。
第5章-哈工大-第三版-材料分析测试-周玉.
第一节 定性分析
二、粉末衍射卡片(PDF) 粉末衍射卡片是物相定性分析必不可少的资料,卡片出 版以经历了几个阶段,
1) 1941年起由美国材料试验协会ASTM出版
2) 1969年由起粉末衍射标准联合委员会JCPDF出版 3) 1978年起JCPDF与国际衍射资料中心联合出版,即 JCPDF/ICDD 4) 1992 年后的卡片统一由ICDD出版,至 1997年已有卡片47 组,包括有机、无机物相约67,000个 图5-1为1996年出版的第46组PDF(ICDD)卡片,卡片中各栏 的内容见图5-2的说明
9
第一节 定性分析
四、定性分析过程 (二) 可能遇到的问题 一般情况下,允许d 值偏离卡片数据,误差约0.2%, 不能超过1%,尽管如此,有些物相的鉴定仍会遇到很多 困难和问题 在混合样品中, 含量过少的物相不足以产生自身完整的 衍射图,甚至不出现衍射线 由于晶体的择优取向,其衍射花样可能只出现一两条极 强的衍射线,确定物相也相当困难 多相混合物的衍射线可能相互重叠 点阵相同且点阵参数相近的物相,衍射花样极其相似, 若要区分也有一定困难 10
Ij = Cj fj /l
(5-2)
12
第二节 定量分析
一、单线条法 通过测定样品中j 相某条衍射线强度并与纯 j 相同一衍射 线强度对比,即可定出 j 相在样品中的相对含量。此为单线 条法,也称外标法或直接对比法 若样品中所含n相的线吸收系数及密度均相等,则由式(5-2)可 得 j 相的衍射线强度正比于其质量分数wj,即 Ij = C wj (5-3)
11
第二节 定量分析
物相定量分析的依据是各相衍射线的相对强度 用X射线衍射仪测量时,只需将式(4-6)稍加修改则可用 于多相物质。设样品有n 相组成,其总的线吸收系数为 l, 则 j 相的HKL衍射线强度公式为
材料分析方法第3版(周玉)出版社配套课件第7章机械工业出版社
所在的圆为欲求的轨迹;
图7-4 与极点成等夹角点的轨迹
与P点成90点的轨迹为过赤道线
上F 点的经线大圆NFS,NFS可
视为一平面的投影,其法线的投
影点为P
8
第一节 极射赤面投影法
二、乌氏网
4) 极点的转动 在乌氏网上可将极点绕确定轴转动到新位置
转轴垂直于投影面:如图7-5,将P点绕基圆圆心(轴的投影)转
6
第一节 极射赤面投影法
二、乌氏网
乌氏网是确定晶体方位及测量夹角的工具,应用时注意
1) 晶体投影图基圆的直径与乌氏网相同,使用时将二者中心 重合
2) 测定二极点间夹角时,转动投 影图,使二极点位于同一经线大 圆(包括基圆)或赤道上, 二点间 的纬度差或经度差极为二极点间 夹角,见图7-3。 如A、B极点间 夹角为120, C、D极点间夹角 为20, E、F 极点间夹角为20
X射线衍射是织构测定的主要方法,近年来电子背散射衍 射(EBSD)技术在织构分析方面亦得到广泛应用
3
第一节 极射赤面投影法
一、极射赤面投影法的特点
极射赤面投影法用以表达晶向、晶面的方位,见图7-1
1) 被投影晶体置于参考球球心O,假定晶体的所有晶向、晶 面均通过球心
2) 投射点B为球面上一点的射线,投影 面是与过B点直径垂直的任一平面,平 行于投影面且通过球心的平面与球交成 一大圆, B点向大圆上各点的投影线在 投影面上的交点构成基圆(NESW)
图7-9为立方晶系标准投影图,落在同一大圆弧和直线上的极 点对应的晶面法线在同一平面上, 此平面的法线为这些晶面 的交线。相交于同一直线的晶面属于同一晶带, 其交线称为 晶带轴,用[uvw]表示,晶面指数(hkl)和[uvw]满足晶带定律
材料分析方法 第3版( 周玉) 出版社配套PPT课件 第3章 机械工业出版社
二、几种点阵结构因数计算
2. 体心点阵(同类原子组成)
单胞中有2个原子,坐标分别为(0,0,0)和(1/2,1/2,1/2), 原
子散射因数均为 f
FHKL2 = [f cos2(0) + f cos2(H+K+L)/2 ]2 + [f sin2(0) + f sin2(H+K+L)/2 ]2
三角形式:Acosx+iAsinx
单胞中所有原子散射波振幅的合成就是单胞的散射波振幅Ab
Ab A1ei1 A2ei2 Anein
fa
Aa Ae
一个原子中所有电子相干散射波的合成振幅 一个电子相干散射波的振幅
n
Ab Ae ( f1ei1 f 2ei2 f nein ) Ae f j ei j j 1 9
由于衍射线的相互干涉,某些方向的强度将会有所加强, 某些方向的强度将会减弱甚至消失,习惯上将这种现象称 为系统消光
7
第二节 单位晶胞对X射线的散射与结构因数
一、结构因数公式的推导
如图3-3,取单胞顶点O为坐标原点,单胞中第 j 个原子 A
的位置矢量为,
rj = xj a + yj b + zj c
数(HKL)N平1 方: N和2 :之N3比: N为4,: N5 2 : 4 : 6 : 8 :10
13
第二节 单位晶胞对X射线的散射与结构因数
二、几种点阵结构因数计算
3. 面心点阵(同类原子组成)
单胞中有4个原子,坐标分别为(0,0,0)、 (0,1/2,1/2)、
(1/2, 0,1/2)、 (1/2,1/2, 0),原子散射因数均为 f FHKL2 = f 2
第16章-哈工大-第三版-材料分析测试-周玉
j A
俄歇谱仪的分析精度较低,一般认为是半定量的
分析性能 空间分辨率/m 分析深度/ m 电子探针 0.5~1 0.5~2 离子探针 1~2 < 0.005 俄歇谱仪 0.1 < 0.005
采样质量/g
检测质量极限/g 检测浓度极限/10-6 可分析元素 定量精度(wc 10%) 真空度要求/Pa 对样品损伤 定点分析时间/s
10-12
10-16 50~10000 Z4 (Z 11时灵敏度差) (1~5)% 1.33 10-3 非导体大,一般无 100
d N (E) 故曲线2和3分别也是电子数目N(E)和 随E的分布,曲 dE 20 线3俄歇峰明锐易辨,是常用的显示方式
d I (E) N (E) dE
(16-10)
第三节 俄歇电子能谱分析
二、俄歇电子能谱的检测 2) 圆筒反射镜分析器(CMA) 由两个同轴圆筒形电极构成静 电反射系统,内筒上有环状电子入口E 和出口光阑 B,内筒 和样品接地外筒接偏转电压U,见图16-12 两个圆筒半径分别为 r1和r2,通常 r1=3cm,若光阑使电子发 射角为4218,样品上S点发射的能量为E 的电子,将聚焦 于距S 点 L = 6.19r1的 F点,并满足
2
第十六章 其他显微结构分析方法
本章主要内容 第八节 激光拉曼光谱
第九节 紫外-可见吸收光谱
第十节 原子发射光谱
第十一节 原子吸收光谱
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
源波长,约为波长的一半。可见提高分辨率关键在于减小光
源的波长。在可见光波长范围内,其分辨率极限为200nm
显微镜光源首先要具有波动性,其次要有能使其聚焦的装置
1924年电子衍射实验证实电子具有波动性,波长比可见光短
十万倍;1926年发现用轴对称非均匀磁场能使电子波聚焦;
1933年设计并制造出世界上第一台透射电子显微镜
11
第一节 电子波与电磁透镜
三、电磁透镜
比较图8-1d、e可见,电磁透镜对平行主轴的电子束的聚焦与
玻璃透镜相似,其物距L1、像距L2、焦距 f 的关系为
放大倍数M为
d)
111
(8-6)
f L1 L2 M f
L1 f f K 焦U距r f
111
f
M
M
L1
L1
f L2 f f
a)
b)
c)
图8-3 电磁透镜及其轴向磁感应强度分布示意图
a) 有铁壳 b) 有极靴 c) 磁感应强度分布
13
第二节 电磁透镜的像差与分辨率
一、像差
电磁透镜像差分为两类,即几何像差和色差
几何像差包括球差和像散,又称为单色光引起的像差。球 差是由于透镜中心区域和边缘区域对电子折射能力不同形 成的;像散是由于透镜磁场非旋转对称性引起不同方向的 聚焦能力出现差别
U / kV / nm
U / kV / nm
20
0.00859
80
0.00418
200
0.00251
40
0.00601
100
0.00371
500
0.00142
60
0.00487
120
0.00334
1000 0.00087
可见光波长为390~760nm,在常用加速电压下,电子波波长比
可见光小5个数量级
(8-7)
可由下L1式 近f 似计算
(IN )2
f
K
Ur (IN )2
(8-8)
e)
图8-1 电磁透镜聚焦原理示意图
式Hale Waihona Puke ,K是常数;Ur 为经校正的 加速电压;IN 为线圈安匝数
12
第一节 电子波与电磁透镜
二、电磁透镜 式 (8-8)表明,电磁透镜的焦距总是正的,焦距大小可通过改 变激磁电流而变化,电磁透镜是变焦距或变倍率的会聚透镜 图8-3是电磁透镜结构及轴向磁感应强度分布示意图,短线圈 外加铁壳和内加极靴后,可明显改变透镜的磁感应强度分布
6
第一节 电子波与电磁透镜
二、电子波的波长特性
电子波的波长取决于电子运动速度和质量,即
h
(8-2)
mv
式中,h 是普朗克常数; m 是电子质量;v 是电子的速度,
它与加速电压U 的关系
1 mv2 eU 2
即
v 2eU m
式中 e 为电子的电荷。由式(8-2)和式(8-3)得
h
2emU
4
第八章 电子光学基础
本章主要内容 第一节 电子波与电磁透镜 第二节 电磁透镜的像差与分辨率 第三节 电磁透镜的景深和焦长
5
第一节 电子波与电磁透镜
一、光学显微镜的分辨率极限
分辨率指物体上所分辨的两个物点的最小间距。光学显
微镜的分辨率为,
r0
1 2
(8-1)
式中, 为光源波长。表明,光学显微镜的分辨率取决于光
绪论
一、材料的组织结构与性能的关系
1. 组织结构与性能的关系 显微组织是性能的内在根据,性能是显微组织的对外表现
2. 微观组织结构控制 材料与工艺
二、显微组织结构的内容
显微组织 性能
材料显微组织是指相组成、尺寸形状及其分布
1.晶体结构和晶体缺陷;2.晶粒的大小与空间形态;
3.第二相的成分、结构、尺寸形态、数量及分布;
电子显微镜的分析功能很多,目前一台电子显微镜可兼有 微观组织形貌、晶体结构、微区成分等多种分析功能
第一台电子显微镜于20世纪30年代问世,经历了几个阶段 的发展,使电子显微分析技术已成为材料科学等研究领域 中最重要的分析手段之一
3
第二篇 材料电子显微分析
第八章 电子光学基础 第九章 透射电子显微镜 第十章 电子衍射 第十一章 晶体薄膜衍衬成像分析 第十二章 高分辨透射电子显微术 第十三章 扫描电子显微镜 第十四章 电子背散射衍射分析技术 第十五章 电子探针显微分析 第十六章 其他显微结构分析方法
(8-3)
(8-4)
7
第一节 电子波与电磁透镜
二、电子波的波长特性
若电子速度较小,其质量和静止时相近,m m0;否则,m 需
经相对论校正
m m0
1 v c2
(8-5)
式中,c 为光速。不同加速电压下电子波的波长见表8-1
表8-1 不同加速电压下电子波的波长(经相对论校正)
U / kV / nm
8
第一节 电子波与电磁透镜
三、电磁透镜
a) b)
c)
图8-1 电磁透镜聚焦原理示意图
电子显微镜中利用磁场使电子 波聚焦成像的装置称电磁透镜
如图 8-1 所示,通电的短线圈 是最简单的电磁透镜,形成一 种轴对称不均匀的磁场
速度v 的电子平行进入透镜, 在 A点受Br的作用,产生切向 力Ft 而获得切向速度Vt ;在Bz 分量作用下,形成使电子向主 轴靠近的径向力Fr,而使电子 作螺旋近轴运动
9
第一节 电子波与电磁透镜
a)
图8-1 电磁透镜聚焦原理示意图
10
第一节 电子波与电磁透镜
三、电磁透镜
a) b)
c)
图8-1 电磁透镜聚焦原理示意图
电子显微镜中利用磁场使电子 波聚焦成像的装置称电磁透镜
如图 8-1 所示,通电的短线圈 是最简单的电磁透镜,形成一 种轴对称不均匀的磁场
速度v 的电子平行进入透镜, 在 A点受Br的作用,产生切向 力Ft 而获得切向速度Vt ;在Bz 分量作用下,形成使电子向主 轴靠近的径向力Fr,而使电子 作螺旋近轴运动
色差是波长不同的多色光引起的像差。色差是透镜对能量 不同电子的聚焦能力的差别引起的
下面将分别讨论球差、像散和色差形成的原因,以及消除或 减小这些像差的途径
14
第二节 电磁透镜的像差与分辨率
一、像差
(一) 球差
如图8-4,球差是由于透镜中心区域和边缘区域对电子的折射
能力不同而形成的,用 rs表示球差的大小
4.微区成份及分布;5. 界面;6. 两相间的取向关系
1
绪论
三、为什么需要电子显微镜
2
第二篇 材料电子显微分析
利用电子显微镜观察和分析材料的组织结构,称为电子显 微分析术
电子显微镜是以电子束为光源的显微分析仪器,主要包括: 透射电子显微镜、扫描电子显微镜和电子探针
电子显微镜的分辨率很高,目前透射电子显微镜的分辨率 已优于0.1nm,达到了原子尺度