卡尔曼滤波
卡尔曼滤波_卡尔曼算法

卡尔曼滤波_卡尔曼算法1.引言1.1 概述卡尔曼滤波是一种用于估计系统状态的技术,通过融合传感器测量值和系统模型的预测值,提供对系统状态的最优估计。
它的应用十分广泛,特别在导航、图像处理、机器人技术等领域中发挥着重要作用。
在现实世界中,我们往往面临着各种噪声和不确定性,这些因素会影响我们对系统状态的准确估计。
卡尔曼滤波通过动态调整系统状态的估计值,可以有效地抑制这些干扰,提供更加精确的系统状态估计。
卡尔曼滤波的核心思想是利用系统模型的预测和传感器测量值之间的线性组合,来计算系统状态的最优估计。
通过动态地更新状态估计值,卡尔曼滤波可以在对系统状态的准确估计和对传感器测量值的实时响应之间进行平衡。
卡尔曼滤波算法包括两个主要步骤:预测和更新。
在预测步骤中,通过系统模型和上一时刻的状态估计值,预测当前时刻的系统状态。
在更新步骤中,将传感器测量值与预测值进行比较,然后根据测量误差和系统不确定性的权重,计算系统状态的最优估计。
卡尔曼滤波具有很多优点,例如它对传感器噪声和系统模型误差具有鲁棒性,可以提供较为稳定的估计结果。
此外,卡尔曼滤波还可以有效地处理缺失数据和不完全的测量信息,具有较高的自适应性和实时性。
尽管卡尔曼滤波在理论上具有较好的性能,但实际应用中还需考虑诸如系统模型的准确性、测量噪声的特性等因素。
因此,在具体应用中需要根据实际情况进行算法参数的调整和优化,以提高估计的准确性和可靠性。
通过深入理解卡尔曼滤波的原理和应用,我们可以更好地应对复杂环境下的估计问题,从而在实际工程中取得更好的效果。
本文将介绍卡尔曼滤波的基本原理和算法步骤,以及其在不同领域的应用案例。
希望通过本文的阅读,读者们可以对卡尔曼滤波有一个全面的了解,并能够在实际工程中灵活运用。
1.2文章结构文章结构部分的内容可以按照以下方式编写:1.2 文章结构本文将围绕卡尔曼滤波和卡尔曼算法展开论述。
首先,我们会在引言部分对卡尔曼滤波和卡尔曼算法进行简要概述,介绍其基本原理和应用领域。
卡尔曼滤波收敛

卡尔曼滤波收敛摘要:1.卡尔曼滤波的基本原理2.卡尔曼滤波的收敛性证明3.卡尔曼滤波在实际应用中的优势4.卡尔曼滤波的局限性及改进方向正文:一、卡尔曼滤波的基本原理卡尔曼滤波是一种线性高斯状态空间模型,主要用于估计系统状态和优化控制策略。
它通过将预测状态量的高斯分布和观测量的高斯分布进行融合,生成一个新的高斯分布,从而实现对系统状态的估计。
卡尔曼滤波主要包括五个步骤:预测、校正、更新、观测和修正。
预测步骤用于预测系统的状态,校正步骤用于根据测量值修正预测结果,更新步骤用于更新状态估计值,观测步骤用于观测系统状态,修正步骤用于根据观测结果修正状态估计值。
二、卡尔曼滤波的收敛性证明卡尔曼滤波的收敛性可以通过数学证明来阐述。
假设系统状态满足线性高斯状态空间模型,并且观测噪声和过程噪声都满足正态分布。
则卡尔曼滤波可以得到如下状态估计方程:x_hat = A^T * P * A * x + A^T * P * C * z其中,x_hat 表示状态估计值,P 表示状态协方差矩阵,A 表示系统状态转移矩阵,C 表示观测矩阵,z 表示观测值。
可以看出,卡尔曼滤波得到的状态估计值是观测值和预测值的加权平均,权重分别为卡尔曼增益和观测噪声方差。
由于卡尔曼增益和观测噪声方差都是正数,因此状态估计值会随着观测值的增加而逐渐趋近于真实值,即卡尔曼滤波具有收敛性。
三、卡尔曼滤波在实际应用中的优势卡尔曼滤波在实际应用中具有很多优势,主要体现在以下几个方面:1.高精度:卡尔曼滤波可以有效地融合预测和观测信息,提高状态估计的精度。
2.实时性:卡尔曼滤波可以在实时测量观测值的情况下进行状态估计,适用于动态系统的实时控制。
3.鲁棒性:卡尔曼滤波对噪声具有较强的鲁棒性,即使在噪声较大的情况下,仍然可以得到较为准确的状态估计结果。
4.适用性广泛:卡尔曼滤波适用于线性高斯状态空间模型,可以应用于各种领域的问题,如导航、定位、机器人控制等。
卡尔曼滤波原理及应用

卡尔曼滤波原理及应用
一、卡尔曼滤波原理
卡尔曼滤波(Kalman filter)是一种后验最优估计方法。
它以四个步骤:预测、更新、测量、改善,不断地调整估计量来达到观测的最优估计的目的。
卡尔曼滤波的基本思想,是每次观测到某一位置来更新位置的参数,并用更新结果来预测下一次的位置参数,再由预测时产生的误差来改善当前位置参数。
从而可以达到滤波的效果,提高估计精度。
二、卡尔曼滤波应用
1、导航系统。
卡尔曼滤波可以提供准确的位置信息,把最近获得的各种定位信息和测量信息,如GPS、ISL利用卡尔曼滤波进行定位信息融合,可以提供较准确的空中、地面导航服务。
2、智能机器人跟踪。
在编队技术的应用中,智能机器人往往面临着各种复杂环境,很难提供精确的定位信息,而卡尔曼滤波正是能解决这一问题,将持续不断的测量信息放在卡尔曼滤波器中,使机器人能够在范围内定位,跟踪更新准确可靠。
3、移动机器人自主避障。
对于移动机器人来说,很多时候在前传感器检测不到
人或障碍物的时候,一般将使用卡尔曼滤波来进行自主避障。
卡尔曼滤波的定位精度很高,相对于静止定位而言,移动定位有更多的参数要考虑,所以能提供更准确的定位数据来辅助自主避障,准确的定位信息就可以让我们很好的实现自主避障。
4、安防监控。
与其他传统的安防场景比,安防场景如果需要运动物体位置估计或物体检测,就必须使用卡尔曼滤波技术来实现,这是一种行为检测和行为识别的先进技术。
(注:安防监控可用于感知移动物体的位置,并在设定的范围内监测到超出范围的物体,以达到安全防护的目的。
)。
卡尔曼滤波 参数

卡尔曼滤波参数卡尔曼滤波是一种利用一系列离散时间的观测值,对状态变量进行估计的算法,它被广泛应用于瞄准、自动导航、目标识别和控制系统等领域。
它适用于线性系统,可以通过递归方式实现,用于估计系统状态的随时间演变。
本文将介绍卡尔曼滤波的参数以及相关参考内容。
参数:1. 状态方程卡尔曼滤波器的状态方程指的是系统的物理模型,即描述了状态变量如何随时间演化的方程。
在线性系统中,状态变量可以表示为一系列线性方程的组合,例如:x[k+1] = Fx[k] + Gu[k] + w[k]其中,x[k]是k时刻的状态变量,F是状态转移矩阵,G是输入矩阵,u[k]是k时刻的输入变量,如控制信号,w[k]是k时刻的过程噪声。
2. 观测方程卡尔曼滤波器的观测方程描述了每次观测噪声和状态变量之间的关系,通常表示为:z[k] = Hx[k] + v[k]其中,z[k]是k时刻的观测量,H是观测矩阵,v[k]是测量噪声。
3. 状态协方差矩阵状态协方差矩阵是一个对称矩阵,它描述了状态变量的不确定性或误差的大小和协方差。
卡尔曼滤波器的设计目标之一是通过最小化状态协方差矩阵来提高估计的准确性。
4. 过程噪声协方差矩阵过程噪声协方差矩阵描述了过程噪声的大小和协方差。
在实践中,可以通过实验或经验来确定这个矩阵的值。
5. 测量噪声协方差矩阵测量噪声协方差矩阵描述了测量噪声的大小和协方差。
同样,可以通过实验或经验来确定这个矩阵的值。
参考内容:1. Probabilistic Robotics by Sebastian ThrunSebastian Thrun的《Probabilistic Robotics》是一本深入而全面的介绍机器人操作和控制中使用概率方法的经典教材。
该书详细介绍了卡尔曼滤波器和其应用,特别是在移动机器人定位和地图构建中的应用。
2. A tutorial on Kalman Filter这是一篇详细而易懂的卡尔曼滤波器教程,介绍了状态方程、观测方程、状态协方差矩阵、过程噪声协方差矩阵和测量噪声协方差矩阵等各个参数的作用和意义。
卡尔曼滤波

位移均方差
速度均方差
卡尔曼滤波简介
目录 Contents源自 一. 二. 三. 四.
背景简介 Kalman 滤波理论基础介绍及应用 Kalman 滤波在自由落体运动目标跟踪中的应用 MATLAB仿真程序及结果
背景简介
匈牙利数学家 1930年出生于匈牙利首都布达佩斯。 1953,1954年于麻省理工学院分别 获得电机工程学士及硕士学位。 1957年于哥伦比亚大学获得博士学位。 1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波 与预测问题的新方法)
卡尔曼滤波理论介绍
假如我们要估算k时刻的是实际温度值。首先你要根 据k-1时刻的温度值,来预测k时刻的温度。因为你 相信温度是恒定的,所以你会得到k时刻的温度预测 值是跟k-1时刻一样的,假设是23度,同时该值的高 斯噪声的偏差是5度(5是这样得到的:如果k-1时刻 估算出的最优温度值的偏差是3,你对自己预测的不 确定度是4度,他们平方相加再开方,就是5)。然 后,你从温度计那里得到了k时刻的温度值,假设是 25度,同时该值的偏差是4度。 由于我们用于估算k时刻的实际温度有两个温度值, 分别是23度和25度。
Kalman滤波在自由落体运动目标跟 踪中的应用
其中递推关系式为: T P ( k ) AP ( k 1) A Q(k 1) 1 T T 1 K (k ) P ( k ) C [ CP ( k ) C R ] 1 1 P(k ) P 1 ( k ) K ( k )CP 1 (k ) 估计器表达式,把它分成两部分,前者为预测,后者 (k ) Ax (k 1) K(k)[y(k) CA x (k 1)] 为修正:x 第k时刻的估计是由k-1时刻的预测值加上修正量得到的, (k 1/ k ) Ax (k ) k+1时刻的预测值: x Kalman预测器为: (k 1/ k ) Ax (k ) A{A x (k 1) K(k)[y(k) CA x (k 1)]} x
卡尔曼滤波 详解

卡尔曼滤波详解卡尔曼滤波是一种常用于估计和预测系统状态的优秀滤波算法。
它于1960年代由R.E.卡尔曼提出,被广泛应用于飞机、导弹、航天器等领域,并逐渐在其他科学领域中得到应用。
卡尔曼滤波的基本思想是通过融合测量数据和系统模型的信息,对系统状态进行更准确的估计。
其核心原理是基于贝叶斯定理,将先验知识与观测数据相结合来更新系统状态的概率分布。
卡尔曼滤波算法包括两个主要步骤:更新和预测。
在更新步骤中,算法通过观测值来计算系统的状态估计。
在预测步骤中,算法使用系统的模型对下一个时间步长的状态进行预测。
通过反复进行这两个步骤,可以得到不断更新的状态估计结果。
卡尔曼滤波算法的关键是系统模型和观测模型的建立。
系统模型描述了系统状态的演化规律,通常用线性动态方程表示。
观测模型描述了观测值与系统状态之间的关系,也通常用线性方程表示。
当系统模型和观测模型都是线性的,并且系统噪声和观测噪声都是高斯分布时,卡尔曼滤波算法能够得到最优的状态估计。
卡尔曼滤波的优点在于,在给定模型和测量信息的情况下,它能够最小化误差,并提供最佳的状态估计。
此外,卡尔曼滤波算法还具有递归、高效、低存储等特点,使其在实时应用中具有广泛的应用前景。
然而,卡尔曼滤波算法也有一些限制。
首先,它要求系统模型和观测模型能够准确地描述系统的动态特性。
如果模型存在误差或不完全符合实际情况,滤波结果可能会产生偏差。
其次,卡尔曼滤波算法适用于线性系统,对于非线性系统需要进行扩展,例如使用扩展卡尔曼滤波或无迹卡尔曼滤波。
另外,卡尔曼滤波算法还会受到噪声的影响。
如果系统的噪声比较大,滤波结果可能会失真。
此外,卡尔曼滤波算法对初始状态的选择也敏感,不同的初始状态可能会导致不同的滤波结果。
综上所述,卡尔曼滤波是一种高效、优秀的滤波算法,能够在给定模型和测量信息的情况下提供最优的状态估计。
然而,它也有一些局限性,需要充分考虑系统模型和观测模型的准确性、噪声的影响以及初始状态的选择。
卡尔曼滤波 参数
卡尔曼滤波参数一、卡尔曼滤波简介卡尔曼滤波是一种利用线性系统状态方程,通过观测数据对系统状态进行估计的最优滤波方法。
它可以在不知道系统初始状态和测量噪声精度的情况下,通过迭代递推计算出系统状态最优估计值和误差协方差矩阵。
卡尔曼滤波广泛应用于航空、导航、控制、信号处理等领域。
二、卡尔曼滤波参数1. 系统模型参数:包括状态转移矩阵A、控制输入矩阵B、观测矩阵C和过程噪声Q等。
2. 初始状态估计值:指在没有任何观测数据的情况下,对系统初始状态的估计值。
3. 初始误差协方差矩阵:指在没有任何观测数据的情况下,对系统初始误差协方差矩阵的估计值。
4. 观测噪声精度:指观测噪声服从高斯分布时的标准差。
三、系统模型参数详解1. 状态转移矩阵A:描述了系统状态之间的关系。
例如,对于一个飞行器,状态转移矩阵可以描述当前位置、速度和加速度之间的关系。
2. 控制输入矩阵B:描述了控制量与系统状态之间的关系。
例如,对于一个飞行器,控制输入矩阵可以描述飞行员对油门、方向舵和升降舵的控制与速度和加速度之间的关系。
3. 观测矩阵C:描述了观测量与系统状态之间的关系。
例如,对于一个飞行器,观测矩阵可以描述雷达或GPS测量到的位置、速度和加速度与系统状态之间的关系。
4. 过程噪声Q:描述了系统状态转移时由于外部因素而引起的噪声。
例如,在飞行过程中由于气流等因素会引起位置、速度和加速度发生变化。
四、初始状态估计值详解初始状态估计值是指在没有任何观测数据的情况下,对系统初始状态进行估计得到的值。
这个值可以基于经验或者先验知识来确定。
例如,在飞行器起飞前可以通过预测模型来估计出初始位置、速度和加速度等参数。
五、初始误差协方差矩阵详解初始误差协方差矩阵是指在没有任何观测数据的情况下,对系统状态估计误差的协方差矩阵进行估计得到的值。
这个值可以基于经验或者先验知识来确定。
例如,在飞行器起飞前可以通过预测模型来估计出位置、速度和加速度等参数的误差协方差矩阵。
卡尔曼滤波
卡尔曼滤波卡尔曼滤波(Kalman filtering ) 一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。
由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。
斯坦利施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。
卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。
关于这种滤波器的论文由Swerli ng (1958), Kalman (I960) 与Kalma n and Bucy (1961) 发表。
数据滤波是去除噪声还原真实数据的一种数据处理技术,Kalman滤波在测量方差已知的情况下能够从一系列存在测量噪声的数据中,估计动态系统的状态•由于,它便于计算机编程实现,并能够对现场采集的数据进行实时的更新和处理,Kalman滤波是目前应用最为广泛的滤波方法,在通信,导航,制导与控制等多领域得到了较好的应用•中文名卡尔曼滤波器,Kalman滤波,卡曼滤波外文名KALMAN FILTER表达式X(k)=A X(k-1)+B U(k)+W(k)提岀者斯坦利施密特提岀时间1958应用学科天文,宇航,气象适用领域范围雷达跟踪去噪声适用领域范围控制、制导、导航、通讯等现代工程斯坦利施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。
卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导—航电脑使用了这种滤波器。
关于这种滤波器的论文由Swerling (1958), Kalman (1960)与Kalma n and Bucy (1961) 发表。
2定义传统的滤波方法,只能是在有用信号与噪声具有不同频带的条件下才能实现. 20世纪40年代,N .维纳和A. H .柯尔莫哥罗夫把信号和噪声的统计性质引进了滤波理论,在假设信号和噪声都是平稳过程的条件下,利用最优化方法对信号真值进行估计,达到滤波目的,从而在概念上与传统的滤波方法联系起来,被称为维纳滤波。
第三章卡尔曼(Kalman)滤波
总结
状态方程的核心是:设置状态变量, 状态变量是网络内部(最少的)节点变量, 一般设在延迟支路的输出端,状态方程刻 画了状态变量下一时刻的取值与当前时刻的 状态变量和输入之间的关系。
x(k 1) Ax(k) Be(k) 一步递推状态方程: x(k) A(k)x(k 1) w(k -1)
二、离散时间系统的量测方程
来估计信号的当前值 以均方误差最小条件下求解 系统的传递函数H(z)或单位冲激响应h(n)
卡尔曼滤波
不需要全部过去的观察数据
只根据前一个估计值 xˆk -1 和最近一个观察数据 yk 来估计信号的当前值 它是用状态空间法描述系统, 即由状态方程和量测方程组成。
解是以估计值(是状态变量的估计值)的形式给出的
一、离散状态方程及其解
离散状态方程的基本形式是:
x(k 1) Ax(k) Be(k)
其中x(k)代表一组状态变量组成的多维状态矢量, 而A,B都是矩阵,它们是由系统的拓扑结构、元件 性质和数值所确定的。
e(k) 是激励信号。
状态方程是多维一阶的差分方程。 当已知初始状态x(0), 可用递推的方法得到它的解 x(k)
即:
Eyn yk 0, 1 k n -1
表明:yk不相关性质。 意味着yk的每个值都带来新的信息。
又因为:yk sk k
所以:Ck 1
第三节 卡尔曼滤波的方法
1、卡尔曼滤波的基本思想
卡尔曼滤波是采用递推的算法实现的, 是以卡尔曼滤波的信号模型为基础。
(1)先不考虑激励噪声wk和观测噪声k,
得到状态的估计值xˆk' 和观测数据的估计值yˆk'。
(2)再用观测数据的估计误差yk =yk - yˆk' 去修正状态的估计值xˆk,通过选择修正 矩阵H 使得状态估计误差的均方值Pk最小。
卡尔曼滤波
什么是卡尔曼滤波?卡尔曼滤波器(Kalman Filter )是一个最优化自回归数据处理算法(optimal recursive data processing algorithm )。
卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。
它适合于实时处理和计算机运算。
现设线性时变系统的离散状态防城和观测方程为:X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1)Y(k) = H(k)·X(k)+N(k)其中X(k)和Y(k)分别是k 时刻的状态矢量和观测矢量F(k,k-1)为状态转移矩阵U(k)为k 时刻动态噪声T(k,k-1)为系统控制矩阵H(k)为k 时刻观测矩阵N(k)为k 时刻观测噪声则卡尔曼滤波的算法流程为:预估计)(X k = F(k,k-1)·X(k-1)计算预估计协方差矩阵Q(k) = U(k)×U(k)')(k C =F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)'计算卡尔曼增益矩阵R(k) = N(k)×N(k)'K(k) = )(k C ×H(k)'/[H(k)×)(k C ×H(k)’+R(k)]更新估计)(X ~k =)(X k +K(k)×[Y(k)-H(k)×)(X k ]计算更新后估计协防差矩阵)(C ~k = [I-K(k)×H(k)]×)(k C ×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)'X(k+1) = )(X ~kC(k+1) =)(C ~k重复以上步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011级工业过程建模与软测量课程作业
作业1:
水质检测中对总氮的检测常采用紫外分光光度计法。
即检测氧化消解后水样中的硝酸根含量在紫外光谱220nm处的吸光度A,根据比尔定律可以认为该吸光度与硝酸根浓度间存在正比关系。
所以只要检测水样在处的吸光度A,即可估计出总氮的含量。
表1是由实验测得的总氮和吸光度的数据。
采用回归分析法建立总氮浓度与吸光度A的关系模型,并对该回归方程和回归方程各系数进行显著性检验(假定取检验水平α=0.02),并求出相关系数R。
总氮与吸光度
序号总氮浓度(mg/L)220nm处吸光度A
1 0.50.139
2 0.70.196
3 1.00.272
4 2.00.545
5 4.0 1.033
6 5.0 1.272
7 7.0 1.671
8 8.0 1.807
9 10.0 1.991
10 12.0 2.088
11 15.0 2.121
作业2:
表2为某地区土壤内含植物可给态磷(y)与土壤内所含无机磷浓度(x1)、土壤内溶于K2CO3溶液并受溴化物水解的有机磷浓度(x2)以及土壤内溶于K2CO3溶液但不溶于溴化物的有机磷(x3)的观察数据。
求y对x1,x2,x3的线性回归方程;利
用方差分析对该回归方程和回归方程各系数进行显著性检验。
假定取检验水平α=0.03。
表2 土壤含磷情况观察数据。