6、稳恒磁场(6)
稳恒磁场

二、电流的磁效应 二、电流的磁效应
I
S N •磁针和磁针 •在磁场 中运动的 电荷受到 的磁力 •磁铁与载流导 线的相互作用 S N S N
•电流的磁效应
I I
•载流导 线与载流 导线的相 互作用
三、磁场 三、磁场
1、概念
在运动电荷(或电流)周围空间存在的一种特殊形式的物质。
2、磁场的特性
•磁场对磁体、运动电荷或载流导 线有磁场力的作用; •载流导线在磁场中运动时,磁场 力要作功——磁场具有能量。
∧
Idl
r
R Idl’ θ
dB ⊥
dB dB//
P dB’
μ0 Idl sin(d l r ) μ0 Idl dB = = sin 90° 4π r2 4π r 2
分解 dB
dB ⊥ = dB cos θ
dB// = dB sin θ
电流对称
2
∫ dB
⊥
=0
μ0 I B = ∫ dB // = 4π
第八章 第八章
稳恒磁场 稳恒磁场
核心内容 基本概念:磁感应强度 磁矩 磁通量 磁场强度 基本规律:毕奥-萨伐尔定律 磁场高斯定理和安培 环路定理 安培定律 洛仑兹力 •静止电荷——静电场 •运动电荷——电场、磁场 •稳恒电流产生的磁场不随时间变化——稳恒磁场
一、电流 一、电流
8.1 电流 current
线圈所包围的面积
I
en
pm
其中 e n 与电流环绕方向符合右手螺旋法则
μ 0 IπR μ 0 pm B = (1)当x=0时,有 BO = = = 3 3 2( R 2 + x 2 ) 3 2 2R 2πR 2πR
2
μ0 I
习题第06章(稳恒磁场)-参考答案.

第六章 稳恒磁场思考题6-1 为什么不能把磁场作用于运动电荷的力的方向,定义为磁感强度的方向?答:对于给定的电流分布来说,它所激发的磁场分布是一定的,场中任一点的B 有确定的方向和确定的大小,与该点有无运动电荷通过无关。
而运动电荷在给定的磁场中某点 P 所受的磁力F ,无论就大小或方向而言,都与运动电荷有关。
当电荷以速度v 沿不同方向通过P 点时,v 的大小一般不等,方向一般说也要改变。
可见,如果用v 的方向来定义B 的方向,则B 的方向不确定,所以我们不能把作用于运动电荷的磁力方向定义为磁感应强度B 的方向。
6-2 从毕奥-萨伐尔定律能导出无限长直电流的磁场公式aIB πμ2=。
当考察点无限接近导线(0→a )时,则∞→B ,这是没有物理意义的,如何解释?答:毕奥-萨伐尔定律是关于部分电流(电流元)产生部分电场(dB )的公式,在考察点无限接近导线(0→a )时,电流元的假设不再成立了,所以也不能应用由毕奥-萨伐尔定律推导得到的无限长直电流的磁场公式aIB πμ2=。
6-3 试比较点电荷的电场强度公式与毕奥-萨伐尔定律的类似与差别。
根据这两个公式加上场叠加原理就能解决任意的静电场和磁场的空间分布。
从这里,你能否体会到物理学中解决某些问题的基本思想与方法?答:库仑场强公式0204dqr dE rπε=,毕奥一萨伐定律0024Idl r dB r μπ⨯= 类似之处:(1)都是元场源产生场的公式。
一个是电荷元(或点电荷)的场强公式,一个是电流元的磁感应强度的公式。
(2)dE 和dB 大小都是与场源到场点的距离平方成反比。
(3)都是计算E 和B 的基本公式,与场强叠加原理联合使用,原则上可以求解任意分布的电荷的静电场与任意形状的稳恒电流的磁场。
不同之处: (1)库仑场强公式是直接从实验总结出来的。
毕奥一萨伐尔定律是从概括闭合电流磁场的实验数据间接得到的。
(2)电荷元的电场强度dE 的方向与r 方向一致或相反,而电流元的磁感应强度dB 的方向既不是Idl 方向,也不是r 的方向,而是垂直于dl 与r 组成的平面,由右手螺旋法则确定。
稳恒磁场

磁场 磁感应强度 基本磁现象1、通有电流的导线周围,小磁针会发生偏转。
2、磁铁附近的载流导线及载流线圈会受到力的作用。
3、载流导线之间或载流线圈之间有相互作用力。
4、电子射线束在磁场中路径发生偏转。
一切磁现象的根源是电流。
任何物质的分子中都存在有圆形电流,称为分子电流.分子电流相当于一个基元磁铁。
当物体不显示磁性时,各分子电流作无规则的排列, 它们对外界所产生的磁效应互相抵消。
在外磁场的作用下,与分子电流相当的基元磁铁将趋向于沿外磁场方向取向,从而使整个物体对外显示磁性。
磁感应强度磁现象中,电流与电流之间,电流与磁铁之间以及磁铁与磁铁之间的相互作用是通过一种叫磁场的特殊物质来传递的。
磁场对外的重要表现:1、磁场对进入场中的运动电荷或载流导体有磁力的作用;2、载流导体在磁场中移动时,磁场的作用力将对载流导体作功,表明磁场具有能量。
引入磁感应强度矢量B 来描述磁场的强弱和方向。
试验线圈(线度必须小,其引入不影响原有磁场的性质)的面积为 S ∆,线圈中电流为0I ,则定义试验线圈的磁矩为 n S I P m ∆0= 磁矩是矢量,其方向与线圈的法线方向一致,n 表示沿法线方向的单位矢量,法线与电流流向成右螺旋系。
(附图)线圈受到磁场作用的力矩(称为磁力矩)使试验线圈转到一定的位置而稳定平衡。
此时,线圈所受的磁力矩为零,此时线圈正法线所指的方向,定义为线圈所在处的磁场方向。
如果转动试验线圈,只要线圈稍偏离平衡位置,线圈所受磁力矩就不为零。
当试验线圈从平衡位置转过090时,线圈所受磁力矩为最大。
在磁场中给定点处,比值m P M max 仅与试验线圈所在位置有关,即只与试验线圈所在处的磁场性质有关。
规定磁感应强度矢量B 大小为m P M B max =磁场中某点处磁感应强度的方向与该点处试验线圈在稳定平衡位置时的法线方向相同;磁感应强度的量值等于具有单位磁矩的试验线圈所受到的最大磁力矩。
单位:磁感应强度的国际单位为特斯拉,简称特。
第六章 第二讲 磁场的高斯定理和安培环路定理

Bdl
L
0 I i 证明略.
说明:1)式中各量的含义 B~环路上各点的磁感强度, 由环路内、外所有电流产生. Ii ~穿过环路的电流的代数和.
I1
I2 I 3
I1
L
I1
0 I1 I 2) B d l (
L
注意: I 的正负的确定方法:先任选L 的绕向,
D
0 Ib ra [( a r ) ln a] 2a r
5
§6.4 安培环路定理 一、安培环路定理 静电场的环路定理
B
的环流 B d l =? L
环路
等于 0 乘以该闭合路径所包围的各电流的代数和. 说明:静电场是保守场
在真空的稳恒磁场中,磁感强度 沿任一闭合路径的积分值, B E d l 0 的环流 E L
真空中的安培环路定理 L B0 d l 0 I i 介质中: B r B0 0 r B d l r
二、 磁介质中的安培环路定理
传导电流
包括真空 定义:磁场强度矢量 H H d l I 0 ------磁介质中的安培环路定理.
H=0
B= H=0
H d l =H2r
L
(2) R1< r < R2 过场点 P2 作图示环路.
I 2 2 ( r R 1 ) 2 2 ( R2 R1 )
俯视图 P2
(r 2 R12 ) H 2 2( R2 R12 ) r I
r
B= H=
L
L
B=0 (2) R1< r < R2 ,
R2
物理学第3版习题解答_第6章稳恒磁场

I 2 dr
FBC 方向垂直 BC 向上,大小
FBc
d
0 I1 0 I1 I 2 d a ln 2r 2 d
d a
I 2 dl
0 I1 2r
∵
dl FBC
d a
dr cos 45
∴
a
0 I 2 I1dr II d a 0 1 2 ln 2r cos 45 d 2
B dl 8
a
0
ba
B dl 8 0
B dl 0
c
(1)在各条闭合曲线上,各点 B 的大小不相等. (2)在闭合曲线 C 上各点 B 不为零.只是 B 的环路积分为零而非每点 B 为零
图 6-25 思考题
6-4 图
1
6-5 安培定律 dF Idl B 有任意角度?
线,试指出哪一条是表示顺磁质?哪一条是表示抗磁质?哪一条是表示铁磁质? 答: 曲线Ⅱ是顺磁质,曲线Ⅲ是抗磁质,曲线Ⅰ是铁磁质.
图 6-27
思考题-6-8
2
习题
6-1 如图 6-28 所示的正方形线圈 ABCD,每边长为 a,通有电流 I.求正方形中心 O 处 的磁感应强度。 I A D 解 正方形每一边到 O 点的距离都是 a/2,在 O 点产生的磁场 大小相等、方向相同.以 AD 边为例,利用直线电流的磁场公式:
I1 电阻R2 . I 2 பைடு நூலகம்阻R1 2
I 1 产生 B1 方向 纸面向外
B1
0 I 1 (2 ) , 2R 2
I 2 产生 B2 方向 纸面向里
第9章稳恒磁场

I
R
O
I
O
B 0I 0I 4R 4R
I
R
o
o
R
B 0I
4R
I
B 0I 0I 4R 2R
B 30 I 0 I 8R 4R
24 首页 上页 下页退出
求如图所示的电流中圆心0的磁感应强度。
a
o
II
R
图(1)
l1
I1
o l2 I2
R
图(2)
(1) 每一边电流产生B1:
B1
0I 4a
sin
例9-2
求氢原子中作轨道运动的电子产生的磁场和电子的轨
道磁矩。 v
解
B
μ0 4π
qv r0
r2
o
·
r
r
q e 1.6 1019 C , r 0.53 1010 m
v 2.2 106 m s
q
B
4
107 1.61019
4 0.531010
2.2 106
2
12.53T
周界所围面积的电流的代数和的0倍 ,即
B dl
l
0
Ii
s
B的环流不为零,说明磁场是非保守场,是有旋场。
33
首页 上页 下页退出
2,在无限长直线电流磁场情况下验证安培环路定理 在垂直于导线的平面上任取一包围电流的闭合曲线 l
I
B
俯视放大图
l
B
I • d r
q dl
l
B dl B dl cosq Bds Br d
第9章 稳恒磁场
§9-1 §9-2 §9-3 §9-4 §9-6
磁场 磁感应强度 安培环路定理 磁场对载流导线的作用 磁场对运动电荷的作用 磁介质
第6章 稳恒磁场习题
1第6章 稳恒电流的磁场一 基本要求1. 掌握磁感应强度B的概念。
2. 掌握毕奥-萨伐尔定律,并能用该定律计算一些简单问题中的磁感应强度。
3. 掌握用安培环路定律计算磁感应强度的条件及方法,并能熟练应用。
4. 理解磁场高斯定理。
5. 了解运动电荷的磁场。
6. 理解安培定律,能用安培定律计算简单几何形状的载流导体所受到的磁场力。
7. 理解磁矩的概念,能计算平面载流线圈在均匀磁场中所受到的磁力矩,了解磁力矩所作的功。
8. 理解并能运用洛伦兹力公式分析点电荷在均匀磁场(包括纯电场、纯磁场)中的受力和运动的简单情况。
9. 了解霍耳效应。
10. 了解磁化现象及其微观解释。
11. 了解磁介质的高斯定理和安培环路定理,能用安培环路定理处理较简单的介质中的磁场问题。
12. 了解各向同性介质中H 与B的联系与区别。
13. 了解铁磁质的特性。
二 内容提要1. 毕奥-萨伐尔定律 电流元Id l 在真空中某一场点产生的磁感应强度d B 的大小与电流元的大小、电流元到该点的位矢r与电流元的夹角θ的正弦的乘积成正比,与位矢大小的平方成反比,即204r l I B θπμsin d d =dB 的方向与r l I⨯d 相同,其矢量式为304r rl I B⨯=d d πμ 2. 几种载流导体的磁场 利用毕奥-萨伐尔定律可以导出几种载流导体磁场的分布,这些结果均可作公式应用。
(1)有限长直载流导线的磁感应强度的大小)cos (cos π2104θθμ-=aIB方向与电流成右手螺旋关系。
式中,a 为场点到载流直导线的距离,21θθ、分别为直导线始末两端到场点的连线与电场方向的夹角。
2(2)长载流直导线(无限长载流直导线)的磁感应强度的大小rIB πμ20=方向与电流成右手螺旋关系。
(3) 直载流导线延长线上的的磁感应强度 0=B(4) 载流圆导线(圆电流)轴线上的磁感应强度的大小2322202)(x R IR B +μ=方向沿轴线,与电流成右手螺旋关系。
稳恒磁场及答案
第七章稳恒电流1、在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B的夹角为 ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) r 2B . . (B) 2r 2B . (C) -r 2B sin . (D) -r 2B cos .2、磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲线表示B -x 的关系[ ]3、如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分 LlB d 等于(A) I 0 . (B) I 031. (C) 4/0I . (D) 3/20I .4、如图,在一固定的载流大平板附近有一载流小线框能自由转动或平动.线框平面与大平板垂直.大平板的电流与线框中电流方向如图所示,则通电线框的运动情况对着从大平板看是: (A) 靠近大平板. (B) 顺时针转动. (C) 逆时针转动. (D) 离开大平板向外运动.5、在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示.在此情形中,线框内的磁通量 =______________.n B SOB x O R (A) BxO R (B)Bx O R (D) Bx O R (C)BxO R (E)x电流 圆筒II ab c d120°I 1I 2b baI6、如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆心O 处的电流元l I d 所受的安培力Fd 的大小为____,方向________.7、有一根质量为m ,长为l 的直导线,放在磁感强度为 B的均匀磁场中B 的方向在水平面内,导线中电流方向如图所示,当导线所受磁力与重力平衡时,导线中电流I =___________________.8、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为,求与平板共面且距平板一边为b的任意点P 的磁感强度.9、一根同轴线由半径为R 1的长导线和套在它外面的内半径为R 2、外半径为R 3的同轴导体圆筒组成.中间充满磁导率为的各向同性均匀非铁磁绝缘材料,如图.传导电流I 沿导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的.求同轴线内外的磁感强度大小B 的分布.答案:一 选择题1、D2、A3、D4、B5、2ln 20Ia6、a l I 4/d 20 垂直电流元背向半圆弧(即向左)7、)/(lB mgIlI dIBI8、解:利用无限长载流直导线的公式求解. (1) 取离P 点为x 宽度为d x 的无限长载流细条,它的电流x i d d(2) 这载流长条在P 点产生的磁感应强度x i B 2d d 0 xx2d 0 方向垂直纸面向里.(3) 所有载流长条在P 点产生的磁感强度的方向都相同,所以载流平板在P 点产生的磁感强度B B dba bxdx x20b b a x ln 20 方向垂直纸面向里.9、解:由安培环路定理: i I l Hd 0< r <R 1区域: 212/2R Ir rH 212R Ir H, 2102R Ir BR 1< r <R 2区域: I rH 2r I H 2, rIB 2R 2< r <R 3区域: )()(22223222R R R r I I rH )1(22223222R R R r r IH )1(2222322200R R R r r IH B r >R 3区域: H = 0,B = 0x d x PO x。
第7章稳恒磁场
o
L
P
x
结论 任意平面载流导线在均匀磁场 中所受的力,与其始点和终点相同的载流 直导线所受的磁场力相同.
42
二 物理学 均匀磁场对载流线圈的作用力矩
将平面载流线圈放入均匀磁场中,
da边受到安培力大小:
Fda
Il
2
B
sin(
2
)
bc边受到安培力大小:
Fbc
Il 2 B
sin(
2
)
o
Fda
d
a
I
l1
qvB m v2 R
m qBR v
70 72 73 74 76
质谱仪的示意图
锗的质谱
30
物理学
霍耳效应
31
物理学
B
霍耳电压 Fm
UH
RH
IB d
b
d
vd+
+ ++
+q
+
- - - - - I
UH
Fe
qEH qvd B I qnvd S qnvdbd
EH vd B U H vd Bb
× ×
××0
粒子做匀速圆周运动
物理学
(3)
0与B成角
// 0 cos
0 sin
R m m0 sin
qB
qB
•
0 //
B
B
T 2R 2m qB
螺距 h : h //T 0 cos T 2m0 cos
qB
h //
0
q R
物理学
例题1 :请根据磁感应强度的方向规定,给 出下列情况运动电荷的受力方向:
B
c
en
稳恒磁场习题答案
稳恒磁场习题答案稳恒磁场习题答案磁场是物理学中一个重要的概念,它在我们日常生活中扮演着重要的角色。
稳恒磁场习题是物理学中常见的练习题,通过解答这些习题,我们可以更好地理解磁场的性质和应用。
下面是一些常见的稳恒磁场习题及其答案,希望对大家的学习有所帮助。
1. 一根长直导线产生的磁场强度与距离的关系是怎样的?答:根据安培定律,长直导线产生的磁场强度与距离成反比关系。
即磁场强度随着距离的增加而减小。
2. 一根长直导线中心点的磁场强度为B,如果将导线弯成一个半径为r的圆环,中心点的磁场强度会发生怎样的变化?答:当将导线弯成一个半径为r的圆环后,中心点的磁场强度会变为零。
这是因为在圆环的中心点,由于对称性的原因,导线上的每一段磁场强度都会相互抵消,最终导致中心点的磁场强度为零。
3. 一个平面线圈中心的磁场强度与电流的关系是怎样的?答:根据比奥-萨伐尔定律,平面线圈中心的磁场强度与电流成正比关系。
即磁场强度随着电流的增加而增加。
4. 一个平面线圈中心的磁场强度与线圈的面积的关系是怎样的?答:一个平面线圈中心的磁场强度与线圈的面积成正比关系。
即磁场强度随着线圈的面积的增加而增加。
5. 一个平面线圈中心的磁场强度与距离的关系是怎样的?答:一个平面线圈中心的磁场强度与距离成反比关系。
即磁场强度随着距离的增加而减小。
6. 一个匀强磁场中,一个带电粒子的运动轨迹是怎样的?答:在一个匀强磁场中,一个带电粒子的运动轨迹是一个半径为r的圆。
这是因为带电粒子在匀强磁场中受到洛伦兹力的作用,该力垂直于带电粒子的速度和磁场方向,导致粒子做圆周运动。
7. 在一个匀强磁场中,一个带电粒子的运动速度对轨道半径的影响是怎样的?答:在一个匀强磁场中,一个带电粒子的运动速度对轨道半径没有影响。
这是因为带电粒子的运动速度只会影响圆周运动的周期,而不会影响圆周运动的半径。
8. 一个匀强磁场中,一个带电粒子的运动轨迹会受到哪些因素的影响?答:一个匀强磁场中,一个带电粒子的运动轨迹受到带电粒子的电荷量、质量、速度以及磁场的强度和方向的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、一长直电流I 在平面内被弯成如图所示的形状,其中直电流 L 1和L 2的延长线过o ,电流ab 是以o 为圆心以R 2为半径的3/4圆弧,求:场点o
处的磁感强度B
的大小和方向。
解:场点o 处的磁感强度是由五段特殊形状电流产生的场的叠加,即
21L ab L o B B B B
++= 1分
各电流的磁感强度分别为:
2分
01=L B
2分
R I B ab 2430μ=方向:
2分 R
I
B L πμ22102
=
方向:
3分
R
I R I B o πμμ48300+
= 方向:
2、图所示,真空中,在无限长导线中通有电流I,无限长导线与矩形线圈ABCD 共面,且AB 、CD 都与长直导线平行。
求通过矩形线圈的磁通量。
解2、解:无限长直流导线在其周围空间产生的磁场公式为
02I
B x
μπ=,方向为垂直于纸面向里
垂直于长直导线x 处取一面元bdx 的磁通量为
02I
d bdx x
μπΦ=
整个线圈的磁通量为
00ln 22a l
l
I I a l d bdx b x l
μμππ++Φ=Φ==⎰⎰
3、如图所示,真空中,在载流为I 的无限长直导线的磁场中,放置有一等腰直角三角形导线
△ABC ,其直角边长为a ,AB 边与导线平行且两者的距离为b 。
求三角形内的磁通量。
解、无限长直流导线在其周围空间产生的磁场公式为
r
I
B πμ20= (2分)
建立如图所示的坐标系,在离原点O 为x 的地方 取一宽度为dx ,高度为y 的面积元的ds ,在面积元 ds 内磁场可视为均匀,由于载流导线激发的磁场与 三角形平面垂直,则在ds 内的磁通量为
ydx x
I
Bds d πμφ20== (2分)
又因为x b a y -+=,所以 dx x b a x
I
d )(20-+=πμφ (3分) 则整个三角形内的磁通量为:
⎥⎦
⎤
⎢⎣⎡-++=-+==⎰
⎰+a b b a b a I
dx x b a x I d b
a b
ln )(2)(200π
μπμφφ (3分)
4、有一同轴电缆,尺寸如图(横截面图)。
两导体中的电流均为I ,但电流的方向相反,导体的磁性不考虑。
试计算以下各处的磁感强度:
(1)1r R <;(2)12R r R <<;(3)13R r R <<;(4)3r R <
b
X
解:同轴电缆导体内部的电流均匀分布,其磁场呈轴对称,取半径为r 的同心圆作为积分路径,.2B dl B r π⋅=⎰
, (1分) 利用安培环路定理0B dl I μ⋅=∑⎰ , (1分)
可解得各区域的磁感强度。
r R <,2
10
21.2I B r r R πμππ=,012
1
2Ir B R μπ= (2分) 12R r R <<,20.2B r I πμ=,022I
B r
μπ=
(2分) 23R r R <<,222302232()
.2[]()r R B r I I R R ππμπ-=--,2203322
322I R r B r R R μπ-=
- (2分) 3r R >,40.2[]0B r I I πμ=-=,40B = (2分)
5、一长直电流I 在平面内被弯成如图所示的形状,其中直电流 a b 和cd 的延长线过o ,电流bc 是以o 为圆心以R 2为半径的1/4圆弧,电流de
是以o 为圆心、以R 1为半径的1/4圆弧,直电流ef 与圆弧电流de 在e 点相切,求:场点o 处的磁感强度B
的大小和方向。
解:场点o 处的磁感强度是由五段特殊形状电流产生的场的叠加,即
ef de cd bc ab o B B B B B B ++++=
各电流的磁感强度分别为:
2分
0==cd ab B B
3分
2
0241R I B bc μ=
方向:
3分 ⊗=
1
0241R I
B de μ
3分
⊗=
1
0221R I B ef πμ
3分 ⊗-
+=2
01010848R I
R I R I
B o μπμμ
6、求各图中P 点的磁感应强度B 的大小和方向。
解:两直电流在P 点的磁场相当于两个“半无限长”直电流磁场的叠加,等于一个无限长直电流在相距r 处的磁场,为()r I πμ2/0。
半圆电流在P 点的磁场为圆电流在圆心的磁场的一半,即()r I 4/0μ。
在P 点的总磁场为上述同向磁场的叠加,其大小为
r
I
r I P 4200μπμ+=
方向垂直纸面向里。
a。