大学物理第六章-恒定磁场习题解劝答

合集下载

大学物理恒定磁场知识点及试题带答案

大学物理恒定磁场知识点及试题带答案

恒定磁场一、基本要求1、了解电流密度的概念。

2、掌握磁感应强度的概念及毕奥—萨伐尔定律,能利用叠加原理结合对称性分析,计算一些简单问题中的磁感应强度。

3、理解稳恒磁场的两个基本规律:磁高斯定理和安培环路定理。

掌握应用安培环路定理计算磁感应强度的条件和方法,并能熟练应用。

4、掌握洛伦兹力公式,能分析运动电荷在磁场中的受力和运动。

掌握安培力公式,理解磁矩的概念,能计算简单几何形状的载流导线和载流平面线圈在均匀磁场中或在无限长直载流导线产生的非均匀磁场中所受的力和力矩。

二、主要内容 1、稳恒电流电流:电荷的定向运动。

电流强度:单位时间通过导体某一横截面的电量,即dtdq I =。

电流密度)(δ:通过与该点的电荷移动方向相垂直的单位面积的电流强度,方向与该点的正电荷移动方向一致。

电流密度是描述电流分布细节的物理量,单位是2/m A 。

电流强度⎰⋅=SS d Iδ。

2、磁场在运动的电荷(电流)周围,除了形成电场外,还形成磁场。

磁场的基本性质之一是它对置于其中的运动电荷或电流有作用力。

和电场一样,磁场也是一种物质。

3、磁感应强度磁感应强度B是描述磁场性质的物理量。

当电荷在磁场中沿不同方向运动时,磁场对它的作用力不同,沿某方向运动时不受力,与该方向垂直运动时受力最大,定义B 的方向与该方向平行,由v q F⨯max 决定。

B 的大小定义为qvF B max=。

如右图所示。

B 的单位为T (特斯拉)。

4、毕奥—萨伐尔定律电流元:电流元l Id是矢量,其大小等于电流I 与导线元长度dl 的乘机,方向沿电流方向。

毕奥—萨伐尔定律:电流元l Id 在P 点产生的磁感应强度为 30r rl Id B d⨯=μ式中0μ为真空磁导率,A m T /10470⋅⨯=-πμ,r由电流元所在处到P 点的矢量。

运动电荷的磁场:304rrqv B πμ ⨯= 本章判断磁场方向的方法与高中所学方法相同。

几种特殊形状载流导线的磁场()012 cos cos 4I B aμθθπ=- a I B πμ20= a I B πμ40= )1(cos 40+=θπμa IB0=B5、磁场的高斯定理磁感应线:磁感应线为一些有向曲线,其上各店的切线方向为该点的磁感应强度方向,磁感应线是闭合曲线。

大学物理(肖剑荣主编)-习题答案-第6章汇编

大学物理(肖剑荣主编)-习题答案-第6章汇编

R µ0I 2r3dr 0 4π R4
= µ0I 2 16π
d =0.05m 时线圈中感应电动势的大小和方向.
解: AB 、 CD 运动速度 v! 方向与磁力线平行,不产生感应电动势.
ò DA 产生电动势
e1 =
A(v!
´
! B)
×
! dl
=
vBb
=
vb
µ0I
D
2pd
ò BC 产生电动势
e2 =
C(v!
´
B!)
×
! dl
=
-vb
µ0I
B
2π (a + d)
动势的大小及方向.
解: 取半圆形 cba 法向为 i! ,

F m1
= π R2 B cosa 2
同理,半圆形 adc 法向为 !j ,则
Fm2
= π R2 B cosa 2

! B

i!
夹角和
! B

!j
夹角相等,

a = 45°

Fm = Bπ R2 cosa
e = - dF m = -πR 2 cosa dB = -8.89 ´10-2 V
= - d [dt
3 R2B] = 4
3R dB 4 dt
e ab
= - dF 2 dt
=
d πR2 - [-
dt 12
B] =
πR 2 12
dB dt

e ac = [
3R 2 πR 2 dB +]
4 12 dt
∵ dB > 0 dt
∴ e ac > 0 即 e 从 a ® c 6-13 半径为 R 的直螺线管中,有 dB >0 的磁场,一任意闭合导线 abca ,一部分

大学物理稳恒磁场习题及答案

大学物理稳恒磁场习题及答案

衡水学院 理工科专业 《大学物理B 》 稳恒磁场 习题解答一、填空题(每空1分)1、电流密度矢量的定义式为:dIj n dS ⊥=,单位是:安培每平方米(A/m 2) 。

2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量Φ = 0 .若通过S 面上某面元d S 的元磁通为d Φ,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d Φ',则d Φ∶d Φ'= 1:2 。

3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=。

4小为πR 2c Wb。

5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于:对环路a :dB l ⋅⎰=____μ0I __; 对环路b :d B l ⋅⎰=___0____; 对环路c :d B l ⋅⎰ =__2μ0I __。

6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。

二、单项选择题(每小题2分)( B )1、均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为A. 2πr 2BB. πr 2BC. 0D. 无法确定的量( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为A. 0.90B. 1.00C. 1.11D. 1.22( D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 方向垂直环形分路所在平面且指向纸内B. 方向垂直环形分路所在平面且指向纸外C .方向在环形分路所在平面内,且指向aD .为零( D )( C )绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为A. B 1 = B 2B. B 1 = 2B 2 C .B 1 = 21B 2 D .B 1 = B 2 /4( B )6、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4. (D) 2倍和1/2. 三、判断题(每小题1分,请在括号里打上√或×)( × )1、电源的电动势是将负电荷从电源的负极通过电源内部移到电源正极时,非静电力作的功。

大学物理简明教程陈执平参考解答(完整版)7.恒定磁场习题.

大学物理简明教程陈执平参考解答(完整版)7.恒定磁场习题.

7-1 如图AB 、CD 为长直导线,BC 是一段圆心为O 、半径为R 的圆弧形导线,若导线通有电流I ,求O 点的磁感应强度。

解: AB 段产生:0B 1= BC 段产生:R12IB 02μ=,方向垂直向里CD 段产生:)231(R 2I )60sin 90(sin 2R 4IB 00003-=-=πμπμ方向垂直向里 )6231(R 2I B B B B 03210ππμ+-=++=,垂直纸面向内7-2 两条无限长直载流导线垂直且不相交,它们相距最近处为cm 0.2d =,电流分别为A 0.4I 1=和A 0.6I 2=, P 点到两导线距离都是d ,求P 处的磁感应强度大小。

解: 电流I 1在P 点产生 T 100.4d2I B 5101-⨯==πμ 方向垂直向里 电流I 2在P 点产生 T 100.6d2I B 5202-⨯==πμ 方向在纸面里垂直指向电流I 1P 点 T 102.7B B B 52221-⨯=+=5.1B B tg 12==θ,91560'=θ7-3 一宽度为b 的半无限长金属板置于真空中,均匀通有电流0I 。

P 点为薄板边线延长线上的一点,与薄板边缘的距离为d 。

如图所示。

试求P 点的磁感应强度B 。

解 建立坐标轴OX ,如图所示,P 点为X 轴上的一点。

整个金属板可视为由无限多条无限长的载流导线所组成,其中取任意一条载流线,其宽度为dx ,其上载有电流dx b I dl 0=,它在P 点产生的场强为()x d b b dx I r dIdB P -+==πμπμ44000的方向垂直纸面向里。

由于每一条无限长直载流线在P 点激发的磁感强度dB 具有相同的方向,所以整个载流金属板在P 点产生的磁感应强度为各载流线在该点产生dB 的代数和,即⎰⎰-+==bP P x d b dx bI dB B 004πμbx d b b I 0001ln 4-+=πμb d d b I πμ4ln 00+=P B 方向垂直于纸面向里。

《大学物理》第六章 恒定电流的磁场 (2)

《大学物理》第六章  恒定电流的磁场 (2)

dBcos
B
900
dB cos
900
900 0I cosd 900 2 2 R
6-12解:
磁通量
dΦ BdS cos00
I1
l r1
r2
I2 r3
x
B
B2
B1
0I2 2x
0 I1 2 (d
x)
dS ldx
Φ dΦ r2 r3 r3
6-13解:
B内
0Ir 2R2
B
0I 2R
oR
r
dΦ BdS cos00 0Ir l dr 2R2
(1)质子作螺旋运动的半径; (2)螺距; (3)旋转频率。
结束 目录
已知:B =1.5 T v =1.0×107m/s
= 300
求:半径 R 螺距 h 旋转频率 n
解:
R
=
mv eB
=
m
vsin eB
1.67×10-27×1.0×107×0.5
dB
0dI
0
I b
dx
2x 2x
P (2)沿坐标轴投影积分,积分
B
2b
0
I b
dx
b 2x
o
θ
dB 0dI
0
I b
dy
y
θ
2d 2 ( y)2 x2
x
dB cos
0
I b
dy
x
2 ( y)2 x2 ( y)2 x2
6-10解:
(1)选坐标,取微小量
dB
0dI
0
I
R
Rd
θ
2R
2R
(2)沿坐标轴投影积分,积分

第6章 稳恒磁场习题

第6章 稳恒磁场习题

1第6章 稳恒电流的磁场一 基本要求1. 掌握磁感应强度B的概念。

2. 掌握毕奥-萨伐尔定律,并能用该定律计算一些简单问题中的磁感应强度。

3. 掌握用安培环路定律计算磁感应强度的条件及方法,并能熟练应用。

4. 理解磁场高斯定理。

5. 了解运动电荷的磁场。

6. 理解安培定律,能用安培定律计算简单几何形状的载流导体所受到的磁场力。

7. 理解磁矩的概念,能计算平面载流线圈在均匀磁场中所受到的磁力矩,了解磁力矩所作的功。

8. 理解并能运用洛伦兹力公式分析点电荷在均匀磁场(包括纯电场、纯磁场)中的受力和运动的简单情况。

9. 了解霍耳效应。

10. 了解磁化现象及其微观解释。

11. 了解磁介质的高斯定理和安培环路定理,能用安培环路定理处理较简单的介质中的磁场问题。

12. 了解各向同性介质中H 与B的联系与区别。

13. 了解铁磁质的特性。

二 内容提要1. 毕奥-萨伐尔定律 电流元Id l 在真空中某一场点产生的磁感应强度d B 的大小与电流元的大小、电流元到该点的位矢r与电流元的夹角θ的正弦的乘积成正比,与位矢大小的平方成反比,即204r l I B θπμsin d d =dB 的方向与r l I⨯d 相同,其矢量式为304r rl I B⨯=d d πμ 2. 几种载流导体的磁场 利用毕奥-萨伐尔定律可以导出几种载流导体磁场的分布,这些结果均可作公式应用。

(1)有限长直载流导线的磁感应强度的大小)cos (cos π2104θθμ-=aIB方向与电流成右手螺旋关系。

式中,a 为场点到载流直导线的距离,21θθ、分别为直导线始末两端到场点的连线与电场方向的夹角。

2(2)长载流直导线(无限长载流直导线)的磁感应强度的大小rIB πμ20=方向与电流成右手螺旋关系。

(3) 直载流导线延长线上的的磁感应强度 0=B(4) 载流圆导线(圆电流)轴线上的磁感应强度的大小2322202)(x R IR B +μ=方向沿轴线,与电流成右手螺旋关系。

大学物理稳恒磁场理论及习题

大学物理稳恒磁场理论及习题

结果:
1.
F
v,
B组



面.
2. F 大小正比于v, q0,sin.
q0沿磁场方向运动, F 0.
q0 垂直磁场方 向运动, F Fmax .
NIZQ 第4页
大学物理学 恒定磁场
在垂直磁场方向改变速率v,改变点电荷 电量q0 .
结论: 场中同一点, Fmax/q0v有确定值. 场中不同点, Fmax/q0v量值不同.
大学物理学 恒定磁场
从毕-萨定律导出运动电荷的磁场
S: 电流元横截面积
n: 单位体积带电粒子数
q: 每个粒子带电量
v: 沿电流方向匀速运动
电流元 Idl产生的磁场:
大学物理学 恒定磁场
一.磁场 磁感应强度
• 磁性起源于电荷的运动 磁铁的磁性: 磁性: 能吸引铁、钴、镍等物质的性质.
磁极: 磁性最强的区域, 分磁北.
磁力: 磁极间存在相互作用, 同号相斥,
异号相吸.
问题: 磁现象产生的原因是什么?
司南勺
北宋沈括发明 “指南针(罗盘
1.在任何磁场中每一条磁感线都
是环绕电流的无头无尾的闭合线, 条形磁铁周围的磁感线 即没有起点也没有终点,而且这些
闭合线都和闭合电路互相套连.
2.在任何磁场中,每一条闭合的磁
感线的方向与该闭合磁感线所包围
的电流流向服从右手螺旋法则.
直线电流的磁感线
NIZQ 第6页
大学物理学 恒定磁场
二.毕澳-萨伐尔定律
r a
sin
B
l
dB
2 1
0I

a
sin 2
sin 2
a2
sin d

大学物理(肖剑荣主编)-习题答案-第6章

大学物理(肖剑荣主编)-习题答案-第6章

面,且端点 MN 的连线与长直导线垂直.半圆环的半径为 b ,环心 O 与导线相距
a .设半圆环以速度 v 平行导线平移.求半圆环内感应电动势的大小和方向及
MN 两端的电压 U M - U N .
解: 作辅助线 MN ,则在 MeNM 回路中,沿 v! 方向运动时 dFm = 0

e MeNM = 0
ò F12 =
2a
3 a
3
µ 0 Ia 2π r
dr
=
µ0Ia ln 2 2π
∴ M = F12 = µ0a ln 2 I 2π
6-16 一矩形线圈长为 a =20cm,宽为 b =10cm,由 100 匝表面绝缘的导线绕成,
放在一无限长导线的旁边且与线圈共面.求:题 10-16 图中(a)和(b)两种情况下,
第六章 课后习题解答
桂林理工大学 理学院 胡光辉
(《大学物理·上册》主编:肖剑荣 梁业广 陈鼎汉 李明)
6-1 一半径 r =10cm
的圆形回路放在 B =0.8T
的均匀磁场中.回路平面与
! B

直.当回路半径以恒定速率 dr =80cm·s-1 收缩时,求回路中感应电动势的大小. dt
解: 回路磁通
=
µ0Iv p
ln
a a
+ -
b b
6-12 磁感应强度为 B! 的均匀磁场充满一半径为 R 的圆柱形空间,一金属杆放在
dB 图中位置,杆长为 2 R ,其中一半位于磁场内、另一半在磁场外.当 >0 时,
dt
求:杆两端的感应电动势的大小和方向.
解: ∵ e ac = e ab + e bc
e ab
= - dF1 dt
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档