精选-07《大学物理学》恒定磁场练习题

合集下载

大学物理恒定磁场知识点及试题带答案

大学物理恒定磁场知识点及试题带答案

恒定磁场一、基本要求1、了解电流密度的概念。

2、掌握磁感应强度的概念及毕奥—萨伐尔定律,能利用叠加原理结合对称性分析,计算一些简单问题中的磁感应强度。

3、理解稳恒磁场的两个基本规律:磁高斯定理和安培环路定理。

掌握应用安培环路定理计算磁感应强度的条件和方法,并能熟练应用。

4、掌握洛伦兹力公式,能分析运动电荷在磁场中的受力和运动。

掌握安培力公式,理解磁矩的概念,能计算简单几何形状的载流导线和载流平面线圈在均匀磁场中或在无限长直载流导线产生的非均匀磁场中所受的力和力矩。

二、主要内容 1、稳恒电流电流:电荷的定向运动。

电流强度:单位时间通过导体某一横截面的电量,即dtdq I =。

电流密度)(δ:通过与该点的电荷移动方向相垂直的单位面积的电流强度,方向与该点的正电荷移动方向一致。

电流密度是描述电流分布细节的物理量,单位是2/m A 。

电流强度⎰⋅=SS d Iδ。

2、磁场在运动的电荷(电流)周围,除了形成电场外,还形成磁场。

磁场的基本性质之一是它对置于其中的运动电荷或电流有作用力。

和电场一样,磁场也是一种物质。

3、磁感应强度磁感应强度B是描述磁场性质的物理量。

当电荷在磁场中沿不同方向运动时,磁场对它的作用力不同,沿某方向运动时不受力,与该方向垂直运动时受力最大,定义B 的方向与该方向平行,由v q F⨯max 决定。

B 的大小定义为qvF B max=。

如右图所示。

B 的单位为T (特斯拉)。

4、毕奥—萨伐尔定律电流元:电流元l Id是矢量,其大小等于电流I 与导线元长度dl 的乘机,方向沿电流方向。

毕奥—萨伐尔定律:电流元l Id 在P 点产生的磁感应强度为 30r rl Id B d⨯=μ式中0μ为真空磁导率,A m T /10470⋅⨯=-πμ,r由电流元所在处到P 点的矢量。

运动电荷的磁场:304rrqv B πμ ⨯= 本章判断磁场方向的方法与高中所学方法相同。

几种特殊形状载流导线的磁场()012 cos cos 4I B aμθθπ=- a I B πμ20= a I B πμ40= )1(cos 40+=θπμa IB0=B5、磁场的高斯定理磁感应线:磁感应线为一些有向曲线,其上各店的切线方向为该点的磁感应强度方向,磁感应线是闭合曲线。

恒定磁场习题word精品文档8页

恒定磁场习题word精品文档8页

恒定磁场作业班级:_____________ 姓名:_____________ 学号:_____________ 日期:__________年_______月_______日 成绩:_____________ 一、选择题 1.边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为 (A) 01=B ,02=B .(B) 01=B ,lIB π=0222μ.(C) l IB π=0122μ,02=B . (D) l I B π=0122μ,lIB π=0222μ.2.如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B ϖ沿图中闭合路径L 的积分⎰⋅Ll B ϖϖd 等于(A) I 0μ. (B) I 031μ.(C) 4/0I μ. (D) 3/20I μ. [ ]3.一个动量为p 的电子,沿图示方向入射并能穿过一个宽度为D 、磁感强度为B ϖ(方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为 (A) p eBD 1cos -=α. (B) p eBD1sin -=α. (C) ep BD 1sin -=α. (D) epBD1cos -=α. [ ] 4.四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为(A) I aB π=02μ. (B) I a B 2π=2μ. (C) B = 0. (D) I aB π=0μ. [ ]5.无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于(A) RI π20μ. (B) R I40μ.(C) 0. (D) )11(20π-R I μ.(E) )11(40π+R I μ. [ ]6.有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的(A) 4倍和1/8. (B) 4倍和1/2.(C) 2倍和1/4. (D) 2倍和1/2. [ ] 7.四条平行的无限长直导线,垂直通过边长为a =20 cm 的正方形顶点,每条导线中的电流都是I =20 A ,这四条导线在正方形中心O 点产生的磁感强度为(0 =4×10-7 N ·A -2)(A) B =0. (B) B = 0.4×10-4 T .(C) B = 0.8×10-4 T. (D) B =1.6×10-4 T . [ ] 8.一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管单位长度上的匝数相等.设R = 2r ,则两螺线管中的磁感强度大小B R 和B r 应满足:(A) B R = 2 B r . (B) B R = B r .(C) 2B R = B r . (D) B R = 4 B r . [ ]有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点(如图)的磁感强度B ϖ的大小为(A) )(20b a I +πμ. (B) bba a I +πln 20μ.(C) bba b I +πln 20μ. (D) )2(0b a I +πμ. [ ]10.关于稳恒电流磁场的磁场强度H ϖ,下列几种说法中哪个是正确的? (A) H ϖ仅与传导电流有关.(B) 若闭合曲线内没有包围传导电流,则曲线上各点的H ϖ必为零.(C) 若闭合曲线上各点H ϖ均为零,则该曲线所包围传导电流的代数和为零. (D) 以闭合曲线L为边缘的任意曲面的H ϖ通量均相等. [ ]二、填空题 11.图中所示的一无限长直圆筒,沿圆周方向上的面电流密度(单位垂直长度上流过的电流)为i ,则圆筒内部的磁感强度的大小为B =________,方向_______________. 12.如图所示,在宽度为d 的导体薄片上有电流I 沿此导体长度方向流过,电流在导体宽度方向均匀分布.导体外在导体中线附近处P 点的磁感强度B ϖ的大小为________________________.13.有一长直金属圆筒,沿长度方向有横截面上均匀分布的稳恒电流I 流通.筒 内空腔各处的磁感强度为______________,筒外空间中离轴线r 处的磁感强度为 ______________.一质量为m ,电荷为q 的粒子,以0v ϖ速度垂直进入均匀的稳恒磁场B ϖ中,电荷将作半径为____________________的圆周运动. 15.在磁场中某点放一很小的试验线圈.若线圈的面积增大一倍,且其中电流也 增大一倍,该线圈所受的最大磁力矩将是原来的______________倍. 16.有一半径为a ,流过稳恒电流为I 的1/4圆弧形载流导线bc ,按图示方式置于均匀外磁场B ϖ中,则该载流导线所受的安培力大小为_______________________. 17.氢原子中电子质量m ,电荷e ,它沿某一圆轨道绕原子核运动,其等效圆电 流的磁矩大小p m 与电子轨道运动的动量矩大小L 之比=Lp m________________. 18.一无限长载流直导线,通有电流I ,弯成如图形状.设各线段皆在纸面内,则P点磁感强度B ϖ的大小为________________. 19.一根无限长直导线通有电流I ,在P 点处被弯成了一个半径为R 的圆,且P 点处无交叉和接触,则圆心O 处的磁感强度大小为_______________________________________,方向为 ______________________________.图示为三种不同的磁介质的B ~H 关系曲线,其中虚线表示的是B = 0H 的关系.说明a 、b 、c 各代表哪一类磁介质的B ~H 关系曲线:a 代表______________________________的B ~H 关系曲线.b 代表______________________________的B ~H 关系曲线.c 代表______________________________的B ~H 关系曲线. 三、计算题 21.真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B. 22.横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值. 23.在一无限长的半圆筒形的金属薄片中,沿轴向流有电流,在垂直电流方向单位长度的电流为i = k sin ,其中k 为常量,如图所示.求半圆筒轴线上的磁感强度.24.在真空中有两根相互平行的无限长直导线L 1和L 2,相距10 cm ,通有方向相反的电流,I 1 =20 A ,I 2 =10 A ,试求与两根导线在同一平面内且在导线L 2两侧并与导线L 2的距离均为 5.0 cm 的两点的磁感强度的大小.(=4×10-7 H ·m -1)参考答案1.C2.D3.B4.C5.D6.B7.C8.B9.B 10.C 11.i 2分沿轴线方向朝右 1分 12.)2/(0d I μ 3分13.0 1分 )2/(0r I πμ 2分 14.)/(0B q m v 3分15.4 3分 16.aIB 3分 17.me2 3分 18.aIB π=830μ 3分 19.)11(20π-R Iμ 2分 垂直纸面向里. 1分 20铁磁质 1分 顺磁质 1分 抗磁质 1分 21.解:令1B ϖ、2B ϖ、ab B ϖ和acb B ϖ分别代表长直导线1、2和通电三角框的 ab 、ac 和cb 边在O 点产生的磁感强度.则 ab acb B B B B B ϖϖϖϖϖ+++=211B ϖ:对O 点,直导线1为半无限长通电导线,有)(401Oa IB π=μ, 1B ϖ的方向垂直纸面向里. 2分2B ϖ:由毕奥-萨伐尔定律,有 )(402Oe I B π=μ)60sin 90(sin ︒-︒方向垂直纸面向里. 2分ab B 和acb B :由于ab 和acb 并联,有 )(cb ac I ab I acb ab +⋅=⋅ 根据毕奥-萨伐尔定律可求得 ab B =acb B 且方向相反. 2分所以 21B B B ϖϖϖ+= 1分 把3/3l Oa =,6/3l Oe =代入B 1、B 2,则B ϖ的大小为 )13(43)231(346343000-π=-π+π=l I lI l I B μμμB ϖ的方向:垂直纸面向里. 1分22.解:(1) 在环内作半径为r 的圆形回路, 由安培环路定理得NI r B μ=π⋅2, )2/(r NI B π=μ 3分在r 处取微小截面d S = b d r , 通过此小截面的磁通量 穿过截面的磁通量⎰=SS B d Φr b r NId 2π=μ12ln 2R R NIb π=μ 5分 (2)同样在环外( r < R 1 和r > R 2 )作圆形回路, 由于0=∑i I∴ B = 0 2分 23.解:设轴线上任意点的磁感强度为B ,半圆筒半径为R .先将半圆筒面分成许多平行轴线的宽度为d l 的无限长直导线,其中流过的电流为θθθd sin d sin d d R k l k l i I =⋅== 2分它在轴线上产生的磁感强度为RIB π=2d d 0μ, 方向如图. 2分由对称性可知:B ϖd 在z 轴向的分量为0,在y 轴的分量叠加中相互抵消,只需考虑B ϖd 在x 轴的分量d B x . 2分d B x = d B sin θμsin 2d 0RIπ=θθμd 2sin 20π=k 2分 积分: ⎰⎰ππ==020d 2sin d θθμk B B x4/0k μ= 2分B ϖ的方向沿x 轴负方向. 24.解:(1) L 1中电流在两导线间的a 点所产生的磁感强度51101100.82-⨯=π=aa r IB μ T 2分L 2中电流在a 点所产生的磁感强度 52202100.42-⨯=π=aa r I B μ T 1分由于a B 1ϖ、a B 2ϖ的方向相同,所以a 点的合磁感强度的大小421102.1-⨯=+=a a a B B B T 2分(2) L 中电流在两导线外侧b 点所产生的磁感强度51101107.22-⨯=⋅π=bb r IB μ T 2分L 2中电流在b 点所产生的磁感强度 52202100.42-⨯=⋅π=bb r I B μ T 1分由于和b B 1ϖ和b B 2ϖ的方向相反,所以b 点的合磁感强度的大小521103.1-⨯=-=b b b B B B T 2分希望以上资料对你有所帮助,附励志名言3条:1、常自认为是福薄的人,任何不好的事情发生都合情合理,有这样平常心态,将会战胜很多困难。

大学物理 第08章 恒定磁场习题

大学物理 第08章 恒定磁场习题

第八章 电磁感应与电磁场
5
物理学
第五版
第八章 习题
(2)如 dB 0.010 T s1,求距螺线管中心 dt
轴 r 5.0 cm 处感生电场的大小和方向.
第八章 电磁感应与电磁场
6
物理学
第五版
第八章 习题
6 在半径为 R 的圆柱形空间中存在
着均匀磁场 B 的方向与柱的轴线平行. 如
图所示,有一长为 l 的
电动势E 大小. 哪一端电
势较高?
第八章 电磁感应与电磁场
2
物理学
第五版
第八章 习题
3 如图所示,长为 L 的导体棒 OP, 处于均匀磁场中, 并绕 OO’ 轴以角速
度 旋转,棒与转
轴间夹角恒为 ,
磁感强度 B 与转轴 平行. 求 OP 棒在图 示位置处的电动势.
第八章 电磁感应与电磁场
3
物理学
第八章 电磁感应与电磁场
11
物理学
第五版
10 如图所示,一 面积为 4.0cm2 共 50 匝 的小圆形线圈 A ,放 在半径为 20cm共 100 匝的大圆形线圈 B 的 正中央,此两线圈同 心且同平面.
第八章 习题
第八章 电磁感应与电磁场
12
物理学
第五版
第八章 习题
设线圈 A 内该各点的磁 感强度可看作是相同的. 求:(1)两线圈的互感; (2)当线圈 B 中电流的 变化率为 50A s1 时,线圈 A 中感应电动 势的大小和方向.
第五版
第八章 习题
4 如图所示,金属杆
AB 以匀速率 v = 2.0 m s1
平行于一长直导线移动,
v
此导线通有电流 I = 40 A .

大学物理 第七章 恒定磁场习题课

大学物理 第七章 恒定磁场习题课

U H j I EH vB B B l nq ldnq
IB 由霍尔电势差可测载流子浓度 n qdU H
7-21 如图所示,把一宽2.010–2m、厚1.010–3m的铜片放在磁 感应强度B=1.5T的均匀磁场中,如果铜片中通有200A的电流。 试问(1)铜片左右两侧的电势哪侧高?(2)霍耳电势差有 多大?(铜的电子浓度n=8.41028 l/m3)。
2r T V
e ev I T 2r
0 ev B 2r 4 r 2
I: 等效电流
0 I
3、载流螺绕环的磁场分布
B dl 2rB 0 NI
L
安培环路
0 NI B 2r
当R2 R1 R1 , R2时 B 0 nI
4、长直载流螺线管的磁场分布
πa 2 B1 2πr 0 I 2 ,得 πr
B1
0 Ir
2πa 2
0 I
2πr
(2)a<r<b
B2 2πr 0 I
,得
B2
(3)b<r<c 应用安培环路定理
B dl I
L 0 i
i
在b<r<c柱体内作环形回路L,而
I
i
i
π(r 2 b 2 ) I I 2 2 π(c b )
载流螺线管内
载流螺绕环内
0 NI (5).B 2r
四、安培环路定理
在稳恒电流的磁场中,磁感应强度 B 沿任何闭合回路L 的线积分,等于穿过这回路的所有电流强度代数和的 0 倍。
B dl o I iห้องสมุดไป่ตู้
L i
1、闭合回路的选取 2、左侧积分大小 3、电流的正负

第七章 恒定磁场-习题解答

第七章 恒定磁场-习题解答

解 (1)r<a B dl 0 应用安培环路定理 L i 在r<a柱体内绕轴作环形回路L,其中
于是有

I
i
r2 Ii a 2 I
πr 2 B1 2πr 0 I 2 πa
B1
0 Ir
2πa 2
第七章、稳恒磁场
0 I (2)a r b : B 2r 0 I , B 2r
霍尔电势差有多大?(铜的电子浓度n=8.41028 l/m3)。 解 (1)根据洛伦兹力
F qv B
可判断铜片内载流子(电子)在磁场中 的受力方向向右,因此右侧积聚了电子 带负电,左侧因缺少电子而带等量的正 电。所以左侧电势高
(2)霍耳电势差
1 IB 5 UH 2.2 10 V ne a
方向沿oo’竖直向下。
第七章、稳恒磁场
习题7-19 如图所示,一闭合回路由半径 为a和b的两个同心半圆连成,载有电流I。 试求(1)圆心P点处磁感应强度B的大小 和方向;(2)回路的磁矩。 解: (1)由磁场叠加原理
方向垂直纸面向里。 (2)由磁矩定义
方向垂直纸面向里。
第七章、稳恒磁场
7-20 质谱仪的构造原理如图所示。离子源S提供质量为M、 电荷为q的离子。离子初速很小,可以看作是静止的,然后经 过电压U的加速,进入磁感应强度为B的均匀磁场,沿着半圆 周运动,最后到达记录底片P上。测得离子在P上的位置到入 qB 2 x 2 。 口处A的距离为x。试证明该离子的质量为:M
S
B dS 0
三、安培环路定理——求解磁感应强度B
B dl 0 I i
L i
四、磁场对载流导线的作用——安培力
dF Idl B

07《大学物理学》恒定磁场练习题(马)分析

07《大学物理学》恒定磁场练习题(马)分析

《大学物理学》恒定磁场部分自主学习材料要掌握的典型习题:1. 载流直导线的磁场:已知:真空中I 、1α、2α、x 。

建立坐标系Oxy ,任取电流元I dl ,这里,dl dy =P 点磁感应强度大小:02sin 4Idy dB r μαπ=;方向:垂直纸面向里⊗。

统一积分变量:cot()cot y x x παα=-=-; 有:2csc dy x d αα=;sin()r x πα=-。

则: 2022sin sin 4sin x d B I x μαααπα=⎰210sin 4I d x ααμααπ=⎰012(cos cos )4I xμααπ-=。

①无限长载流直导线:παα==210,,02IB x μπ=;(也可用安培环路定理直接求出)②半无限长载流直导线:παπα==212,,04IB xμπ=。

2.圆型电流轴线上的磁场:已知:R 、I ,求轴线上P 点的磁感应强度。

建立坐标系Oxy :任取电流元Idl ,P 点磁感应强度大小:204r IdldB πμ=;方向如图。

分析对称性、写出分量式:0B dB ⊥⊥==⎰;⎰⎰==20sin 4r Idl dB B xx απμ。

统一积分变量:r R =αsin∴⎰⎰==20sin 4r Idl dB B x x απμ⎰=dl r IR 304πμR rIR ππμ2430⋅=232220)(2x R IR +=μ。

结论:大小为2022322032()24I R rIR B R x μμππ⋅⋅==+;方向满足右手螺旋法则。

①当x R >>时,220033224IRI R B xxμμππ==⋅⋅; ②当0x =时,(即电流环环心处的磁感应强度):00224IIB R Rμμππ==⋅;③对于载流圆弧,若圆心角为θ,则圆弧圆心处的磁感应强度为:04IRB μθπ=。

B⊗RIdlαOB第③情况也可以直接用毕—沙定律求出:000220444I Idl IRd B R R Rθμμμθθπππ===⎰⎰。

大学物理电磁感应练习题

大学物理电磁感应练习题

第四章恒定电流的磁场一、 选择题1、 均匀磁场的磁感应强度B垂直于半径为R 的圆面,今以圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为()A 、B R22π B 、B R 2π C 、0 D 、无法确定答案:B2、 有一个圆形回路,及一个正方形回路,圆直径和正方形的边长相等,二者载有大小相等的电流,它们各自中心产生的磁感强度的大小之比B 1/B 2为()A 、0.90B 、1.00C 、1.11D 、1.22答案:C3、 在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B的夹角为α,则通过半球面S 的磁通量为() A 、B r 2π B 、B r 22πC 、απsin 2B r -D 、απcos 2B r -答案:D 4、 四条皆垂直于纸面的载流细长直导线,每条中的电流强度皆为I ,这四条线被纸面截得的断面, 如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示,则 在图中正方形中心点O 的磁感应强度的大小为()A 、I aU Bπ02=B 、I a U B π220=C 、B=0D 、I aU B π0=答案:C 5、 边长为L 的一个导体方框上通有电流I ,则此框中心的磁感应强度( )A 、与L 无关B 、正比于L 2C 、与L 成正比D 、与L 成反比E 、与I 2有关答案:D 6、 如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点,若ca,bd 都沿环的径向, 则在环形分路的环心处的磁感应强度()A 、方向垂直环形分路所在平面且指向纸内B 、方向垂直环形分路所在平面且指向纸外C 、方向在环形分路所在平面内,且指向bD 、零答案:D 7、 在一平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流I 的大小相等, 其方向如图所示,问哪些区域中某些点的磁感应强度B 可能为零?()A 、仅在象限ⅠB 、仅在象限ⅡC 、仅在象限Ⅰ、ⅣD 、仅在象限Ⅱ 、 Ⅳ 答案:D 8、 在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感应强度为() A 、R I πμ40 B 、R I πμ20 C 、0 D 、RI40μ 答案:D9、 电流由长直导线1沿半径径向a 点流入电阻均匀分布的圆环,再由b 点沿切向从圆流出,经长导线2返回电源,(如图),已知直导线上电流强度为I ,圆环的半 径为R ,且a,b 与圆心O 三点在同一直线上,设直线电流1、2及圆环电流分别在O 点产生的磁感应强度为1B,2B 及3B 。

大学物理稳恒磁场理论及习题

大学物理稳恒磁场理论及习题

结果:
1.
F
v,
B组



面.
2. F 大小正比于v, q0,sin.
q0沿磁场方向运动, F 0.
q0 垂直磁场方 向运动, F Fmax .
NIZQ 第4页
大学物理学 恒定磁场
在垂直磁场方向改变速率v,改变点电荷 电量q0 .
结论: 场中同一点, Fmax/q0v有确定值. 场中不同点, Fmax/q0v量值不同.
大学物理学 恒定磁场
从毕-萨定律导出运动电荷的磁场
S: 电流元横截面积
n: 单位体积带电粒子数
q: 每个粒子带电量
v: 沿电流方向匀速运动
电流元 Idl产生的磁场:
大学物理学 恒定磁场
一.磁场 磁感应强度
• 磁性起源于电荷的运动 磁铁的磁性: 磁性: 能吸引铁、钴、镍等物质的性质.
磁极: 磁性最强的区域, 分磁北.
磁力: 磁极间存在相互作用, 同号相斥,
异号相吸.
问题: 磁现象产生的原因是什么?
司南勺
北宋沈括发明 “指南针(罗盘
1.在任何磁场中每一条磁感线都
是环绕电流的无头无尾的闭合线, 条形磁铁周围的磁感线 即没有起点也没有终点,而且这些
闭合线都和闭合电路互相套连.
2.在任何磁场中,每一条闭合的磁
感线的方向与该闭合磁感线所包围
的电流流向服从右手螺旋法则.
直线电流的磁感线
NIZQ 第6页
大学物理学 恒定磁场
二.毕澳-萨伐尔定律
r a
sin
B
l
dB
2 1
0I

a
sin 2
sin 2
a2
sin d
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《大学物理学》恒定磁场部分自主学习材料要掌握的典型习题:1. 载流直导线的磁场:已知:真空中I 、1α、2α、x 。

建立坐标系Oxy ,任取电流元I dl v,这里,dl dy =P 点磁感应强度大小:02sin 4Idy dB r μαπ=;方向:垂直纸面向里⊗。

统一积分变量:cot()cot y x x παα=-=-; 有:2csc dy x d αα=;sin()r x πα=-。

则: 2022sin sin 4sin x d B I x μαααπα=⎰210sin 4I d x ααμααπ=⎰012(cos cos )4I x μααπ-=。

①无限长载流直导线:παα==210,,02IB xμπ=;(也可用安培环路定理直接求出)②半无限长载流直导线:παπα==212,,04IB xμπ=。

2.圆型电流轴线上的磁场:已知:R 、I ,求轴线上P 点的磁感应强度。

建立坐标系Oxy :任取电流元Idl v,P 点磁感应强度大小:204r IdldB πμ=;方向如图。

分析对称性、写出分量式:0B dB ⊥⊥==⎰r r ;⎰⎰==20sin 4rIdl dB B x x απμ。

统一积分变量:r R =αsin∴⎰⎰==20sin 4rIdl dB B x x απμ⎰=dl r IR304πμR r IR ππμ2430⋅=232220)(2x R IR +=μ。

结论:大小为2022322032()24I R rIR B R x μμππ⋅⋅==+;方向满足右手螺旋法则。

①当x R >>时,220033224IR I R B xxμμππ==⋅⋅; ②当0x =时,(即电流环环心处的磁感应强度):00224IIB R Rμμππ==⋅;③对于载流圆弧,若圆心角为θ,则圆弧圆心处的磁感应强度为:04IRB μθπ=。

Bv⊗RIdlB v第③情况也可以直接用毕—沙定律求出:000220444IIdl IRd B R R Rθμμμθθπππ===⎰⎰。

一、选择题: 1.磁场的高斯定理0SB dS ⋅=⎰⎰vv Ò说明了下面的哪些叙述是正确的?( )(a ) 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数; (b ) 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数; (c ) 一根磁感应线可以终止在闭合曲面内; (d ) 一根磁感应线可以完全处于闭合曲面内。

(A )ad ; (B )ac ; (C )cd ; (D )ab 。

【提示:略】7-2.如图所示,在磁感应强度B 的均匀磁场中作一半经为r 的半球面S ,S 向边线所在平面法线方向单位矢量n v 与B v的夹角为α,则通过半球面S 的磁通量(取凸面向外为正)Φ为: ( )(A )2r B π;(B )22r B π;(C )2sin r B πα-;(D )2cos r B πα-。

【提示:由通量定义m B d S Φ=⋅⎰vv 知为2cos R B πα-】7--2.在图(a )和(b )中各有一半径相同的圆形回路1L 、2L ,圆周内有电流1I 、2I ,其分布相同,且均在真空中,但在(b )图中2L 回路外有电流3I ,1P 、2P 为两圆形回路上的对应点,则:( )(A )12d d L L B l B l ⋅=⋅⎰⎰v vv v 蜒,12P P B B =; (B )12d d L L B l B l ⋅≠⋅⎰⎰vvv v 蜒,12P P B B =; (C )12d d L L B l B l ⋅=⋅⎰⎰v vv v 蜒,12P P B B ≠; (D )12d d L L B l B l ⋅≠⋅⎰⎰vvv v 蜒,12P P B B ≠。

【提示:用0i l B d l I μ⋅=∑⎰v v Ñ判断有12L L =⎰⎰蜒;但P 点的磁感应强度应等于空间各电流在P 点产生磁感强度的矢量和】7--1.如图所示,半径为R 的载流圆形线圈与边长为a 的 正方形载流线圈中通有相同的电流I ,若两线圈中心的 磁感应强度大小相等,则半径与边长之比:R a 为:( ) (A )1;(B )2π;(C )2/4π;(D )2/8π。

【载流圆形线圈为:00242O I I B R R μμππ=⋅=;正方形载流线圈为:00432(cos cos )4/244I IB a μππμπ⨯=⋅-=⋅W ,则当O B B =W 时,有:2/4R a π=】nv αSBv Ra7-1.两根长度L 相同的细导线分别密绕在半径为R 和r (2R r =)的两个长直圆筒上形成两个螺线管,两个螺线管长度l 相同,通过的电流I 相同,则在两个螺线管中心的磁感应强度的大小之比:R r B B 为: ( ) (A )4; (B )2; (C )1; (D )12。

【提示:用0B nI μ=判断。

考虑到2R L n R π=,2r L n rπ=】 6.如图所示,在无限长载流直导线附近作一球形闭合曲面S ,当球面S 向长直导线靠近时,穿过球面S 的磁通量Φ和面上各点的磁感应强度B 将如何变化?( ) (A )Φ增大,B 也增大;(B )Φ不变,B 也不变; (C )Φ增大,B 不变;(D )Φ不变,B 增大。

【提示:由磁场的高斯定理0S B dS ⋅=⎰⎰v v Ò知Φ不变,但无限长载流直导线附近磁场分布为:02I B rμπ=】 7.两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,则在圆心O 处的磁感应强度大小为多少? ( ) (A )0;(B )R I 2/0μ;(C )R I 2/20μ;(D )R I /0μ。

【提示:载流圆线圈在圆心处为00242I IB R Rμμππ=⋅=,水平线圈磁场方向向上,竖直线圈磁场方向向里,∴合成后磁场大小为B =7-11.如图所示,无限长直导线在P 处弯成半径为R则在圆心O 点的磁感强度大小等于:()(A) 02I R μπ;(B) 04I R μ ;(C) 01(1)2I R μπ- ;(D) 01(1)4I R μπ+ 。

【提示:载流圆线圈在圆心处为00242I I B R R μμππ=⋅=,无限长直导线磁场大小为02IB Rμπ=,方向相反,合成】 9.如图所示,有一无限大通有电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布,在铜片外与铜片共面,离铜片左边缘为b 处的P 点的磁感强度的大小为:( ) (A)02()Ia b μπ+; (B)0ln2I a bb aμπ+; (C) 0ln 2I a ba bμπ+; (D) 02[(/2)]I a b μπ+。

【提示:无限长直导线磁场大小为02IB rμπ=。

若以铜片左边缘为原点,水平向右为x 轴,有:P02()P Id xa d Bb x μπ=-,积分有:000ln 22P a I d x I b B a b x a b a μμππ-==-+⎰。

注意:ln ln b b a b a b +=-+】 10.一根很长的电缆线由两个同轴的圆柱面导体组成,若这两个圆柱面的半径分别为R 1和R 2(R 1<R 2),通有等值反向电流,那么下列哪幅图正确反映了电流产生的磁感应强度随径向距离的变化关系?( )(A ) (B ) (C ) (D )【提示:由安培环路定理0i l B d l I μ⋅=∑⎰v v Ñ知r <R 1时, 10B =;R 1< r <R 2时, 022I B r μπ=;r >R 2时, 30B =】11.有一半径R 的单匝圆线圈,通有电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的( ) (A) 4倍和1/8;(B) 4倍和1/2;(C) 2倍和1/4;(D) 2倍和1/2。

【提示:载流圆线圈在圆心磁场为02IB Rμ=,导线长度为2R π,利用22'2R R ππ=⨯,有'/2R R =,∴00'2442'2IIB B R Rμμ=⨯=⨯=;磁矩可利用m N I S =求出,∵2S R π=,2''/4S R S π==,∴'2/4/2m IS m ==】12.洛仑兹力可以( )(A )改变带电粒子的速率; (B )改变带电粒子的动量; (C )对带电粒子作功; (D )增加带电粒子的动能。

【提示:由于洛仑兹力总是与带电粒子的速度方向垂直,所以只改变粒子的运动方向而不改变粒子的速率】13.一张气泡室照片表明,质子的运动轨迹是一半径为0.10m 的圆弧,运动轨迹平面与磁感强度大小为0.3Wb /m 2的磁场垂直,该质子动能的数量级为:( ) (A )0.01MeV ; (B )1MeV ; (C )0.1MeV ; (D )10Mev【提示:由2/ev B mv R =知221()2eBR mv m =,有19224271.6100.30.110()1.6710K E e eV --⨯⋅⋅=⨯:】 7--3.一个半导体薄片置于如图所示的磁场中,薄片通有方向向右的电流I ,则此半导体两侧的霍尔电势差:( ) (A)电子导电,a b V V<;(B )电子导电,a b V V >; (C )空穴导电,ab V V >;(D )空穴导电,a b V V=。

【提示:如果主要是电子导电,据左手定则,知b 板集聚负电荷,有a b V V >;如果主要是空穴导电,据左手定则,知12R 112R 12Rb 板集聚正电荷,有a b V V <】15.一个通有电流I 的导体,厚度为d ,横截面积为S ,放在磁感强度为B 的匀强磁场中,磁场方向如图所示,现测得导体上下两面电势差为U H ,则此导体的霍尔系数为:( ) (A )H H U d R I B =;(B )H H I BU R S d =;(C )H H U S R I B d =;(D )H H I U SR B d=。

【提示:霍尔系数为:1H R nq =,而霍尔电压为:H I B U nqd =,∴H H U dR I B=】 16.如图所示,处在某匀强磁场中的载流金属导体块中出现霍耳效应,测得两底面M 、N 的电势差为30.310V M N V V --=⨯,则图中所加匀 强磁场的方向为:( )(A )竖直向上; (B )竖直向下; (C )水平向前; (D )水平向后。

【提示:金属导体主要是电子导电,由题知N 板集聚负电荷,据左手定则,知强磁场方向水平向前】17.有一由N 匝细导线绕成的平面等腰直角三角形线圈,直角边长为a , 通有电流I ,置于均匀外磁场B 中,当线圈平面的法向与外磁场方向成60o时,该线圈所受的磁力矩M m 为:( )2Na IB ;2Na IB ;2sin 60IB o ;(D) 0 。

相关文档
最新文档