竞赛均值不等式专题讲解

合集下载

(完整版)均值不等式及其证明

(完整版)均值不等式及其证明

1平均值不等式及其证明平均值不等式是最基本的重要不等式之一,在不等式理论研究和证明中占有重要的位置。

平均值不等式的证明有许多种方法,这里,我们选了部分具有代表意义的证明方法,其中用来证明平均值不等式的许多结论,其本身又具有重要的意义,特别是,在许多竞赛的书籍中,都有专门的章节介绍和讨论,如数学归纳法、变量替换、恒等变形和分析综合方法等,这些也是证明不等式的常用方法和技巧。

1.1 平均值不等式 一般地,假设12,,...,n a a a 为n 个非负实数,它们的算术平均值记为12...,nn a a a A n+++=几何平均值记为112(...)nn n G a a a == 算术平均值与几何平均值之间有如下的关系。

12...n a a a n+++≥即 n n A G ≥,当且仅当12...n a a a ===时,等号成立。

上述不等式称为平均值不等式,或简称为均值不等式。

平均值不等式的表达形式简单,容易记住,但它的证明和应用非常灵活、广泛,有多种不同的方法。

为使大家理解和掌握,这里我们选择了其中的几种典型的证明方法。

供大家参考学习。

1.2 平均值不等式的证明证法一(归纳法)(1) 当2n =时,已知结论成立。

(2) 假设对n k =(正整数2k ≥)时命题成立,即对0,1,2,...,,i a i k >=有11212...(...)kk n a a a a a a k+++≥。

那么,当1n k =+时,由于1211 (1)k k a a a A k +++++=+,1k G +=,关于121,,...,k a a a +是对称的,任意对调i a 与j a ()i j ≠,1k A +和1k G +的值不改变,因此不妨设{}1121min ,,...,k a a a a +=,{}1121max ,,...,k k a a a a ++= 显然111k k a A a ++≤≤,以及1111()()0k k k a A a A +++--<可得 111111()k k k k A a a A a a +++++-≥.所以 11112111(1)...k k k k k k kA k A A a a a A A k k k +++++++-+++-===2111...()k k k a a a a A k++++++-=≥即12111...()kk k k k A a a a a A +++≥+- 两边乘以1k A +,得 111211112111...()...()k k k k k k k k k k A a a A a a A a a a a G ++++++++≥+-≥=。

竞赛均值不等式专题讲解

竞赛均值不等式专题讲解

均值不等式专题讲解一、几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2a b+≤≤≤222b a +。

. 二、用均值不等式求最值利用均值不等式求最值的记忆口诀为:“一正二定三相等”,三者缺一不可: 一 正:利用均值不等式解题要先保证各式都是正数; 二 定:求和的 积要固定,求积的 和要固定; 三相等:只有在各式都相等的前提下,和与积才能取到最值。

例1:下列命题中正确的是【 】A 、x x 1+的最小值为2; B 、xx -+22的最小值为2; C 、baa b +的最小值为2;D 、θθcot tan +的最小值为2。

点评:各式都是正数是利用均值不等式解题的前提,缺少这个条件足以致命。

例2:你能指出下列推导过程错在哪里吗?⑴若0>x ,则221213xx x x x ++=+≥33223123⋅=⋅⋅⋅x x x ;⑵若⎪⎭⎫⎝⎛∈2,0πx ,则x x x x sin 2sin sin 2sin 2+=+≥22sin 2sin 2=⋅x x ; ⑶若R x ∈,则()41441441)4(45222222222+++=+++=+++=++x x x x x x x x ≥2。

均值不等式专题附带解析

均值不等式专题附带解析
本题考查利用换元的方法转为利用基本不等式求最值问题,属于中档题
12.已知正实数x,y满足 ,则 的最小值为______.
13.若 , , ,则 的最小值为______.
14.若 ,则 的最小值为________.
15.已知a,b都是正数,满足 ,则 的最小值为______.
16.已知 , 且 ,则 的最小值为______.
17.已知点 在圆 上运动,则 的最小值为___________.
18.若函数 的单调递增区间为 ,则 的最小值为____.
19.已知正实数 , 满足 ,则 的最大值为______.
20.已知 , ,则 的最小值为____.
参考答案
1.
【解析】
【分析】
根据对数相等得到 ,利用基本不等式求解 的最小值得到所求结果.
【详解】
则 ,即
由题意知 ,则 ,

当且仅当 ,即 时取等号
【点睛】
本题考查利用基本不等式求最值,考查基本分析求解能力,属中档题.
3.4.
【解析】
【分析】
直接利用代数式的恒等变换和利用均值不等式的应用求出结果.
【详解】
∵ ,
∴ ,
∴ ,
当且仅当 , 时取等号,
故答案为:4.
【点睛】
本题考查的知识要点:代数式的恒等变换,均值不等式的应用,主要考查学生的运算能力和转化能力,属于基础题型.
均值不等式专题
一、填空题
1.若 则 的最小值是__________.
2.若 ,且 则 的最大值为______________.
3.已知 ,且 ,则 的最小值为______.
4.已知正数 满足 ,则 的最小值是_______.

均值不等式知识点

均值不等式知识点

均值不等式知识点均值不等式是高等数学中的一种重要的数学不等式,其在解决各类数学问题中起到了重要的作用。

本文将通过逐步思考的方式,详细介绍均值不等式的相关知识点。

1.均值不等式的基本概念均值不等式是指对于一组实数,其算术平均数大于等于几何平均数,即若有n个正实数x1、x2、……、xn,则它们的算术平均数A≥它们的几何平均数G。

这一不等式可表示为:(x1 + x2 + …… + xn)/ n ≥ (x1 * x2 * …… * xn) ^ (1/n)2.均值不等式的证明为了证明均值不等式,可以使用数学归纳法或其他数学方法。

下面以数学归纳法为例,来证明均值不等式。

首先,当n=2时,我们有:(x1 + x2)/ 2 ≥ √(x1 * x2) 化简可得:x1 + x2 ≥2√(x1 * x2) 这是一种常见的数学不等式,称为算术平均数和几何平均数之间的不等式。

接下来,假设当n=k时,均值不等式成立。

即对于任意的k个正实数x1、x2、……、xk,有:(x1 + x2 + …… + xk)/ k ≥ (x1 * x2 * …… * xk) ^ (1/k)然后,我们来证明当n=k+1时,均值不等式也成立。

即对于任意的k+1个正实数x1、x2、……、xk+1,有:(x1 + x2 + …… + xk + xk+1)/ (k+1) ≥ (x1 * x2* …… * xk * xk+1) ^ (1/(k+1))我们可以将左边的式子进行拆分,得到:[(x1 + x2 + …… + xk) + xk+1] / (k+1)≥ [(x1 * x2 * …… * xk) * xk+1] ^ (1/(k+1))根据不等式的性质,我们有:(x1 + x2 + …… + xk) / k ≥ (x1 * x2 * …… * xk) ^(1/k) 即:[(x1 + x2 + …… + xk) / k] * k ≥ [(x1 * x2 * …… * xk) ^ (1/k)] * k将上式代入前面的不等式,得到:[(x1 + x2 + …… + xk) + xk+1] / (k+1) ≥ [(x1 *x2 * …… * xk) * xk+1] ^ (1/(k+1))这样,我们证明了当n=k+1时,均值不等式也成立。

高中数学均值不等式讲解

高中数学均值不等式讲解

高中数学均值不等式讲解一、教学任务及对象1、教学任务本次教学任务是以“高中数学均值不等式”为主题,对高中学生进行系统的讲解与训练。

均值不等式是高中数学中的一个重要内容,它不仅在数学理论中占有重要地位,而且在实际应用中也具有广泛价值。

通过本节课的学习,使学生掌握均值不等式的概念、性质和应用,培养他们的逻辑思维能力和解决实际问题的能力。

2、教学对象教学对象为高中学生,他们已经具备了一定的数学基础和逻辑思维能力。

在这个阶段,学生们的思维逐渐从具体形象向抽象逻辑转变,他们对于数学问题的理解和解决能力也在不断提高。

因此,针对这个阶段的学生,教学过程中应注重启发式教学,引导学生主动探究、发现和解决问题,提高他们的数学素养。

二、教学目标1、知识与技能(1)理解并掌握均值不等式的定义,包括算术平均数和几何平均数;(2)掌握均值不等式的证明方法,并能够灵活运用;(3)学会运用均值不等式解决实际问题,如求最大(小)值、证明不等式等;(4)通过均值不等式的学习,提高学生的运算能力和解决问题的能力。

2、过程与方法(1)通过问题导入,引导学生自主探究均值不等式的概念,培养学生的自主学习能力;(2)采用比较、分析、归纳等教学方法,帮助学生掌握均值不等式的证明方法和应用,提高他们的逻辑思维能力;(3)设置典型例题,让学生在实践中掌握均值不等式的应用,培养他们分析问题和解决问题的能力;(4)鼓励学生进行合作学习,互相讨论,共享学习成果,提高他们的沟通能力和团队协作能力。

3、情感,态度与价值观(1)培养学生对数学的兴趣,激发他们学习数学的热情,使他们形成积极向上的学习态度;(2)通过均值不等式的学习,让学生认识到数学在生活中的广泛应用和价值,增强他们学习数学的信心;(3)教育学生尊重事实,遵循逻辑,树立正确的价值观,培养他们严谨、踏实的学术作风;(4)培养学生勇于探索、敢于创新的精神,使他们具备面对挑战、克服困难的勇气和信心;(5)通过小组合作,培养学生团结协作、互助互爱的良好品质,提高他们的集体荣誉感和社会责任感。

初中数学竞赛专题1-均值不等式的应用

初中数学竞赛专题1-均值不等式的应用

初中数学竞赛专题1均值不等式的应用基础概念1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x+≥ (当且仅当1x =时取“=”) 若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 例题解析【例1】求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x 2 ≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1x ≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x)≤-2x ·1x =-2∴值域为(-∞,-2]∪[2,+∞)【例2】求函数2y =的值域。

(2)t t =≥,则2y =1(2)t t t ==+≥ 因10,1t t t >⋅=,但1t t=解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调性。

因为1y t t=+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数,故52y ≥。

三元齐次不等式问题的数学竞赛讲义——均值不等式与柯西不等式应用拓广 学生版

三元齐次不等式问题的数学竞赛讲义——均值不等式与柯西不等式应用拓广 学生版

三元齐次不等式问题的解答讲义-均值不等式与柯西不等式应用拓广众所周知,三元齐次不等式是一类基本型不等式问题,证明所需技巧性简单,本文通过几个例题梳理证明的一般步骤:通常只要展开分析,考察展开式,能否首先使用均值不等式,均值不等式的元可以任意,其次考虑应用柯西不等式,能否配方,能否使用同一类型的3-u -v 法证明。

一、基本三元齐次不等式问题1原始问题:已知a ,b ,c >0,求证:a 2b 2+b 2c 2+c 2a2≥a b +b c +c a .2问题的加强1:已知a ,b ,c >0,求证:a 2b 2+b 2c 2+c 2a2≥a b +b c +c a +3a -b 2+b -c 2+c -a 2ab +bc +ca .3问题的加强2:已知a ,b ,c >0,求证:a 2b +b 2c +c 2a ≥a +b +c +2a -b 2+b -c 2+c -a 2a +b +c.根据上述两个题,增加字母次数,变形改编一题,1加强变形题1:已知a,b,c>0,求证:a(a2−b2)b +b(b2−c2)c+c(c2−a2)a≥3(a−b)4+(b−c)4+c−a4a2+b2+c2.舍掉一部分元素,使得题目条件难度加大,改编题目,2加强变形题2:问题[2023-06-2500:00]:已知a,b,c>0,,求证:a(a2−b2)b +b(b2−c2)c+c(c2−a2)a≥4c−a4a2+b2+c2.二、复杂一点的三元齐次不等式问题:这类问题看能否使用均值不等式,凑一组不等式问题,使用均值不等式,若使用过程出现困难,则展开证明.1问题1:已知a,b,c>0,求证:b+c4a+b+c+c+a4b+c+a+a+b4c+a+b≥3.2问题2:已知a,b,c>0,求证:a2(b+c)4a+b+c +b2(c+a)4b+c+a+c2(a+b)4c+a+b≥29bc+ca+ab.3问题3:已知a,b,c>0,求证:b(b+c)c(4a+b+c)+c(c+a)a(4b+c+a)+a(a+b)b(4c+a+b)≥13.4问题4:已知a,b,c>0,求证:a(b+c)b(4a+b+c)+b(c+a)c(4b+c+a)+c(a+b)a(4c+a+b)≥13.5问题5是多元均值不等式的应用问题.再看一个题8次不等式的展开证明:已知a,b,c≥0,β∈0,31,求证:cyc [(b4+c4)(3b+c)(b+3c)(b2+c2-2a2)]≥42cyc a2⋅cyca2-c2+βcycc-a 2⋅cycc-a 2.三、思考问题:6①已知a ,b ,c >0,求证:2cyc a 4 cyc a 3(a +b ) 5a −c (4a +3b −7c )−20cyc a 2b 3(a −c )≥cyc bc (a −b )8 +cyc (c −a )2⋅ cyc(b −c )2(c −a )2 .7②已知a ,b ,c >0,求证:a 2+b 2+c 2≥a b 2−bc +c 2+b c 2−ca +a 2+c a 2−ab +b 2≥ab +bc +ca .。

高中数学竞赛解题方法篇(不等式)

高中数学竞赛解题方法篇(不等式)

高中数学竞赛中不等式的解法摘要:本文给出了竞赛数学中常用的排序不等式,平均值不等式,柯西不等式和切比雪夫不等式的证明过程,并挑选了一些与这几类不等式相关的一些竞赛题进行了分析和讲解。

希望对广大喜爱竞赛数学的师生有所帮助。

不等式在数学中占有重要的地位,由于其证明的困难性和方法的多样性,而成为竞赛数学中的热门题型.在解决竞赛数学中的不等式问题的过程中,常常要用到几个著名的代数不等式:排序不等式、平均值不等式、柯西不等式、切比雪夫不等式.本文就将探讨这几个不等式的证明和它们的一些应用.1.排序不等式 定理1设1212...,...n n a a a b b b ≤≤≤≤≤≤,则有1211...n n n a b a b a b -+++ (倒序积和)1212...n r r n r a b a b a b ≤+++(乱序积和) 1122 ...n n a b a b a b ≤+++(顺序积和)其中1,2,...,n r r r 是实数组1,2,...,n b b b 一个排列,等式当且仅当12...n a a a ===或12...n b b b ===时成立.(说明: 本不等式称排序不等式,俗称倒序积和乱序积和顺序积和.)证明:考察右边不等式,并记1212...n r r n r S a b a b a b =+++。

不等式1212...nr r n r S a b a b a b ≤+++的意义:当121,2,...,n r r r n===时,S 达到最大值1122 ...n n a b a b a b +++.因此,首先证明n a 必须和n b 搭配,才能使S 达到最大值.也即,设n r n <且n b 和某个()k a k n <搭配时有.n n k n n r k r n n a b a b a b a b +≤+ (1-1)事实上, ()()()0n n n n nk r k n n r n r n k a b a b a b a b b b a a +-+=--≥不等式(1-1)告诉我们当nr n <时,调换n b 和n r b 的位置(其余n-2项不变),会使和S 增加.同理,调整好n a 和n b 后,再调整1n a -和1n b -会使和增加.经过n 次调整后,和S 达到最大值1122 ...n n a b a b a b +++,这就证明了1212...n r r n r a b a b a b +++1122 ...n n a b a b a b ≤+++.再证不等式左端,由1211...,...n n n a a a b b b -≤≤≤-≤-≤≤-及已证明的不等式右端,得1211(...)nn n a b a b a b --+++1212(...)n r r n r a b a b a b ≥-+++即 1211...n n n a b a b a b -+++1212...n r r n r a b a b a b ≤+++ .例1 (美国第3届中学生数学竞赛题)设a,b,c 是正数,求证:3()a b c a b ca b c abc ++≥.思路分析:考虑两边取常用对数,再利用排序不等式证明. 证明:不妨设ab c ≥≥,则有lg lg lg a b c ≥≥根据排序不等式有:lg lg lg lg lg lg a a b b c c a b b c c a ++≥++lg lg lg lg lg lg a a b b c c a c b a c b ++≥++ 以上两式相加,两边再分别加上 lg lg lg a a b b c c ++有 3(lg lg lg )()(lg lg lg )a a b b c c a b c c a b ++≥++++ 即 lg lg 3a b ca b cab c abc ++≥故 3()a b c a b cab c abc ++≥ .例2 设a,b,c R +∈,求证:222222333222a b b c c a a b c a b c c a b bc ca ab+++++≤++≤++. 思路分析:中间式子每项都是两个式子之和,将它们拆开,再用排序不等式证明. 证明:不妨设ab c ≥≥,则 222a b c ≥≥且111c b a≥≥根据排序不等式,有222222111a b c a b c c a b a b c++≥++222222111a b c a b c b c a a b c++≥++ 两式相加除以2,得222222222a b b c c a a b c c a b+++++≤++再考虑333ab c ≥≥,并且111bc ca ab≥≥ 利用排序不等式,333333111 a b c a b c bc ca ab ca ab bc++≥++333333111 a b c a b c bc ca ab ab bc ac++≥++ 两式相加并除以2,即得222222333222a b b c c a a b c c a b bc ca ab+++++≤++ 综上所述,原不等式得证.例3 设12120...,0...n n a a a b b b ≤≤≤≤≤≤≤≤,而1,2,...,n i i i 与1,2,...,n j j j 是1,2,...,n 的两个排列. 求证:1111r snnnni j r sr s r s a b a b r sr s ====≥++∑∑∑∑. (1-2) 思路分析:已知条件中有两组有序实数,而式(1-2)具有“积和”形式,考虑使用排序不等式.证明:令 1s nj rs b d r s==+∑(r=1,2,...,n )显然 12...n d d d ≥≥≥ 因为 12...n b b b ≤≤≤ , 且111...(1)1r n r n r ≤≤≤++-+ 由排序不等式1nsr s b d r s =≤+∑ 又因为 12...n a a a ≤≤≤所以 11rnnr r i r r r a d a d ==≤∑∑且111nnnsr r r r s r b a a d r s ===≤+∑∑∑(注意到r a ≥0)故11111r ssrn nn nni j j iri rr s r s r a b b a a dr s r s =======++∑∑∑∑∑11111nn nn ns r s r r r r r s r s b a ba d a r s r s=====≥≥=++∑∑∑∑∑ 故 原式得证.2.均值不等式定理2 设12,,...,n a a a 是n 个正数,则()()()()H n G n A n Q n ≤≤≤称为均值不等式.其中,121()111...nH n a a a =+++,()G n =12...()na a a A n n+++=,()Q n =分别称为12,,...,n a a a 的调和平均数,几何平均数,算术平均数,均方根平均数. 证明: 先证 ()()G n A n ≤.记c= i ia b c=,则 原不等式12...n b b b n ⇔+++≥其中 12121...( (1)n n b b b a a a c == 取 12,,...,n x x x 使 11212123,,...,,n n n x x xb b b x x x --=== 则 1.n n x b x = 由排序不等式,易证111221......n n n n x x x b b b n x x x -+++=+++≥下证()()A n Q n ≤因为 222212121...[(...)n n a a a a a a n+++=+++22212131()()...()n a a a a a a +-+-++-2222232421()()...()...()n n n a a a a a a a a -+-+-++-++-]2121(...)n a a a n≥+++ 所以12...n a a a n +++≤从上述证明知道,当且仅当12...n a a a ===时,不等式取等号.下面证明 ()()H n G n ≤对n 个正数12111,,...,na a a ,应用 ()()G n H n ≤,得12111...n a a a n +++≥即 ()()H n G n ≤(等号成立的条件是显然的).例4已知2201,0a x y <<+=,求证:1log ()log 28x y a a a a +≤+. 证明:由于 01a <<,0,0x y a a >>,有xy aa +≥=从而log ()log log 22xy a a a x ya a ++≤=+下证128x y +≤ , 即 14x y +≤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

均值不等式专题讲解
一、几个重要的均值不等式
①,、)(2
22
22
2
R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,
、)(222
+
∈⎪⎭
⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(3
33
333
3
3
+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;
④)(333
3+
∈⎪⎭
⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立.
注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;
② 熟悉一个重要的不等式链:b
a 112
+2a b
+≤≤≤
2
2
2b a +。

. 二、用均值不等式求最值
利用均值不等式求最值的记忆口诀为:“一正二定三相等”,三者缺一不可: 一 正:利用均值不等式解题要先保证各式都是正数; 二 定:求和的 积要固定,求积的 和要固定; 三相等:只有在各式都相等的前提下,和与积才能取到最值。

例1:下列命题中正确的是【 】
A 、x x 1
+
的最小值为2; B 、x
x -+22的最小值为2; C 、b
a
a b +的最小值为2;
D 、θθcot tan +的最小值为2。

点评:各式都是正数是利用均值不等式解题的前提,缺少这个条件足以致命。

例2:你能指出下列推导过程错在哪里吗?
⑴若0>x ,则221213x
x x x x ++=+≥33223123⋅=⋅⋅⋅x x x ;
⑵若⎪⎭

⎝⎛∈2,0πx ,则x x x x sin 2sin sin 2sin 2+=+≥22sin 2sin 2=⋅x x ; ⑶若R x ∈,则
(
)
4
144
144
1)4(4
52
22
2
2
2
2
2
2
++
+=
+++=
+++=
++x x x x x x x x ≥2。

点评:只有在各式都相等的前提下,均值不等式才有可能取等号,实践中要注意验证。

例3:⑴已知1>a ,则1
1
1-++a a 的最小值是 。

⑵函数)38()(x x x f -=)30(<<x 的最大值是 。

⑶函数x x y cos sin 2
⋅=(2
0π<
<x )的值域是 。

⑷若a 、b 为正数,且12
2
2
=+b a ,则21b a +的最大值 。

点评:本例应采用拼凑的思想解答,主要包括:先加再减、先乘再除、先平方再开方。

例4:⑴若R m ∈,则1
22
2++m m 的最小值是 。

⑵函数3
22
)(--=
x x x f )2(>x 的最小值是 。

⑶函数1
10
92)(2+++=x x x x f )1(->x 的最小值是 。

⑷设a 、b 均为正常数,函数x
b x a x x f )
)(()(++=)0(>x 的最小值是 。

点评:本例应采用拆分的思想解答,把函数式拆成两项或两项以上,问题就会明朗起来。

例5:⑴已知0>x ,0>y ,且
19
1=+y
x ,则y x +的最小值为 。

⑵若+
∈R b a ,且3=+b a 1b +的最大值为 。

⑶已知0>a ,0>b ,1=+b a ,则⎪⎭

⎝⎛-⎪⎭⎫
⎝⎛-111122b a 的最小值为 。

点评:把已知条件和所求式子结合在一起,先进行彻底地变形,方能用上均值不等式。

例6:⑴已知45<
x ,则函数5
41
24)(-+-=x x x f 的最大值为 。

⑵函数)
1(22
22-+-=x x x y )11(<≤-x 的最大值为 。

⑶若1>a ,10<<b ,则a b b a log log +的取值范围是 。

⑷函数x
x x f 4
)(+
=的最大值为 。

点评:如果各式都是负数,必须先全部转化成正数,然后再把负号处理掉。

例7:⑴已知0>x ,则函数2
1
3x x y +
=的最小值 。

⑵若0>x ,则x x 122
+的最小值为 ,2
21x x +的最小值为 。

⑶若10<<x ,则)1(2
x x -的最大值为 ,)1(2
x x -的最大值为 。

点评:新教材只保留两个正数的均值不等式,但有一些题目两个正数的均值不等式是解决不了的,这时我们可以将两个正数拆成三个正数,切记:往往遵循对半拆的原则。

例8:⑴函数4
5)(2
2++=
x x x f )(R x ∈的最小值为 。

⑵已知32
2
=+y x ,12
2=+n m ,则ny mx +的最大值为 。

点评:均值不等式并不是万能的上帝,其实求最值的办法还有很多,你知道多少呢?
例9:已知正数x 、y 满足12=+y x ,求
y
x 1
1+的最小值。

错解:∵0>x ,0>y , ∴y x 2+≥xy y x ⋅=⋅2222,∵12=+y x , ∴1≥xy ⋅22xy 1⇒≥22,∴y x 11+≥xy
xy 1
212⋅=≥24,∴y x 11+的最小值
为24。

点评:因为均值不等式要求比较苛刻,所以多次使用均值不等式常常会引起错误。

巩固练习:
1、已知:b n m a y x =+=+2
2
2
2
,且b a ≠,则ny mx +的最大值为【 】
(A)ab (B)2b a + (C)2
2
2b a + (D)222b a +
2、若+
∈R y x a ,,,且y x a y x +≤+恒成立,则a 的最小值是【 】
(A)22 (B)2 (C)2 (D)1 3、已知下列不等式:
①)(233
+
∈>+R x x x ;②),(3
2
2
3
5
5
+
∈+≥+R b a b a b a b a ;③)1(22
2
--≥+b a b a . 其中正确的个数是【 】
(A)0个 (B)1个 (C)2个 (D)3个 4、设+
∈R b a ,,则下列不等式中不成立的是【 】
(A)4)1
1)((≥++b a b a (B)
ab ab b a 222≥+ (C)21≥+ab
ab (D)ab b a ab ≤+2
5、设+
∈R b a ,且2242,12b a ab S b a --==+的最大值是【 】
(A)12- (B)
212- (C)12+ (D)2
1
2+ 6、若实数b a ,满足2=+b a ,则b
a 33+的最小值是【 】
(A)18 (B)6 (C)32 (D)432 7.若0>a ,0>b ,1=+b a ,则下列不等式恒成立的是【 】
A 、ab b a ++≥45
B 、2
2b a +≤21 C 、 b a 11+≥4 D 、ab
⎪⎭
⎫ ⎝⎛811≤31
8.已知21-+
=a a m )2(>a ,2
221-⎪⎭
⎫ ⎝⎛=x n )0(<x ,则m 、n 的大小关系是【 】 A 、n m > B 、n m < C 、m ≥n D 、m ≤n
9.已知x
x f ⎪⎭
⎫ ⎝⎛=21)(,a 、+
∈R b ,⎪⎭⎫ ⎝⎛+=2b a f A ,()
ab f G =,⎪⎭⎫ ⎝⎛+=b a ab f H 2,
则A 、G 、H 的大小关系是【 】
A 、A ≤G ≤H
B 、A ≤H ≤G
C 、G ≤H ≤A
D 、H ≤G ≤A
10.若2lg lg =+y x ,则y
x 1
1+的最小值为
11.函数1
1612+++
=x x x x y )1(>x 的最小值是 12、若b a b a ≠<<<<且,10,10,则ab b a ab b a 2,,2,2
2++中最大的是 .。

相关文档
最新文档