人教版初三数学上册第22章:二次函数总复习课教学设计
九年级上册数学人教版第22单元复习教学设计 教案

第22章二次函数复习教案一、知识网络二、知识梳理+经典例题知识点一:二次函数的概念定义:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数叫做二次函数.其中x是自变量,a,b,c 分别是函数解析式的二次项系数、一次项系数和常数项。
知识点三:二次函数y=ax2+k的图像和性质二次函数y=ax2+k(a≠0)的图像是一条抛物线,它的对称轴是y轴,顶点坐标是(0,k),它与y=ax2的图像形状相同,只是位置不同.函数y=ax2+k(a≠0)的图像是由抛物线y=ax2向上(或下)平移|k|个单位长度得到的.二次函数y=ax2+k(a≠0)与y=ax2(a≠0)的图像之间的关系如下表所示:y=ax2(a≠0)向上平移|k|个单位长度向下平移|k|个单位长度二次函数y=ax2+k的图像和性质如下:a的符号a>0a<0图像开口方向向上向下对称轴y轴y轴最值当x=h时,y有最小值y最小值=0当x=h时,y有最大值y最大值=0知识点五:二次函数y=a(x-h)2+k(a,h,k是常数,a≠0)的图像和性质1、二次函y=a(x-h)2+k(a≠0)的图象是一条抛物线,它的对称轴是x=h,顶点坐标为(h,k),是由抛物线y=ax2(a≠0)向右(左)平移|h|个单位长度,再向上(下)平移|k|个单位长度得到的2、性质a的符号a>0a<0图像开口方向向上向下对称轴x=h x=h顶点坐标(h,k)(h,k)增减性当x<h时,y随x的增大而减小;当x>h时,y随x的增大而增大当x<h时,y随x的增大而增大;当x>h时,y随x的增大而减小最值当x=h时,y有最小值,y最小值=k 当x=h时,y有最大值,y最大值=k例5已知二次,函数y=a(x-1)2-c的图像如图所示,则一次函数y=ax+c 的大致图像可()a a>0开口向上a<0开口向下b ab=0对称轴为y轴ab>0(a,b同号)对称轴在y轴左侧ab<0(a,b异号)对称轴在y轴右侧c c=0图像过原点c>0与y轴正半轴相交c<0与y轴负半轴相交b2-4ac b2-4ac=0与x轴有唯一一个交点b2-4ac>0与x轴有两个交点b2-4ac<0与x轴没有交点例7、二次函数y=ax2+bx+c的图象如图所示,则abc,b2-4ac,2a+b,a+b+c这四个式子中,值为正数的有()A.4个B.3个C.2个D.1个知识点八:二次函数与一元二次方程的联系1、二次函数y=ax2+bx+c(a≠0),当y=0时,得到一元二次方程ax2+bx+c=0(a≠0).那么一元二次方程的根就是二次函数的图像与x轴交点的横坐标,因此,二次函数的图像与x轴的交点情况决定了一元二次方程根的情况.(1)当二次函数y=ax2+bx+c(a≠0)的图像与x轴有两个交点时,b2-4ac>0,方程ax2+bx+c=0(a知识点九:二次函数与一元二次不等式的关系1、抛物线y=ax2+bx+c(a≠0)在x轴上方的部分点的纵坐标为正,所对应的x的所有值就是不等式ax2+bx+c >0(a≠0)的解集;在x轴下方的部分点的纵坐标都为负,所对应的x的所有值就是不等式ax2+bx+c<0(a≠0)的解集,不等式中如果带有等号,其解集也相应带有等号2、二次函数y=ax2+bx+c(a≠0)与一元二次不等式ax2+bx+c >0(a≠0)及ax2+bx+c<0(a≠0)之间的关系如下:例9、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数值y>0时,x的取值范围是()A.x<-1B.x>3C.-1<x<3D.x<-1或x>3知识点十:二次函数与实际问题1、二次函数的应用:二次函数的应用关键在于建立二次函数的数学模型,这就需要认真审题,理解题意,利用二次函数解决实际问题,应用最多的是根据二次函数的最值确定最大利润、最节省方案等问题2、建立平面直角坐标系,用二次函数的图象解决实际问题:建立平面直角坐标系,把代数问题与几何问题进行互相转化,充分结合三角函数、解直角三角形、相似、全等、圆等知识解决问题,求二次函数的表达式是解题关键。
人教版九年级数学上册第22章《二次函数》期末复习课教案

第22章二次函数期末复习课
教学目标:
知识与技能:
理解二次函数的概念,掌握二次函数y=ax2+bx+c(a≠0)的图象与性质;会用描点法画抛物线,能确定抛物线的顶点、对称轴、开口方向,能较熟练地由抛物线y=ax2(a≠0)经过适当平移得到y=a(x-h)2+k(a≠0)的图象。
会结合二次函数的图象分析问题、解决问题,并在运用中体会二次函数的实际意义,会运用二次函数求实际问题中的最大值或是最小值。
过程与方法:
会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质。
情感态度价值观:
使学生体会数学建模思想,函数思想,数形结合思想等数学思想。
教学的重点:
1.用配方法求二次函数的顶点,对称轴,根据图象概括二次函数的性质。
2.二次函数三种解析式的求法。
3.利用二次函数的知识解决数学问题,并对解决问题的方法进行反思。
教学的难点:1.将实际问题转化为二次函数,并运用二次函数性质将以解决。
2.二次函数与一元二次方程、不等式的联系,数形结合思想的渗透于应用。
3. 运用二次函数知识解决综合性的问题。
教法方法:自主学习法合作学习法
教学手段:多媒体
教学课时:1课时
教学活动:学生活动及设计意图
;⑤若抛物线顶点坐
教学活动:学生活动及设计意图
=x+b的图象交
教学活动:学生活动及设计意图
7.已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象
如图,其中正确的是()
专题三:二次函数解析式的确定
求下列二次函数解析式:(学生分组完成)
1.已知二次函数的图象的顶点坐标为(-2,-3),。
初中数学教材解读人教九年级上册第二十二章 二次函数二次函数教学设计

二次函数教学设计一、教材分析《二次函数》是人教版《数学》九年级上册中的第22章第一节,是《义务教育课程标准》“数与代数”领域的内容。
二次函数是九年级的第一节函数课,初中涉及到的“一元一次方程”,“二元一次方程组”,“一次函数”,“一元二次方程”,这几章代数的学习都为接下来的函数的进一步学习奠定了基础。
“二次函数”的学习,使得学生在思想上认识到函数的一般性以及函数与生活中实际问题的联系。
二、学情分析九年级的学生有一定的逻辑思考能力,也有主动思考的意识,相对比较活跃,可以多让学生参与到课堂中来,让学生主动思考,多与学生互动,引导学生自主学习。
三、教学目标1、理解并掌握二次函数的概念,能够判别二次函数;2、会求一些简单的实际问题中二次函数的解析式和自变量的取值范围;3、在从问题出发到列二次函数解析式的过程中,体验用函数思想去描述、研究变量之间变化规律的意义。
四、教学重难点教学重点:对二次函数概念的理解教学难点:由实际问题确定函数解析式,以及自变量的取值范围。
教学过程:一、知识回顾:1、前面我们学过什么函数?2、一次函数的一般形式?在表达式中自变量是什么?3、什么是函数?二、自主探索,讲授新知问题1:正方体六个面是全等的正方形,设正方体棱长为 x,表面积为 y,则 y 关于x 的关系式为①问题2:n个球队参加比赛,每两个队之间进行一场比赛,比赛的场次数m与球队数n的关系表示为②问题3:某种产品现在的年产量是20t,计划今后两年增加产量。
如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x 之间的关系怎样表示?析:这种产品的现在产量是20t, 一年后的产量_____________ t,再经过一年后的产量是______________t ,即两年后的产量y=____________________ ③1、思考:函数式①②③有什么共同点?(1)从形式上看:等号两边都是什么式?(2)自变量的最高次数分别是多少?2、定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的函数叫做二次函数,其中x 是自变量,自变量x的取值范围是一切实数。
人教版九年级数学上册第二十二章《二次函数》教案

第二十二章二次函数22.1 二次函数的图象和性质22.1.1 二次函数1.能结合具体情境体会二次函数的意义,理解二次函数的有关概念.2.能够表示简单变量之间的二次函数关系.3.通过具体问题情景中的二次函数关系了解二次函数的一般表述式,在类比一次函数、反比例函数表达式时感受二次函数中二次项系数a≠0的重要特征.4.在探究二次函数的学习活动中,体会通过探究发现的乐趣.【教学重点】结合具体情境体会二次函数的意义,掌握二次函数的有关概念.【教学难点】1.能通过生活中的实际问题情境,构建二次函数关系;2.重视二次函数y=ax2+bx+c中a≠0这一隐含条件.一、情境导入,初步认识问题1 如图所示是一个棱长为xcm的正方体,它的表面积为ycm2,则y与x 之间的关系式可表示为,y是x的函数吗?问题2 n个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m与球队n有什么关系?这就是说,每个队要与其他个球队各比赛一场,整个比赛场次数应为,这里m是n的函数吗?问题3 某种产品现在的年产量为20t,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x值而确定,y与x之间的关系应怎样表示?二、思考探究,获取新知全班同学合作交流,共同完成上面三个问题,教师全场巡视,发现问题可给予个别指导.在同学们基本完成情形下,教师再针对问题2,解释m=12n(n-1)而不是m=n(n-1)的原因;针对问题3,可引导同学们先算出第二年产量为20(1+x)t ,第三年产量为20(1+x)(1+x)t ,得到y=20(1+x)2.【教学说明】上述活动的目的在于引导同学们能通过具体问题情境建立二次函数关系式,体会二次函数是刻画实际生活中自变量与因变量的关系的重要模型之一.思考函数y=6x 2,m=12n 2-12n,y=20x 2+40x+20有哪些共同点? 【教学说明】在同学们相互交流、发言的过程中,教师应关注:(1)语言是否规范;(2)是否抓住共同点;(3)针对少数同学可能进一步探索出其不同点等问题应及时引导,让同学们在轻松快乐的环境中进入二次函数的学习.【归纳结论】上述三个函数都是用自变量的二次式表示的,从而引出二次函数定义.一般地,形如y=ax 2+bx+c(a,b,c 为常数,a ≠0)的函数,叫做二次函数.其中x 是自变量,a 、b 、c 分别是二次项系数,一次项系数和常数项.【教学说明】针对上述定义,教师应强调以下几个问题:(1)关于自变量x 的二次式必须是二次整式,即可以是二次单项式、二次二项式和二次三项式;(2)二次项的系数a ≠0是定义中不可缺少的条件,若a=0,则它是一次函数;(3)二次项和二次项系数不同,二次项指ax 2,二次项系数则仅是指a 的值;同样,一次项与一次项系数也不同.教师在学生理解的情况下,引导学生做课本P29练习.三、运用新知,深化理解1.下列函数中,哪些是二次函数,哪些不是?若是二次函数,指出它的二次项系数、一次项系数和常数项:(1)y=(x+2)(x-2);(2)y=3x(2-x)+3x 2; (3)y=21x -2x+1;(4)y=1-3x 2.2.若y=(m+1)xm 2+1-2x+3是y 关于x 的二次函数,试确定m 的值或取值范围.3.某商场以每件30元的价格购进一种商品,试销中发现:这种商品的销售量m(件)与每件商品的销售价x (元)满足一次函数关系m=162-2x ,试写出商场销售这种商品的日销售利润y (元)与每件商品的销售价x (元)之间的函数关系式,y 是x 的二次函数吗?4.如图,用同样规格的正方形白瓷砖铺设矩形地面,请观察下列图形并解答有关问题:(1)在第n 个图中,每一横行共有 块瓷砖,每一竖列共有 块瓷砖(均用含n 的代数式表示);(2)设铺设地面所用瓷砖的总块数为y ,请写出y 与(1)中的n 的函数关系式(不要求写自变量n 的取值范围).【教学说明】这个环节的教学自主性很强,可让同学们分小组完成,对优胜小组给予鼓励,培养学生团队精神,让部分学生分享成功的快乐,但对题2、3、4,教师应及时给予引导,鼓励学生大胆完成.【答案】1.解:(1)y=(x+2)(x-2)=x 2-4,该函数是二次函数,它的二次项系数为1,一次项系数是0,常数项是-4.(2)y=3x(2-x)+3x 2=6x,该函数不是二次函数.(3)该函数不是二次函数.(4)该函数是二次函数,它的二次项系数为-3,一次项系数为0,常数项为1.2.解:∵()21123m y m x x +=+-+是y 关于x 的二次函数.∴m+1≠0且m 2+1=2,∴m≠-1且m2=1,∴m=1.3.解:由题意分析可知,该商品每件的利润为(x-30)元,则依题意可得:y=(162-3x)(x-30)即y=-3x2+252x-4860由此可知y是x的二次函数.4.解:(1)观察图示可知第1、2、3个图形中每一横行瓷砖分别为4,5,6,每一竖列瓷砖分别为3,4,5,由此推断在第n个图中,每一横行共有(n+3)块瓷砖,每一竖行共有(n+2)块瓷砖;(2)y=(n+3)(n+2)即y=n2+5n+6.四、师生互动,课堂小结1.二次函数的定义;2.熟记二次函数y=ax2+bx+c中a≠0,a、b、c为常数的条件.【教学说明】本环节设置的目的在于让学生进一步认识二次函数的相关定义,教师可与学生一起回顾.1.布置作业:教材习题22.1第1、2、7题;2.完成创优作业中本课时练习的“课时作业”部分.本课时的内容涉及到初中第二个函数内容,由于前面有了学习一次函数的经验,因此教师教学时可在学生以往经验的基础上,创设丰富的现实情境,使学生初步感知二次函数的意义,进而能从具体事物中抽象出数学模型,并列出二次函数的解析式.教学时应注重引导学生探究新知,在观察、分析后归纳、概括,注重学生的过程经历和体验,让学生领悟到现实生活中的数学问题,提高研究与应用能力.22.1.2 二次函数y=ax2的图象和性质1.会用描点法画二次函数y=ax2的图象,理解抛物线的有关概念;2.掌握二次函数y=ax2的性质,能确定二次函数y=ax2的表达式.3.通过画出简单的二次函数y=x2,y=-12x2等探索出二次函数y=ax2的性质及图象特征.4.使学生经历探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯.【教学重点】1.二次函数y=ax2的图象的画法及性质;2.能确定二次函数y=ax2的解析式.【教学难点】1.用描点法画二次函数y=ax2的图象,探索其性质;2.能依据二次函数y=ax2的有关性质解决问题.一、情境导入,初步认识问题1在八年级下册,我们学习的一次函数的图象是一条直线,二次函数的图象是什么形状呢?通常怎样画一个函数的图象?【教学说明】通过对问题1的思考,可激发学生的求知欲望,想尝试运用列表法画出一个二次函数的图象.问题2 你能画出二次函数y=x2的图象吗?【教学说明】学生分组画y=x2的图象,教师巡视,对于不正确的给予指导,尤其应关注学生的列表和连线,然后给予讲评,提醒注意的问题,并让学生发表不同的意见,达成共识.二、思考探究,获取新知问题1你能说说二次函数y=x2的图象有哪些特征吗?不妨试试看,并与同伴交流.【教学说明】教师应在学生的交流过程中,听取他们各自的看法,对于通过观察而归纳出的结论叙述较好的给予肯定,对不够完整的或叙述欠佳的学生给予鼓励,并予以诱导.在这一活动过程中,让学生们逐步积累对二次函数y=ax2的图象及其简单性质的感性认识.问题2请在同一坐标系中,画出下列函数的图象,并通过图象谈谈它们的特征及其差异.y=12x2与y=2x2.【教学说明】在这一活动过程中,教师可将全班同学进行适当分组,分别完成两个图象的画图,并结合图象给予恰当的描述.教师巡视,适时点拨,最后在黑板上与全班同学一起进行归纳总结.问题3(1)在同一直面坐标系中,画出函数y=-x2,y=-12x2,y=-2x2的图象,并考虑这些抛物线有什么共同点和不同点?(2)当a<0时,二次函数y=ax2的图象有什么特点?【教学说明】教师在处理问题时可让学生画图后回答,可让学生从开口方向、最值、增减性三个方面作答,最后教师以课件方式展示结论.【归纳结论】1.二次函数y=ax2的图象是一条开口向上或向下的抛物线.一般地,二次函数y=ax2+bx+c的图象叫做抛物线y=ax2+bx+c.2.二次函数y=ax2的图象及其性质,如下表所示:3.二次函数y=ax2的开口大小与a的关系:|a|越大,开口越小;|a|越小,开口越大.|a|值相同,开口形状相同.【教学说明】针对师生共同完成的归纳总结,教师应着重强调两点:(1)a 的符号决定着抛物线的开口方向,|a|的大小,影响抛物线的开口大小;(2)对于函数的增减性及最大(小)值,教师应引导学生通过图象进行分析,利用图象的直观性获得结论,切忌死记硬背,让同学感受到数形结合思想方法是函数问题中最重要的思想方法之一,增强他们的学习兴趣.三、运用新知,深化理解1.若抛物线y=ax2与y=4x2的形状及开口方向均相同,则a= .2.下列关于二次函数y=ax2(a≠0)的说法中,错误的是()A.它的图象的顶点是原点B.当a<0,在x=0时,y取得最大值C.a 越大,图象开口越小;a 越小,图象开口越大D.当a>0,在x>0时,y 随x 的增大而增大3.请在同一坐标系中画出函数y 1=x 和y 2=-x 2的图象,结合图象,指出当x 取何值时,y 1>y 2;当x 取何值时,y 1<y 2.4.一个二次函数,它的图象的顶点是原点,对称轴是y 轴,且经过点(-1,14). (1)求这个二次函数的解析式;(2)画出这个二次函数的图象;(3)根据图象指出,当x>0时,若x 增大,y 怎样变化?当x<0时,若x 增大,y 怎样变化?(4)当x 取何值时,y 有最大(或最小)值,其值为多少?【教学说明】本环节易采用先让学生独立思考,再以小组交流的方式展开.其中题2、3、4均是集图象与性质于一体,鼓励学生用自己的语言叙述,逐步渗透用数学语言进行说理的能力,同时进一步体现数形结合的思想.【答案】1.42.C 【解析】当a>0时,a 值越大,开口越小,a 值越小,开口越大;当a<0时,a 值越大,开口越大,a 值越小,开口越小.所以C 项说法不对.3.列表如下:如图所示:根据图象可知,当x>0或x<-1时,y1>y2,当-1<x<0时,y2>y1.4.解:(1)设这个二次函数解析式为y=ax2,将(-1,14)代入得a=14,所以y=14x2.(2)略(3)当x>0时,y随x的增大而增大;当x<0时,y随x的增大而减小.(4)当x=0时,y有最小值,y最小值=0.四、师生互动,课堂小结1.画二次函数y=ax2的图象时,有哪些地方是你需关注的?2.你是如何理解并熟记抛物线y=ax2的性质的?3.本节课你还存在哪些疑问?【教学说明】问题1旨在提醒学生画图过程中列表时应以原点为中心,左右对称选取点,连线时应用光滑曲线连接;问题2是为了进一步突出数形结合思想在函数问题的解决过程中的重要性;而问题3是想了解学生哪部分没学好,难学,以便教师可以进行针对性辅导.1.布置作业:教材习题22.1第3、4、11题.2.完成创优作业中本课时练习的“课时作业”部分.本课时的设计比较注重让学生动手操作,让学生通过画二次函数的图象初步掌握其性质,画图的过程中需注意引导学生与其他函数的图象与性质进行对比.本课的目的是要让学生通过动手操作,经历探索归纳的思维过程,逐步获得图象传达的信息,熟悉图象语言,进而形成函数思想.22.1.3 二次函数y=a(x-h)2+k的图象和性质第1课时二次函数y=ax2+k的图象和性质1.能画出二次函数y=ax2+k的图象;2.掌握二次函数y=ax2与y=ax2+k图象之间的联系;3.掌握二次函数y=ax2+k的图象及其性质.4.通过画二次函数y=2x2+1与y=2x2-1的图象,感受它们与y=2x2的联系,并由此得到y=ax2与y=ax2+k的图象及性质的联系和区别.5.在通过类比的方法获取二次函数y=ax2+k的图象及其性质过程中,进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.【教学重点】1.二次函数y=ax2与y=ax2+k的图象之间的联系;2.二次函数y=ax2+k的图象及其性质.【教学难点】二次函数y=ax2+k的性质的基本应用.一、情境导入,初步认识问题1请同学们谈谈一次函数y=x与y=x+2的图象之间的关系;问题2同样地,你能猜想出二次函数y=x2与y=x2+1的图象之间有何关系吗?【教学说明】问题1既是复习旧知识,同时又为解决本节知识起到抛砖引玉的作用.学生的回答也许形式多样,教师适时诱导,并设疑,为后面的解惑作铺垫.二、思考探究,获取新知问题1在同一坐标系中,画出二次函数y=2x2+1,y=2x2-1的图象.请观察图象,谈谈它们有哪些相同点和不同点,并指明这两个图象的关系如何?【教学说明】在学生自主操作时,教师应指导它们在画平面直角坐标系时的单位长度要稍大一些,如选取0.8cm或1cm为一个单位长度为好,这样学生们所画出的图形才有可能清晰些.教师应巡视,纠正画图过程中可能出现的失误,并引导他们进行分析,发现规律,获得感性认识.问题2(教材第33页练习)在同一直角坐标中,画出下列二次函数的图象y=12x2,y=12x2+2,y=12x2-2,观察三条抛物线的位置关系并分别指出它们的开口方向、对称轴和顶点.你能说出抛物线y=12x2+k的开口方向、对称轴和顶点吗?它与抛物线y=12x2有什么关系?【教学说明】设计问题2,一方面进一步增强学生的画图能力,另一方面加深学生的感性认识,从而形成对二次函数y=ax2+k的图象及其性质的初步认识.同伴间应相互交流,教师巡视指导,然后完成课本第33页练习.【归纳结论】1.二次函数y=ax2+k的图象可以由y=ax2的图象通过上、下平移得到.2.y=ax2与y=ax2+k的性质如下:三、运用新知,深化理解1.抛物线y=3x2可以看作是抛物线y=3x2-4向平移得到的.2.已知抛物线y=ax2+k与抛物线y=-2x2的形状相同,且图象到x轴的最近点的距离为3,求a、k的值,并指出抛物线y=ax2+k的开口方向,对称轴和顶点坐标.【教学说明】针对本节所学内容及学生掌握的情况,设计训练题1,2,目的是加深学生对新知识的理解,能灵活运用所学知识解决简单的问题.教师在这个过程中要予以诱导.【答案】略四、师生互动,课堂小结本环节师生共同回顾所学知识,如y=ax2+k的图象特征,函数的增减性等,并对可能出现的困难、疑问给予整理,进行辨析.完成创优作业中本课时练习的“课时作业”部分.本课时教学重点在于培养学生的比较能力,旨在希望学生通过对比发现函数图象的性质,从而进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.第2课时二次函数y=a(x-h)2的图象和性质1.能画出二次函数y=a(x-h)2的图象;2.了解抛物线y=ax2与抛物线y=a(x-h)2的联系;3.掌握二次函数y=a(x-h)2的图象特征及其简单性质.4.通过动手操作、观察比较、分析思考、规律总结等活动过程完成对二次函数y=a(x-h)2的图象及其性质的认知.5.在学生学习活动过程中,使他们进一步体会数形结合的思想方法,培养创造性思维能力和动手实践能力,增强学习兴趣、激发学习欲望.【教学重点】1.掌握二次函数y=a(x-h)2的图象及性质;2.二次函数y=ax2与y=a(x-h)2图象之间的联系.【教学难点】利用二次函数y=a(x-h)2的性质解决实际问题.一、情境导入,初步认识我们知道,二次函数y=ax2-2的图象可以由函数y=ax2的图象向下平移得到,那么函数y=12(x-2)2的图象是否可以由函数y=12x2的图象经过平移而得到呢?二、思考探究,获取新知问题在同一坐标系中画出二次函数y=-12(x+1)2,y=-12(x-1)2的图象,指出它们的开口方向、对称轴和顶点坐标;并结合图象,说说抛物线y=-12x2, y=-12(x+1)2,y=-12(x-1)2的关系.【教学说明】在教学过程中,学生独立思考后,合作完成.教师巡视指导,针对学生在画图、探究过程中可能出现的错误给予指正,对好的给予表扬,并展示其图象,在合作交流过程中探索出抛物线y=-12(x+1)2,y=-12(x-1)2与y=-12x2的联系.【归纳结论】函数y=ax2与y=a(x-h)2的图象及其性质如下表:三、运用新知,深化理解【设计说明】针对本节知识,设计了以下几道题,及时了解学生运用新知解决问题的能力,查漏补缺.1.抛物线y=3(x-3)2的开口方向是向,对称轴是,顶点是.2.若抛物线y=a(x-h)2的顶点是(-3,0),它是由抛物线y=-2x2通过平移而得到的,则a= ,h= .【教学说明】这两道题可采用抢答的形式来处理,可适当让学生说明其解题思路或依据.【答案】1.上x=3 (3,0)2.-2-3四、师生互动,课堂小结1.抛物线y=ax2与y=ax2+c和抛物线y=ax2与y=a(x-h)2有哪些共同点,又有哪些不同点?同伴间可相互交流.2.将抛物线y=ax2上下平移与左右平移所得到的表达式在形式上有何区别?3.课本第35页练习.【设计及教学说明】对所给两个问题的思考,让学生亲历知识的自主建构,不断完善自己的知识结构.完成创优作业中本课时练习的“课时作业”部分.本课时教学仍在于着重培养学生的比较和判断能力,通过比较找出异同点,从而进一步归纳性质,并通过练习使学生从“练”中“悟”,形成函数意识.第3课时二次函数y=a(x-h)2+k的图象和性质1.会用描点法画出二次函数y=a(x-h)2+k(a≠0)的图象;2.掌握抛物线y=ax2与y=a(x-h)2+k之间的平移规律;3.依据具体问题情境建立二次函数y=a(x-h)2+k模型来解决实际问题.4.通过“活动探究——观察思考——运用迁移”等三个环节来获取新知识,掌握新技能,解决新问题.5.进一步培养学生观察能力、抽象概括能力,渗透数形结合、从特殊到一般的思想方法,了解从特殊到一般的辩证关系.【教学重点】二次函数y=a(x-h)2+k(a≠0)的图象及其性质.【教学难点】1.二次函数y=a(x-h)+k与y=ax2(a≠0)的图象之间的平移关系;2.通过对图象的观察,分析规律,归纳性质.一、情境导入,初步认识问题将抛物线y=-12x2向下平移1个单位,所得到的抛物线表达式是什么?若再将它向左平移1个单位呢?【教学说明】学生通过对前两节课所学习的上、下平移和左、右平移规律的回顾与思考,在尝试解决问题的过程中,可增强他们的学习兴趣,激发求知欲望,也为新知识的学习做好铺垫.学生们可相互交流,教师对其结论可暂不作评价.二、思考探究,获取新知问题1 画出二次函数y=-12(x+1)2-1的图象,指出它的开口方向、对称轴及顶点坐标.问题2 请在问题1中所在的平面直角坐标系内,画出抛物线y=-12x2,及抛物线y=-12(x+1)2,y=-12x2-1,观察所得到的四个抛物线,你能发现什么?问题3请依据问题2中你的发现,说说抛物线y=a(x-h)2+k是由抛物线y=ax2(a ≠0)通过怎样的平移而得到的?并说说它的对称轴和顶点坐标.【教学说明】教师可给予15~20分钟的时间让学生自主探究,画出图象,并让学生们交流,获得感性认识.教师巡视,鼓励每个学生积极参与进来,针对个别同学,应适时予以点拨.如果条件允许,对学生的成果可通过多媒体展示.【归纳结论】1.一般地,抛物线y=a(x-h)2+k与抛物线y=ax2的形状相同(因为a值相同),而位置不同.将抛物线y=ax2上下平移,可得到抛物线y=ax2+k(k >0时,向上平移k个单位;k<0时,向下平移-k个单位),再将抛物线y=ax2+k 左右平移后,可得到抛物线y=a(x-h)2+k(h>0时,向右平移;h<0时,向左平移).2.抛物线y=a(x-h)2+k的性质:(1)a>0时,开口向上;a<0时,开口向下;(2)对称轴是直线x=h;(3)顶点坐标是(h,k).【教学说明】1.通过探究,师生共同交流,达成共识后,教师在黑板上与学生一道进行归纳,了解并掌握本课时知识.2.此时教师可对问题情境中的问题1作出评价,让学生体验成功的快乐.3.归纳结论完成后,教师引导学生做第37页练习,可让学生采取举手抢答的形式进行.三、典例精析,掌握新知例(教材第36页例4)要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?解:如图建立直角坐标系,点(1,3)是图中这段抛物线的顶点,因此可设这段抛物线对应的函数是y=a(x-1)2+3(0≤x≤3).由这段抛物线经过点(3,0)可得0=a(3-1)2+3,解得a=-34.因此y=-34(x-1)2+3(0≤x≤3).当x=0时,y=2.25,也就是说,水管应长2.25m.【教学说明】教师讲解此例时,可向学生提问:(1)坐标系的原点为什么建立在池中心点?(2)自变量的取值范围为什么是0≤x≤3?(3)设函数解析式有什么诀窍?四、运用新知,深化理解【设计说明】针对本节所学知识,通过几道小题进行演练,巩固所学新知识,并依据学生的完成情况,教师可适时予以查漏补缺.1.抛物线y=-3(x+2)2-4的顶点坐标是,当x 时,函数值y随x的增大而增大.2.若抛物线的对称轴为x=-1,与x轴的一个交点坐标为(1,0),则这条抛物线与x轴的另一个交点是.3.已知二次函数的图象顶点坐标为(-4,3),且经过坐标原点,则这个二次函数的表达式是.4.已知二次函数y=a(x-h)2+k的图象先向左平移2个单位,再向上平移4个单位,得到抛物线y=-12(x+1)2+3.(1)试确定a,h,k的值;(2)指出二次函数y=a(x-h)2+k图象的开口方向,对称轴和顶点坐标.5.将抛物线y=2(x-1)2+3作下列移动,求得到的新抛物线的解析式.(1)向左平移2个单位,再向下平移3个单位;(2)顶点不动,将原抛物线开口方向反向.【教学说明】第1,2题较为简单,可采用抢答形式来处理,第3小题应引导学生设出所求的二次函数表达式为y=a(x-h)2+k的形式,第4、5题为选做题,教师可根据教学实际选择做或不做.五、师生互动,课堂小结1.抛物线y=a(x-h)2+k(a≠0)的特征有哪些?2.如果解抛物线的顶点坐标(或对称轴或最低点等),要想确定该抛物线表达式,如何设出这个表达式更有利于求解呢?【设计及教学说明】问题1侧重于所学知识回顾,而问题2侧重于应用,为后继学习做好铺垫.教学时,教师应予以评讲.1.布置作业:教材习题22.1第5题.2.完成创优作业中本课时练习的“课时作业”部分.前面的几个课时是从最基本的二次函数图象入手开始探索,已初步对二次函数的性质进行了归纳,因此本课时的内容算是对前面内容的小结.所以教学时教师应大胆放手让学生自主归纳与探究,教师给予引导和提示并让学生适时进行练习,以巩固所学,在这一过程中应注意渗透数形结合的思想方法.22.1.4 二次函数y=ax2+bx+c的图象和性质第1课时二次函数y=ax2+bx+c的图象和性质1.能通过配方法把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k的形式,以便确定它的对称轴和顶点坐标;2.会利用对称性画出二次函数的图象,掌握二次函数y=ax2+bx+c(a≠0)的平移规律;3.会用公式确定二次函数y=ax2+bx+c(a≠0)的对称轴和顶点.4.通过思考、探索、尝试与归纳等过程,让学生能主动积极地探索新知.5.经历探求二次函数y=ax2+bx+c的对称轴和顶点坐标的过程,感悟二次函数y=ax2+bx+c与y=ax2的内在联系,体验利用抛物线的对称轴画抛物线的方法,感受数学的对称美.【教学重点】用抛物线的对称轴画二次函数y=ax2+bx+c的图象,通过配方确定抛物线的对称轴和顶点坐标.通过配方法将二次函数的一般形式化为顶点式,探索二次函数y=ax2+bx+c的平移变换.【教学难点】用配方法推导抛物线的对称轴与顶点坐标.一、情境导入,初步认识问题1请说出抛物线y=ax2+k,y=a(x-h)2,y=a(x-h)2+k的开口方向、对称轴和顶点坐标.问题2你知道二次函数y=12x2-6x+21的图象的开口方向,对称轴和顶点坐标吗?【教学说明】问题1设计的目的既是对前面所学知识进行简单的回顾,又为本节知识的学习展示着方法和思路,学生处理起来较为简单,可采用抢答形式来处理.问题2设计的目的在于制造认知冲突,激发学生的求知欲望,学生在处理问题2时可能有些困难,教师适时诱导,引入新课.。
初中九年级数学上册《第二十二章 二次函数》大单元整体课时教学设计

初中九年级数学上册《第二十二章二次函数》大单元跨学科教学课时教学设计[2022课标]一、教学目标1.会用数学的眼光观察现实世界:通过本章《第二十二章二次函数》的学习,学生能够运用二次函数的知识观察体育与物理现象中的运动轨迹和变化规律,如铅球投掷的抛物线轨迹、竖直上抛运动中小球的高度变化等,从而发现数学与现实生活及学科的紧密联系。
2.会用数学的思维思考现实世界:学生能够运用二次函数的性质(如开口方向、顶点坐标、对称轴等)和解析式,分析体育和物理问题中的量化关系,如通过调整参数来优化运动效果或模拟实验现象,培养逻辑思维和问题解决能力。
3.会用数学的语言表达现实世界:学生能够将体育和物理中的问题抽象成二次函数模型,建立相应的数学表达式,并通过计算、推导和论证,用准确的数学语言描述和解释这些现象,最终得出科学结论。
二、教学内容分析本章主要探讨二次函数的定义、图象、性质以及应用,是初中数学知识体系中的重要组成部分。
从学科内部来看,二次函数的学习是在一次函数基础上的深化和拓展,通过本章的学习,学生能够理解并掌握二次函数的基本概念、图象特征以及增减性,为后续学习一元二次方程、二次不等式等内容打下坚实基础。
从跨学科角度来看,二次函数在体育、物理等领域有着广泛的应用。
在体育项目中,如投掷、跳跃等,运动员的运动轨迹往往可以抽象为二次函数图象,通过二次函数的解析式可以精确描述运动员的运动状态,为训练提供科学依据。
在物理学中,二次函数模型被广泛应用于描述抛体运动、振动等自然现象,有助于学生理解自然界中复杂运动的本质规律。
在本章的教学过程中,教师应注重引导学生将二次函数知识与实际问题相结合,通过跨学科的教学活动,激发学生的学习兴趣,培养学生的应用意识和实践能力。
结合体育、物理等学科的实例,让学生深刻体会到数学知识在解决实际问题中的重要作用,提升数学学习的价值和意义。
三、教学重点1.理解并掌握二次函数的定义、图像及基本性质。
人教版初中九年级数学上册《第22章二次函数》教案

第22章二次函数第一课时二次函数教学目标:1、从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系。
2、理解二次函数的概念,掌握二次函数的形式。
3、会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围。
4、会用待定系数法求二次函数的解析式。
教学重点:二次函数的概念和解析式教学难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力。
教学设计:一、创设情境,导入新课问题1、现有一根12m长的绳子,用它围成一个矩形,如何围法,才使举行的面积最大?小明同学认为当围成的矩形是正方形时,它的面积最大,他说的有道理吗?问题2、很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习俄二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题) 二、 合作学习,探索新知请用适当的函数解析式表示下列问题中情景中的两个变量y 与x 之间的关系:(1)面积y (cm 2)与圆的半径 x ( Cm )(2)王先生存人银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为文 x 两年后王先生共得本息y 元;(3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为12Om , 室内通道的尺寸如图,设一条边长为 x (cm), 种植面积为 y (m2)(一) 教师组织合作学习活动:1、 先个体探求,尝试写出y 与x 之间的函数解析式。
2、上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨。
(1)y =πx 2 (2)y = 2000(1+x)2 = 20000x 2+40000x+20000x(3) y = (60-x-4)(x-2)=-x 2+58x-112(二)上述三个函数解析式具有哪些共同特征? 让学生充分发表意见,提出各自看法。
新人教版九年级数学上册22二次函数复习教案新版

第22章二次函数一、复习目标1.理解二次函数的概念;2.会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;3.会平移二次函数y =ax 2(a ≠0)的图象得到二次函数y =a(ax +m)2+k 的图象,了解特殊与一般相互联系和转化的思想;4.会用待定系数法求二次函数的解析式;5.利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x 轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。
6.二次函数的综合应用 二、课时安排 2三、复习重难点把握二次函数的性质,利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x 轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系,并能和其它知识点进行综合应用。
四、教学过程 (一)知识梳理 二次函数知识点:1. 二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
2. 二次函数的基本形式(1)二次函数基本形式:2y ax =的性质:2. 2y ax c =+的性质:3. ()2y a x h =-的性质: 4. ()2y a x h k =-+的性质: 3.二次函数图象的平移 1. 平移步骤:(1) 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; (2)保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位(3) 平移规律在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左加右减,上加下减”.4.二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与轴的交点()10x ,,()20x ,(若与轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点. 5.二次函数2y ax bx c =++的性质(1) 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,随的增大而减小;当2b x a >-时,随的增大而增大;当2bx a=-时,有最小值244ac b a-. (2) 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,随的增大而增大;当2b x a >-时,随的增大而减小;当2bx a=-时,有最大值244ac b a -. 6.二次函数解析式的表示方法(1) 一般式:2y ax bx c =++(,,为常数,0a ≠); (2) 顶点式:2()y a x h k =-+(,,为常数,0a ≠);(3)两根式:12()()y a x x x x =--(0a ≠,,是抛物线与轴两交点的横坐标).7.二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与轴的交点个数:① 当240b ac ∆=->时,图象与轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与轴只有一个交点; ③ 当0∆<时,图象与轴没有交点. 7.二次函数的应用: (二)题型、方法归纳 类型一:二次函数的平移【主题训练1】(枣庄中考)将抛物线y=3x 2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A.y=3(x+2)2+3B.y=3(x-2)2+3 C.y=3(x+2)2-3D.y=3(x-2)2-3【自主解答】选A.由“上加下减”的平移规律可知,将抛物线y=3x 2向上平移3个单位所得抛物线的解析式为:y=3x 2+3;由“左加右减”的平移规律可知,将抛物线y=3x 2+3向左平移2个单位所得抛物线的解析式为:y=3(x+2)2+3.归纳:二次函数平移的两种方法1.确定顶点坐标平移:根据两抛物线前后顶点坐标的位置确定平移的方向与距离.2.利用规律平移:y=a(x+h)2+k 是由y=ax 2经过适当的平移得到的,其平移规律是“h 左加右减,k 上加下减”.即自变量加减左右移,函数值加减上下移.类型二:二次函数的图象及性质【主题训练2】(十堰中考)如图,二次函数y=ax 2+bx+c (a ≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0),下列结论:①ab<0;②b 2>4a;③0<a+b+c<2;④0<b<1;⑤当x>-1时,y>0.其中正确结论的个数是()A.5个B.4个C.3个D.2个【自主解答】选B.①∵对称轴在y轴右侧,∴- >0,∴ <0,∴a,b异号,∴ab<0,①正确;②把x=0,y=1代入y=ax2+bx+c得c=1,所以二次函数为y=ax2+bx+1; 又∵图象与x轴有两个交点,∴b2-4ac>0,∴b2>4a,②正确;③∵当x=1时,图象在x轴上方,∴a+b+c>0;把x=-1,y=0代入y=ax2+bx+1,得b=a+1,∵图象的开口向下,∴a<0,∴a+b+c= a+a+1+1=2a+2<2,∴0<a+b+c<2,③正确;④∵b=a+1,∴a=b-1,∵0<a+b+c<2,c=1,∴0<b-1+b+1<2,即0<2b<2,∴0<b<1,④正确;⑤当x>-1时,函数图象有部分在x轴上方,与x轴有交点,有部分在x轴下方,所以y>0,y=0,y<0都有可能.所以正确的共有4个,选B.归纳:类型三:二次函数与方程、不等式【主题训练3】(贺州中考)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①b2>4ac;②abc>0;③2a-b=0;④8a+c<0;⑤9a+3b+c<0,其中结论正确的是.(填入正确结论的序号)【自主解答】∵抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,∴一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,∴b2-4ac>0,即b2>4ac,①是正确的.∵抛物线的开口方向向上,∴a>0;b- =1>0,∴a与b异号,则b<0.∵抛物线与y轴的交点在y轴的负半轴,∴c<0;∵对称轴x=2ab-=1,∴b=-2a,∴2a+b=0,③是错误的.∴abc>0,②是正确的.∵抛物线的对称轴x=2a∵当x=-2时,y=4a-2b+c>0,又∵b=-2a,∴4a-2b+c=4a-2(-2a)+c=8a+c>0,④是错误的.∵抛物线的对称轴为直线x=1,∴在x=-1与x=3时函数值相等,由函数图象可知x=-1的函数值为负数,∴x=3时的函数值y=9a+3b+c<0,⑤是正确的.答案:①②⑤归纳:二次函数与方程、不等式的关系1.二次函数与方程:抛物线y=ax2+bx+c与x轴交点的横坐标满足ax2+bx+c=0.2.二次函数与不等式:抛物线y=ax2+bx+c在x轴上方部分的横坐标满足ax2+bx+c>0;抛物线y=ax2+bx+c在x轴下方部分的横坐标满足ax2+bx+c<0.类型四:二次函数的应用【主题训练4】(武汉中考)科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如表).温度x(℃) …-4 -2 0 2 4 4.5 …植物每天高度增长…41 49 49 41 25 19.75 …量y(mm)由这些数据,科学家推测出植物每天高度增长量y 是温度x 的函数,且这种函数是一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由.(2)温度为多少时,这种植物每天高度增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度x 应该在哪个范围内选择?直接写出结果.【自主解答】(1)选择二次函数.设抛物线的解析式为y=ax 2+bx+c, 根据题意,得4a 2b c 49,a 1,4a 2b c 41,b 2,c 49,c 49-+==-⎧⎧⎪⎪++==-⎨⎨⎪⎪==⎩⎩解得, ∴y 关于x 的函数解析式为y=-x 2-2x+49.不选另外两个函数的理由:点(0,49)不可能在任何反比例函数图象上,所以y 不是x 的反比例函数;点(-4,41),(-2,49),(2,41)不在同一直线上,所以y 不是x 的一次函数.(2)由(1)得y=-x 2-2x+49,∴y=-(x+1)2+50. ∵a=-1<0,∴当x=-1时y 的最大值为50.即当温度为-1℃时,这种植物每天高度增长量最大. (3)-6<x<4.归纳:解决二次函数应用题的两步骤1.建模:根据数量关系列二次函数关系建模或者根据图象的形状建模.2.应用:利用二次函数的性质解决问题.(三)典例精讲例题1: (2016·浙江省绍兴市·10分)课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m ,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m 时,透光面积最大值约为1.05m 2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.【分析】(1)根据矩形和正方形的周长进行解答即可;(2)设AB为xcm,利用二次函数的最值解答即可.【解答】解:(1)由已知可得:AD=,则S=1×m2,(2)设AB=xm,则AD=3﹣m,∵,∴,设窗户面积为S,由已知得:,当x=m时,且x=m在的范围内,,∴与课本中的例题比较,现在窗户透光面积的最大值变大.【点评】本题考查待定系数法确定二次函数解析式、二次函数性质等知识,解题的关键是求出对称轴与直线BC交点H坐标,学会利用判别式确定两个函数图象的交点问题,属于中考常考题型.(四)归纳小结1.引导学生整理把握本章知识点并熟练掌握。
人教版九年级上册第22章二次函数复习教案

初中二次函数教案知识内容1. 二次函数的解析式三种形式一般式 y=ax 2 +bx+c(a≠0)顶点式 2()y a x h k =−+224()24b ac b y a x a a−=−+交点式 12()()y a x x x x =−− 2. 二次函数图像与性质1、系数a ,b ,c 及Δ的几何意义①a 的符号决定抛物线的开口方向、大小;形状;最大值或最小值。
0a >⇔开口向上⇔有最小值(最低点的纵坐标)。
0a <⇔开口向下⇔最大值(最高点的纵坐标)。
a 越大,开口越小;a 越小,开口越大。
(描点法可以证明)②a b 、决定抛物线对称轴 0b =⇔对称轴是y 轴。
a b 、同号⇔对称轴在y 轴的左侧a b 、异号⇔对称轴在y 轴的右侧③c 的符号决定抛物线与y 轴交点的位置。
0c =⇔抛物线过原点0c >⇔抛物线与y 轴交于正半轴 0c <⇔抛物线与轴y 交于负半轴④Δ的符号决定抛物线与x 轴的交点个数。
240b ac −>⇔抛物线与x 轴有两个交点 240b ac −=⇔抛物线与x 轴只有一个交点240b ac −<⇔抛物线与x 轴没有交点⑤抛物线的特殊位置与系数的关系.顶点在x 轴上 ⇔△=0.顶点在y 轴上 ⇔b =0. 顶点在原点 ⇔b =c =0. 抛物线经过原点 ⇔c =0.2、二次函数的对称轴与顶点坐标以及单调性(增减性)与最值一般式:2y ax bx c=++(0)a b c a ≠、、是常数,且,其对称轴为直线2b x a=−,顶点坐标为24(24b ac b a a−−, ⅰ.当0a >时,有最小值,且当2bx a=−时,244ac b y a−=最小值;当2bx a<−时,y 随x 的增大而减小;当2bx a>−时,y 随x 的增大而增大。
ⅱ.当0a <时,有最大值,且当2bx a =−时,244ac b y a−=最大值;当2bx a<−时,y 随x 的增大而增大;当2bx a>−时,y 随x 的增大而减小顶点式顶点式::2()y a x h k=−+(0)a h k a ≠、、是常数,且,其对称轴为直线x h =,顶点坐标为()h k , ⅰ.当0a >时,有最小值,且当x h =时,y k =最小值;当x h <时,y 随x 的增大而减小;当x h>时,y 随x 的增大而增大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数中考复习专题教学重点◆二次函数的三种解析式形式◆二次函数的图像与性质教学难点◆二次函数与其他函数共存问题◆根据二次函数图像,确定解析式系数符号◆根据二次函数图像的对称性、增减性解决相应的综合问题教学过程一、数学知识及要求层次二、近年二次函数考题及分值分布情况纵观近两年调考,样卷及中考试卷,可以发现中考中二次函数的题型有如下一些特点:1、综合性强。
初中阶段所有的知识点几乎都可以与二次函数联系起来,特别是与一元二次方程,几何图形、实际问题的联系更紧密些。
2、分值较重。
从07年到08年,二次函数的分值逐年加大。
3、覆盖面广。
二次函数的图象性质在调考、样题、中考中都出现了。
三、二次函数知识点1. 二次函数的定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x的二次函数. 例:如果函数y=(m -2)x 42-+m m是二次函数, 求常数m 的值.【思路点拨】该函数是二次函数, 那么m 2+m -4=2, 且m -2≠0 解: ∵y=(m -2)x 42-+m m是二次函数∴m 2+m -4=2, 即m 2+m -6=0解这个一元二次方程, 得m 1=-3, m 2=2 当m=-3时, m -2=-5≠0, 符合题意 当m=2时, m -2=0, 不合题意. ∴常数m 的值为-3.同类练习:已知:函数x m x m y m m )1()1(232-++=--(m 是常数). m 为何值时,它是二次函数?2. 二次函数的解析式三种形式一般式 : y=ax 2 +bx+c(a ≠0) 顶点坐标(24,24b ac b a a--) 顶点式 : 二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式(a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=),其中ab ac k a b h 4422-=-=,.()k h x a y +-=2顶点坐标(h, k )224()24b ac b y a x a a-=-+交点式 12()()y a x x x x =-- 对称轴122x x x +=例:1.将二次函数y =x 2-2x +3,化为y =(x -h )2+k 的形式,结果为( )A .y =(x +1)2+4 B .y =(x -1)2+4 C .y =(x +1)2+2D . y =(x -1)2+22.若二次函数52++=bx x y 配方后为k x y +-=2)2(则b 、k 的值分别为( ) A 、0.5 B 、0.1 C 、—4.5 D 、—4.1 3. 二次函数图像与性质(1)抛物线c bx ax y ++=2中,c b a ,,的作用1)a 决定抛物线的开口方向:-1 y x5 x =22 O 当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.2)b 和a 共同决定抛物线对称轴的位置:对称轴:2bx a=-a 与b 同号(即ab >0) 对称轴在y 轴左侧 a 与b 异号(即ab <0) 对称轴在y 轴右侧3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴.总结:以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<a b .(中考非常喜欢考查根据图像判断a 、b 、c 的符号或者反过来根据a 、b 、c 符号来判断图像。
) 例1:已知=次函数y =ax 2+bx+c 的图象如图.则下列5个代数式:ac ,a+b+c ,4a -2b+c , 2a+b ,2a -b 中,其值大于0的个数为( )A .2B 3C 、4D 、5 点拨:本题考查二次函数图像性质,a 的符号由开口方向确定,b 的符号由对称轴和a 共同决定,c 看其与y 轴的交点坐标,a+b+c ,4a -2b+c 看x 取某个特殊值时y 的值可从图像中直观发现 例2:(2009湖北省荆门市)函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是( )点拨:本题考查函数图象与性质,当0a >时,直线从左向右是上升的,抛物线开口向上,D 是错的,函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象必过(0,1),所以C 是正确的,故选C .课堂练习:1、已知二次函数y =ax 2+bx +c 的图像如图所示, 那么下列判断不正确的是( ) A .ac <0 B .a -b +c >0C .b = -4aD .关于x 的方程ax 2+bx +c =0的根是x 1=-1,x 2=5B .C .D .1111xo yyo x yo xxoyy xO2、如图,二次函数y =ax 2+bx +c 的图象与y 轴正半轴相交,其顶点坐标为1,12⎛⎫⎪⎝⎭,下列结论:①ac <0;②a+b=0;③4ac -b 2=4a ;④a+b+c <0.其中正确的个数是( )A. 1B. 2 C . 3 D. 43. 二次函数y=ax 2+bx+c 与一次函数y=ax+c 在同一坐标系中的图象大致是 ( )(2)抛物线的三要素:开口方向、对称轴、顶点.1)a 决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.2)求抛物线的顶点、对称轴的方法:1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=. 2)配方法:运用配方法将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是h x =.3)运用抛物线的对称性:当横坐标为x 1, x 2 ,其对应的纵坐标相等,那么对称轴122x x x += 例1:.二次函数2365y x x =--+的图像的顶点坐标是( ) A .(-1,8) B.(1,8) C (-1,2) D (1,-4) 点拨:本题主要考察二次函数的顶点坐标公式例2:二次函数9)2(32+--=x y 图像的开口方向、对称轴和顶点坐标分别为( ) A . 开口向下、对称轴为2-=x 、顶点坐标(2,9) B .开口向下、对称轴为2=x ,顶点坐标(2,9)C .开口向上,对称轴为2-=x ,顶点坐标(-2,9)D .开口向上,对称轴为2=x ,顶点坐标(-2,-9)例3:已知抛物线c x ax y ++=22与x 轴的交点都在原点右侧,则点M (c a ,)在第 象限.例4:二次函数c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是( )A .x =4 B. x =3 C. x =-5 D. x =-1。
例5:(2007佛山中考题)已知二次函数2y ax bx c =++(a b c ,,是常数),x 与y 的部分对应值如下表,则当x 满足的条件是 时,0y =;当x 满足的条件是 时,0y >。
(当x=4时,y= )(3)增减性,最大或最小值当a>0时,在对称轴左侧(当2bx a<-时),y 随着x 的增大而减少;在对称轴右侧(当2bx a<-时),y 随着x 的增大而增大; 当a<0时,在对称轴左侧(当2bx a<-时),y 随着x 的增大而增大;在对称轴右侧(当2bx a <-时),y 随着x 的增大而减少; 当a>0时,函数有最小值,并且当x=a b2-,2min 44ac b y a -=;当a<0时,函数有最大值,并且当x=a b 2-,2max 44ac b y a-=;例1: 已知二次函数y=21x 2+2x+1. (1) 写出其图象的开口方向、对称轴和顶点坐标; (2) 当x 为何值时, y 随x 的增大而减小? 当x 为何值时, y 随x 的增大而增大? (3) 该函数是有最大值还是最小值? 此时x 的值为多少?【思路点拨】利用公式法求顶点坐标和对称轴. 解: (1) ∵21>0, ∴函数图像开口向上. ∵-2122⨯=-2, 214212142⨯-⨯⨯=22-=-1. ∴函数图象的对称轴是直线x=-2, 顶点坐标是(-2, -1).(2) 由(1) 可知: 当x <-2时, y 随x 的增大而减小; 当x >-2时, y 随x 的增大而增大.(3) 由21>0知, 该函数有最小值. 由(1)可知当x =-2时, 函数有最小值-1. 【方法点评】(1) 求二次函数图象的对称轴、顶点坐标可用配方法和公式法两种方法, 本例运用公式法. (2) 讨论二次函数的性质时, 可先求出其图象对称轴和顶点坐标, 并明确图明的开口方向. 再画出草图, 然后根据草图说明性质, 也可不画草图, 直接说明.例2:阅读下列材料, 探究问题.已知正方形的周长为4a, 面积为S. (1) 求S 与a 的函数关系式; (2) 画出它的图象, 求出S =6cm 2时, 正方形的周长; (4) 根据函数图象, 求出a 取何值时, S ≥41. 解: (1) ∵正方形的周长为4a, ∴其边长为a.∴正方形的面积为S =a 2. a -3-2-10 1 2 3 … S9 4 1 0149…画出图象如图所示(3) 当S=6cm 2时, a=±6cm,故正方形的周长为46cm. (4) ∵当a=±21cm 时, S=41cm 2, 且此函数在其取值范围内, S 随a 的增大而增大. ∴当a ≥21或a ≤-21时, S ≥41. 请你就上述材料谈谈你的感受, 并与同伴交流从中获利的启迪【思路点拨】上述问题是二次函数y=x 2的实际应用题. 在解题过程中, 由于忽视了对自变量a 的取值范围的讨论, 致使整个过程发生错误. 作为几何量, 边长a 应是个正数, 即a >0, 所以图象只是抛物线S=a 2的一部分, 且不包括最低点(0, 0).正确解法如下:(1) ∵正方形的周长为4a, ∴其边长为a.∴正方形的面积S =a 2(a >0). a 1 2 3 … S149…画出图象如图所示.(3) 当S =6cm 2, a=6cm(a =-6cm 不合题意, 舍去). 故正方形的周长为46cm. (4) ∵当a=21cm 时, S=41cm 2, 且函数在取值范围内S 随a 的增大而增大, ∴当a ≥21cm 时, S =41cm 2. 【方法点评】上述问题是一个实际应用题, 所以注意自变量a 的取值范围, 运用图象来解决问题.例3:若二次函数24y ax bx =+-的图像开口向上,与x 轴的交点为(4,0),(-2,0)知,c+此抛物线的对称轴为直线x=1,此时121,2x x =-=时,对应的y 1 与y 2的大小关系是( ) A .y 1 <y 2 B. y 1 =y 2 C. y 1 >y 2 D.不确定 点拨:本题可用两种解法 解法1:利用二次函数的对称性以及抛物线上函数值y 随x 的变化规律确定:a>0时,抛物线上越远离对称轴的点对应的函数值越大;a<0时,抛物线上越靠近对称轴的点对应的函数值越大解法2:求值法:将已知两点代入函数解析式,求出a ,b 的值 再把横坐标值代入求出y 1 与y 2 的值,进而比较它们的大小变式1:已知12(2,),(3,)q q 二次函数22y x x m =-++上两点,试比较12q q 与的大小 变式2:已知12(0,),(3,)q q 二次函数22y x x m =-++上两点,试比较12q q 与的大小 变式3:已知二次函数2y ax bx m =++的图像与22y x x m =-++的图像关于y 轴对称,12(2,),(3,)q q --是前者图像上的两点,试比较12q q 与的大小练习:1.如图,已知二次函数c bx x y ++=2的图象经过点(-1,0),(1,-2),当y 随x的增大而增大时,x 的取值范围是 .2. 已知二次函数y=x 2-2x -3, 则函数值y <0时, 对应x 是 .3. 二次函数522-+=x x y 有( )A . 最大值5-B . 最小值5-C . 最大值6-D . 最小值6-4. 求二次函数y=3x 2+12x-29的最小值。