现代信号处理
现代信号处理方法1_2

1.3.4 核函数的基本性质要求
由(1.3.5)式
( , v)
P(t , f )e j 2 ( vt f ) dtdf Az ( , v) P (t , f )e j 2 ( vt f ) dtdf
则(1.3.1)式化为
1 * 1 j 2f P(t , f ) z (t ) z (t )e d 2 2
(1.3.2)
上式就是著名的Wigner-Ville分布 .
记
上式是一个双线性变换(双时间信号)。关于 时间t作Fourier反变换
k z (t , ) z (t ) z (t ) 2 2
j 2 ( vt f )
如果时-频分布 p (t , 核函数的性质要求.
P (t , f )e z (u 2 ) z (u 2 )e
*
dtdf
(1.3.5)
j 2vu
du
f )有特定性质要求, 由上式可决定对
互时-频分布定义
两个连续信号 x(t ),y(t )的互时-频分布定义为:
P(t , ) 0
在上面的特性中,边缘特性和非负特性保 证了时-频分布准确反映信号的谱能量、瞬 时功率和总能量。边缘特性可以保证信号的 总体量(平均时间、平均频率、时宽和带宽 等)正确给定。非负性则可以进一步保证分 布的条件期望是切合实际的和物理解释。非 负性和边缘特性一起可以保证时-频分布的 强有限支撑。
2 2 * 1 2 z1 , z2 * 2 1 z2 , z1
现代信号处理-现代谱

4. AR模型谱估计的性能 均值: ˆ ( )] P ( ) E[ P
方差:
4 p 2 P ( ), 0, ˆ ( )} N ar{P 2p 2 P ( ) , else N
7.3 功率谱估计的AR模型法
5. 确定AR模型阶数的几种方法 实验方法:观察拟合误差法 算出取各种模型阶数时的白噪声方差2, 以能使2值显著减小的模型阶数的最大值 作为选定的结果。
7.1 引言
AR
(Auto Regressive)系统:
a p 0且 bi 0, i 1,q
ARMA系统:
y( n) x ( n) a i y( n i )
i 1
p
a p 0且bq 0
7.2 ARMA模型
Y ( z ) X ( z )B( z ) [ A( z ) 1] Y ( z )
7.3 功率谱估计的AR模型法
令
R( 1) R(1 p) R( 0 ) R R ( p 1 ) R ( p 2 ) R ( 0 )
R(0) R( 1) R( p) 1 2 R(1) a R ( 0 ) R ( 1 p ) 1 0 R ( p ) R ( p 1 ) R ( 0 ) a p 0
2 * a R ( m i ) a h i x i (k )h(k m i ) i 0 i 0 k 0
p
p
2 h* (k ) ai h(k m i )
k 0 i 0
p
2 * a R ( m i ) h i x (k )bk m i 0 k 0
现代信号处理_完美版PPT

•
测量信号v(n)是均值为零,方差为
2 v
的高斯白噪声;
且v(n)与信号x(n)统计无关,即v(n)不影响信号的谱形状
故有
S y ( y ) S x (x ) v 2 u 2 H () 2 v 2 R u ( m y ) E [ u ( n ) y ( n m ) ] u 2 h ( m )
2
高阶谱估计
➢ 研究的必要性 ➢ 高阶统计量 ➢ 高阶谱 ➢ 高阶累积量和多谱的性质 ➢ 三阶相关和双谱及其性质 ➢ 基于高阶谱的相位谱估计 ➢ 基于高阶谱的模型参数估计 ➢ 多谱的应用
参考:《现代数字信号处理》(184-199;204-205)
3
研究高阶谱的必要性
❖ 关于模型参数估计问题
• 所谓模型参数估计,就是根据有限长的数据序列(如模 型输出端所观测到的信号y(n)来估计图中随机信号模型 的参数,)
i1
i1
即不同ARMA过程具有相同形状的功率谱。这一特性 称为相关函数的多重性或模型的多重性。
9
随机信号的高阶特征(续)
两个具有零均值和相同方差的高斯白色噪声和 指数分布白色噪声显然是不同的随机过程,但它 们的功率谱相同。
用这样两个白色噪声激励同一个ARMA模型,产生的 两个ARMA过程显然是不同的随机过程,但它们的
• 与前面所述不同之处在于:这里考虑了观测过程所引 入的噪声v(n).
v(n)
u(n)
H(z)
x(n) ∑
y(n)
(h(n))
4
研究高阶谱的必要性
❖ 基于二阶统计量的模型参数估计方法的缺陷
• 前述模型参数估计方法中,估计得到的模型参数仅与 信号的自相关函数或功率谱包络相匹配;其功率谱不 含信号的相位特性,亦称盲相。即
清华大学《现代信号处理》课件

现代信号处理(离散随机信号处理)电子工程系本课程要讨论的主要问题:(1)对信号特性的了解随机信号(随机过程,时间序列––随机过程的一个实现)信号模型→参数估计→现代谱估计:参数化谱估计讨论信号模型及模型参数的估计问题,比较参数谱估计方法和周期图方法的优劣。
(2)对统计意义下最优滤波器设计的研究平稳条件下:Wiener滤波器理论非平稳条件下:Kalman滤波理论上的目标,实际算法可达到的最佳结果(3)对环境的自适应,具备“学习能力”的滤波算法自适应均衡、波束形成、线性自适应滤波器(4)更多信息的利用,挖掘(针对非高斯问题)线性系统、功率谱:二阶矩,高斯过程的完全刻划非线性、多谱:高阶量,循环平稳(5)对时间(空间)–––频率关系的适应性:全局特性与局域特性,小波变换,时频分析信号处理算法设计面向的几个主要因素n信噪比n先验知识n雷达n通信系统n电子对抗n对先验知识的利用:统计基础上的假设、学习过程n算法复杂性与性能要求的匹配性一些进展中的课题盲自适应信号处理序列贝叶斯估计、粒子滤波阵列信号处理等等与信号处理紧密关联的学科人工神经网络统计学习理论模式识别等等教材n张旭东,陆明泉:离散随机信号处理,2005年10月,清华大学出版社主要参考书①S. Haykin, Adaptive Filter theory, Third Edition, Prentice-Hall, 1996,//Fouth Edition 2001 (电子工业出版社均有影印本)①S.M. Kay, Modern Spectral Estimation: Theory & Application,Prentice-Hall, 1988①S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice Hall PTR, 1993.①S. Mallat, A Wavelet Tour of Signal Processing, Academic press, 1998,Second Edition 1999①扬福生, 小波变换的工程分析与应用, 科学出版社, 2000.① D. G. Manolakis, et,al. Statistical and Adaptive Signal Processing, Mcgraw-Hall, 2000.①J. G. Proakis, et al. Algorithms for Statistical Signal Processing, Prentice hall, 2002①张贤达现代信号处理第2版清华大学出版社课程成绩n平时作业10%n2个Matlab作业40%(布置后2周内提交)n期末开卷考试50%1.1随机信号基础被噪声干扰的初相位是随机值的正弦波信号本质上均是随机的,但将信号作为随机信号处理,还是做为确定信号处理,与我们的应用目标和我们的先验知识有关,一般地,我们总是选择对应用有利的处理方式。
现代信号处理的几个边沿问题

3. 信号分析方法只限于二阶矩特性和傅氏频谱。
4. 傅里叶变换的困境
○ 在信号分析和故障诊断技术等领域中,以前最为普遍
○ 是利用快速傅里叶变换 (FFT) 的频域分析法,这种方法
MATLAB 仿真见图1 。
图1 正弦波与回 声信号叠加的波 形和时谱形状
衬底1
Signal in time domain 1
0.5
0
-0.5
-1
0
0.5
1
1.5
Time/s
Cepstrum of signal 1
0.5
0
-0.5
-1
0
0.5
1
1.5
Time/s
(2) 功率频谱(不是功率时谱)
短时: 小时间 区间。
衬底1
应用举例: 开关电源 传导干扰信号的短时 分形维数模糊控制滤 波
基于短时分形维数的模糊控制滤波方法, 对开关电源传导干扰信号中的噪声进行滤 波。该方法提出了网络分形维数和短时分 形维数的新算法,并讨论了模糊控制滤波 方法中的模糊控制参数的选取算法。基于 虚拟仪器(VI) LabVIEW 6.i平台上对开关 电源传导干扰信号进行实时检测。经过信 号处理,该系统还具有信噪分离、测量传 导干扰功率谱等功能。结果表明,该方法 滤波效果良好。
Tga,t0a 1 f(t)g t at0 dt
1 g t t0 a a
其中小波 是将具有局部特性的小 波函数g(t)通过平移和尺度变换(放大倍数为1/a)而构成的。参
数a具有时间的量纲,也称 为小波尺度;f(t)为被处理的信号。 小波函数g(t)称为小波母函数,有多种,以便 适应各种非平稳信号的检测。当对信号进行小波 变换时,其局部化特性与所选取小波函数有关, 因此,要根据信号的特征选择适当的小波母函数 才能获得满意的检测效果。
最新现代信号处理第1章ppt课件

信号处理的本质是信息的变换和提取。
信息的提取就要借助各种信号获取方法以及信号处理 技术。
信号测量系统和信号处理的工作内容的成本已达到装 备系统总成本的50%-70%。
1.1 现代信号处理的内容和意义
信号处理技术的应用领域:
电子通讯; 机械振动信号的分析与处理; 自动测量与控制工程领域; 语音分析、图像处理与声纳探测; 生物医学工程。
(1.4.4)
R x(y ) x ( t)y ( t)d t x ( t)y ( ,t)
(1.4.5)
内积可视为 x (t与) “基函数”关系紧密度或相似性的一种度量。
1.4 信号处理的内积与基函数
信号的内积与基函数
傅里叶变换是应用最为广泛的信号处理方法,函数 x (t ) 的傅里叶变换为
cn
1 T
T/2 x(t)eintdt
T/ 2
(1.3.6)
1.3 非平稳信号处理和信号的正交分解
1.3.2 信号的正交分解
傅里叶级数具有两个独特的性质:
1、函数 x (t ) 可分解为无限多个互相正交的分量 gn(t):cneint 的和,其中正交是指 g m 与 g n 的内积对所有 mn成立, 即
gm,gn:T 1 T T //2 2gm (t)gn(t)d t0
mn
2、正交分量 或 可用一个简单的基函数
的整数m
或n的膨胀g生m 成,g 线n 性累加逼近任何函数 g1(。t)
x(t) 小波变换中,通过母小波的伸缩和平移生成小波族。
1.3 非平稳信号处理和信号的正交分解
1.3.2 信号的正交分解
第一章 绪论
1.1 现代信号处理的内容和意义 1.2 信号的分类 1.3 非平稳信号处理和信号的正交分解 1.4 信号处理的内积与基函数 1.5 现代信号处理的应用现状与进展
现代信号处理第八章基于EMD的时频分析方法及其应用

目前EMD方法主要应用于一元信号处理领域,未来研究将拓展其在多元信号处理中的应用,如多 通道信号分析、多维数据融合等。
EMD在复杂系统故障诊断中的应用
复杂系统的故障诊断是信号处理领域的重要研究方向之一,未来研究将探索将EMD方法应用于复 杂系统的故障诊断中,以提高诊断的准确性和可靠性。
01 基于EMD的时频分析方 法概述
EMD方法简介
EMD(Empirical Mode Decomposition)即经验模态分解,是 一种自适应的信号处理方法。
EMD方法能够将复杂信号分解为一系列固有 模态函数(Intrinsic Mode Functions, IMFs),这些IMFs表征了信号在不同时间 尺度上的局部特征。
THANKS FOR WATCHING
感谢您的观看
图像去噪与增强技术
EMD去噪原理
基于经验模态分解(EMD) 的去噪方法通过分解图像信号 为多个固有模态函数(IMF),
有效去除噪声成分。
自适应阈值处理
结合EMD与自适应阈值技术, 实现图像噪声的智能抑制,提
高图像质量。
对比度增强
利用EMD方法对图像进行分 层处理,调整各层对比度,实
现图像整体对比度的增强。
边界效应问题
EMD方法在分解过程中,对信号两端的数据处理存在不确 定性,容易产生边界效应,影响分解结果的精度和可靠性。
发展趋势预测
自适应噪声抑制技术
针对噪声干扰问题,未来研究将更加注重自适应噪声抑制 技术的发展,以提高EMD方法在噪声环境下的性能。
改进EMD算法
为解决模态混叠问题,研究者将致力于改进EMD算法,如引入 掩膜信号、优化筛选过程等,以提高分解的准确性和稳定性。
现代信号处理-胡广书-清华

X ( jΩ)
=
1 2π
<
x(t), e jΩt
>
式中 < x, y > 表示信号 x 和 y 的内积。若 x , y 都是连续的,则
(1.1.5)
< x, y >= ∫ x(t) y*(t)dt
若 x , y 均是离散的,则
< x, y >= ∑ x(n) y*(n)
从时域波形还是从频域波形,我们都很难看出该信号的调制类型及其他特点。和图 1.1.1(c)
一样,图 1.1.2(c)也是 x(n) 的时-频分布表示,由该图可明显看出,该信号的频率与时间成
Line ar sca le
Real part
S ignal in time 1
0
-1 |S TF T|2, Lh=48 , Nf=1 92, lin. scale, co ntour, Thld =5%
gt,Ω (τ ) = g(t − τ )e jΩτ
(1.1.8)
来代替傅立叶变换中的基函数 e jΩt ,则
< x(τ ), gt,Ω (τ ) >=< x(τ ), g(t −τ )e jΩτ >
∫= x(τ )g*(t − τ )e− jΩτ dτ = STFTx (t, Ω)
(1.1.9)
该式称为 x(t) 的短时傅立叶变换(Short Time Fourier Transform, STFT)。式中 g(τ ) 是一窗函
愈多。但由傅立叶变换 X ( jΩ) 看不出在什么时刻发生了此种类型的突变。现举两个例子说
明这一概念。 例 1.1.1 设信号 x(n)由三个不同频率的正弦所组成,即
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代信号处理
现代信号处理是对信号进行数字化处理的一种技术,它使用数字信
号处理算法来分析、修复、增强或压缩信号。
现代信号处理技术广
泛应用于通信、音频处理、图像处理、生物医学工程、雷达和声纳
等领域。
现代信号处理的基本步骤包括信号采集(模拟信号转换为数字信号)、滤波、采样、量化和编码。
滤波可以用于去除信号中的噪声
或不需要的成分,采样和量化将连续的信号转换为离散的数据点,
编码则将离散的数据点转换为数字形式,方便存储和传输。
现代信号处理算法包括傅里叶变换、小波变换、自适应滤波、功率
谱估计以及各种滤波器设计方法等。
傅里叶变换可以将信号从时域
转换为频域,从而可以分析信号的频谱特性;小波变换可以将信号
分解成不同的频率分量,实现信号的多分辨率分析;自适应滤波可
以根据信号的特性自动调整滤波器的参数,以适应不同的环境条件。
1
现代信号处理技术在通信领域广泛应用,例如调制解调、信道编码、多址接入等;在音频处理中,可以实现音频降噪、语音识别和语音
合成;在图像处理中,可以实现图像去噪、边缘检测和数字图像压缩;在生物医学工程中,可以实现生物信号的特征提取、滤波和分析;在雷达和声纳中,可以实现目标检测、目标跟踪和图像重建。
总之,现代信号处理技术为信号分析和处理提供了一种高效、准确
和灵活的方法,为我们获取有用的信息、改善信号质量和实现更复
杂的信号处理任务提供了重要的工具。
2。