探测隐身目标的技术和系统

合集下载

隐身技术的主要原理措施

隐身技术的主要原理措施

隐身技术的主要原理措施一、介绍隐身技术,又称为隐身术或隐形技术,是指通过一系列的措施和手段来隐藏特定目标的存在,使其对外界无法察觉。

隐身技术在军事、情报、网络安全等领域都具有重要意义。

本文将详细探讨隐身技术的主要原理及措施。

二、隐身技术的原理隐身技术的原理主要包括以下几个方面:1. 光学隐身原理光学隐身是利用材料的吸收、散射和反射等物理特性,使目标对可见光和红外光的探测和识别能力降低,从而达到隐身的目的。

常见的光学隐身技术包括抗红外热成像技术、抗雷达技术、抗光学观察技术等。

2. 电磁隐身原理电磁隐身是通过降低和模糊目标对雷达、无线电频谱等电磁波的散射和反射特性,使其在电磁波中难以被探测。

电磁隐身技术包括减小雷达截面积、降低雷达回波信噪比、干扰雷达信号等。

3. 声学隐身原理声学隐身是利用声音的传播规律和特性,通过减小或改变目标的声波反射、散射和吸收等特性,降低目标在声纳系统中的探测概率。

声学隐身技术主要包括降噪、声纳干扰、控制声波的传播方向等。

4. 热学隐身原理热学隐身是通过控制目标的热辐射和热传导等特性,使目标在红外探测中难以被探测。

常见的热学隐身技术包括降低热辐射、热绝缘、热红外干扰等。

5. 感应隐身原理感应隐身是通过遮蔽目标所产生的电磁、声学或热学信号,使目标无法被敌方感应设备探测到。

感应隐身技术包括降低电磁辐射、屏蔽热源、减小声音等。

三、隐身技术的措施隐身技术的措施是指实现隐身效果的具体手段和方法,涉及到材料、结构、设备等多个方面。

1. 材料措施隐身技术中常用的材料措施包括使用低雷达反射率的材料、减少电磁波信号的材料、降低热传导的材料等。

这些材料通过改变目标的物理特性,减弱目标对外部探测的响应,从而达到隐身的目的。

2. 结构措施结构措施是指通过改变目标的外形、几何结构和表面形态等,来减少目标的雷达截面积和电磁波的反射等。

常见的结构措施包括采用多面体结构、使用吸波材料、减少棱角等。

3. 设备措施设备措施是指通过使用隐身设备和系统,对目标进行干扰、屏蔽或模糊等处理,使其在探测设备中无法被识别。

隐身技术的名词解释

隐身技术的名词解释

隐身技术的名词解释隐身技术,也被称为隐形技术,是指一种能够使人、物或设备在视觉、声音或其他感知方式上变得不可察觉或难以侦测的技术。

这一技术通常应用于军事、安全、侦察、情报收集以及其他隐秘行动中,旨在保护人员和设备,增强作战力量的效能。

隐身技术最早来自军事领域,其中最著名的应用是隐身飞机。

这些飞机采用了一系列设计和材料创新,以降低雷达、红外、视觉等感知系统的探测能力。

其中,采用雷达吸波材料,如RAM(复合吸声材料)和雷达吸收涂层,能够有效地吸收和消除从雷达系统发出的信号,使得飞机在雷达屏幕上呈现较小的截面。

此外,还有隐身结构设计,如减少外部突出构件、采用斜面以及使用充气背负结构,可以在阻止飞机发生反射、散射和折射的同时,减小飞机对电磁波和声波的敏感程度,使其在雷达、红外和声学系统中不易被探测到。

除了飞机,隐身技术还被广泛应用于其他领域,如军舰、潜艇、步兵装备、无人机等。

隐身技术在航空航天、海洋、陆地等战场环境中都发挥着重要作用。

在敌人不易察觉到自己存在的情况下,作战单位能够更好地执行任务,取得战斗优势。

除了军事领域,隐身技术也在其他领域得到应用和探索。

在民用航空中,隐身设计可以降低飞机的雷达截面积,减少雷达波对机体的反射和散射,提高飞行器的隐形能力,增强安全性。

此外,还有一些探索隐身技术在汽车、建筑物、服装等领域的应用,以提供更好的保护和隐私。

隐身技术的发展离不开科技的进步和创新。

隐身技术涉及许多学科领域,如材料学、结构学、雷达技术、电磁学等。

与此同时,隐身技术的研究也推动了相关学科的发展。

科学家和工程师们通过不断探索新材料、设计新结构和改进传感器技术,不断提高隐身技术的性能和应用领域。

然而,隐身技术并非完美无缺。

虽然隐身技术可以减小目标在某些感知系统中的探测范围,但并不能完全消除探测的可能性。

随着技术的进步,也会有新的感知技术和方法被开发出来,从而提高对隐身目标的探测能力。

此外,在实际战斗和使用中,隐身技术还面临一系列实践问题,如维护、保养、成本等方面的挑challenge。

隐身飞机原理

隐身飞机原理

隐身飞机原理
隐身飞机原理即常常被称为隐身技术,主要是指利用特殊设计和材料,使飞机在雷达、红外和可见光等探测系统中减少被探测的可能性,提高隐形性能。

首先,隐身飞机采用了外形设计的几何理论。

通过减少飞机表面的凸起部分和边缘,减小飞机的雷达反射截面积(RCS)。

这意味着飞机从雷达的角度看起来更小,减少了被雷达探测到的可能性。

其次,隐身飞机使用了吸波材料来减少雷达反射。

这种材料能够将雷达波吸收或散射,减少反射回雷达的能量。

吸波材料被涂覆在飞机表面,减少了雷达反射信号的强度,使飞机在雷达系统中更难被探测到。

此外,隐身飞机还采用了内部嵌入的传感器和电子设备来监测外部环境,并及时做出调整。

飞机上的电子设备可以监测到来自雷达和红外传感器的探测信号,并根据信号做出实时调整,使飞机保持最佳的隐身性能。

还有一种常用的隐身措施是使用RCS降低涂层。

这些涂层可
以对飞机进行涂覆,从而减少飞机面积对雷达和其他传感器的反射。

这种涂层通常由一种特殊的材料制成,能够吸收或散射入射的雷达波。

综上所述,隐身飞机通过外形设计、吸波材料、传感器和涂层等多种措施,以减小飞机的雷达反射截面积和被探测的可能性,
提高飞机的隐形性能。

这些技术的应用使隐身飞机在战争和情报侦察等领域具有重要作用。

红外隐身技术的原理与应用

红外隐身技术的原理与应用

红外隐身技术的原理与应用1. 简介随着科技的不断发展,红外隐身技术逐渐成为现代军事领域中的重要研究方向。

红外隐身技术利用物体对红外辐射的吸收和反射特性,使物体具备较高的红外辐射抑制能力,从而达到隐蔽目标、提高战场生存能力的目的。

本文将介绍红外隐身技术的原理和应用。

2. 原理红外隐身技术的原理主要基于物体对红外辐射的吸收和反射特性。

以下是红外隐身技术的工作原理:•红外辐射抑制:物体表面的特殊涂层可以吸收或反射特定波长的红外辐射,从而降低物体在红外波段的辐射特征,减少红外传感器和导引制导系统的探测距离。

•热辐射控制:通过选择或设计合适的材料和涂层,可以减少物体表面的热辐射,降低热红外传感器对物体的探测。

控制物体的表面温度和表面热辐射分布是关键的技术要点。

•光学设计:设计物体的形状、纹理和结构,减少红外辐射的反射和散射。

通过光学设计,可以将红外辐射能量尽可能地分散和吸收,提高红外辐射的隐身效果。

3. 应用红外隐身技术在军事和民用领域都有广泛的应用。

以下是红外隐身技术的一些应用场景:•军事领域:红外隐身技术广泛应用于军用飞机、导弹和无人机等载具。

通过减少红外辐射特征,提高作战载具的隐身性能,降低被敌方导弹和监测设备探测的概率,提高战斗力。

•民用领域:红外隐身技术在民用领域也有一定应用。

例如,红外反射涂层可以应用于建筑物外墙和玻璃窗,减少室内空调能耗,提高能源利用效率。

此外,红外隐身技术还有潜在的汽车外观设计和消防救援等领域的应用。

4. 挑战与发展红外隐身技术虽然在军事和民用领域都有广泛应用,但仍面临一些挑战和发展需求:•高温环境下的稳定性:红外隐身技术在高温环境下的稳定性需得到提高,以确保其长期有效性。

•多频段的红外辐射抑制:红外隐身技术需要适应不同频段的红外辐射抑制,以应对不同传感器的探测。

•红外隐身技术与其他隐身技术的综合应用:红外隐身技术与其他传统隐身技术如雷达隐身技术的综合应用还需要进一步研究和探索。

隐身技术及其特点

隐身技术及其特点

隐身技术及其特点隐身技术是现代高新技术的产物。

隐身技术,或称隐形技术(StealthTechnology),即“低可探测技术”或“低可观察技术”(LowObservableTechnology),是指在一定遥感探测环境中采用反雷达探测措施以及反电子探测、反红外探测、反可见光探测和反声学探测等多种技术手段,降低飞机、导弹、舰艇、坦克等目标的可探测信号特征,使其在一定范围内不易或难以被敌方各种探测设备发现、识别、跟踪、定位和攻击的综合性技术。

隐身技术不仅要求隐身,还要求隐声、隐光、隐电、隐磁,是一门综合性技术。

一、隐身技术是低可探测技术和反探测技术从本质上说,隐身技术就是你苛探测技术(LowObservableTechnology)。

所谓探测(Detection)是对目标进行观察和测量,对于不能直接观察的事物或现象借用仪器设备进行考察和测量。

对于能直接观察的事物或现象,称之为可观察;对于不能直接观察的事物或现象,若能间接观察,即借用仪器设备进行考察和测量,称之为可探测;若借用仪器设备容易进行考察和测量,称之为易探测或高可探测;若借用仪器设备不易或难以进行考察和测量,称之为低可探测;若供暖和仪器设备也根本不可能进行考察和测量,称之为不可探测。

一般而言,对于直接或间接观察的事物或现象,常统称为可探测或可观察(Observable)。

用于探测间接观察的仪器设备称之为探测设备。

探测技术是对目标进行观察和测量的一种技术,即根据目标辐射、反射、散射的电、光、声、磁能量而发现、识别目标的技术。

主要包括雷达探测技术、光电探测技术、声探测技术等。

低可探测技术是使目标成为低可探测的技术。

对于利用目标自身发出的电磁波、红外线或可见光对目标进行观察和测量的技术,称为无源探测技术(PassiveDetectionTechnology)或被动探测技术,反之,称为有源探测技术或主动探。

则在米波至毫米波范围工作的各种雷达和激光雷达则属主动探测。

雷达隐身技术的目标

雷达隐身技术的目标

雷达隐身技术的目标雷达隐身技术的目标雷达隐身技术是一种重要的军事技术,旨在降低目标对雷达探测的敏感度,减少目标的探测距离,从而增强目标的隐蔽性和幸存能力。

雷达隐身技术的目标是通过各种手段使目标对雷达波进行反射和散射的能力降低,从而减小目标被雷达发现的概率。

首先,雷达隐身技术的目标是减小目标的雷达截面积(RCS),即目标对雷达波进行反射的截面积。

传统的目标,如飞机和船只,其大尺寸和金属材料构成的结构会使其对雷达波具有较大的反射面积,从而被雷达探测到。

而通过雷达隐身技术的研究,可以使用各种方法来改变目标的形状和结构,使其对雷达波的反射能力减弱,从而减小雷达探测距离。

例如,研究人员可以利用吸波材料来改变目标的外形和表面特性,吸收和消散掉雷达波的能量,从而使目标的雷达截面积减小。

其次,雷达隐身技术的目标是减小目标的雷达返回信号强度。

雷达反射信号的强度与目标的雷达截面积和目标与雷达之间距离的平方成正比。

因此,通过减小目标的雷达截面积或增加目标到雷达的距离,可以减小目标的雷达返回信号强度。

此外,还可以采用遮蔽和掩护的手段来降低目标的雷达返回信号。

例如,飞机可以通过改变前缘翼型来减小目标的雷达截面积,船只可以通过使用合适的涂料来减小反射信号的强度。

雷达隐身技术的另一个目标是减小目标的雷达信号特征。

雷达信号特征包括雷达返回信号的频率、幅度、相位和极化等参数。

目标的雷达信号特征与目标本身的结构和材料等因素有关。

通过改变目标的结构和材料,可以减小目标的雷达信号特征,使其对雷达波的探测能力降低。

例如,利用各种材料的复合结构来改变目标的电磁性能,可以降低目标的雷达信号特征。

最后,雷达隐身技术的目标是提高目标的抗饱和性能。

雷达饱和是指当雷达波接收到目标的强反射信号时,其接收机的动态范围被超出,无法区分目标与其他噪声信号。

为了提高目标的抗饱和性能,可以采用多层重复绝缘等方法来抑制目标的反射信号。

综上所述,雷达隐身技术的目标是通过减小目标的雷达截面积、减小目标的雷达返回信号强度、减小目标的雷达信号特征和提高目标的抗饱和性能,降低目标对雷达探测的敏感度,增强目标的隐蔽性和幸存能力。

怎样发现隐形战机?

怎样发现隐形战机?

怎样发现隐形战机?怎样发现隐形战机?欢迎进入阿劳博客《十万个怎样》,是一个帮助您解决问题的百科博客。

内容来源于网络,仅供网友们参考。

由于事物的发展往往会出现不断的更新和变化,文章中有可能会出现不准确的地方,还有待不断的完善。

如果您有什么意见,可以在我的博客下方留言。

博客尾部的相关联文章可能会给您带来一定的帮助,并引入另外一个内部链接区里,最终找到您想知道的问题答案。

下面就对关于怎样发现隐形战机的问题进行解答。

1、超视距雷达(网络综合资料)超视距雷达就是利用电磁波在电离层与地面之间的反射或电磁波在地球表面的绕射探测地平线以下目标的雷达,又称超地平线雷达。

超视距雷达有两种基本类型:利用电离层对短波的反射效应使电波传播到远方的雷达,称为天波超视距雷达;利用长波、中波和短波在地球表面的绕射效应使电波沿曲线传播的雷达,称为地波超视距雷达。

天波超视距雷达的作用距离为1000~4000公里。

地波超视距雷达的作用距离较短,但它能监视天波超视距雷达不能覆盖的区域。

超视距雷达工作在P波段(米波),工作波长为10~60米,飞机等隐身武器系统主要对抗频率为0.2~29GHz的厘米波雷达,对米波几乎没有作用。

当雷达波束的波长接近于飞机的构件尺寸时,这些构件就像天线一样,开始吸收并反射无线电波。

当雷达波长达到“天线”尺寸的两倍时,其效果更佳。

隐身飞机的尺寸与超视距雷达的波长相近,因此很容易被这种雷达发现。

同时,天波雷达的雷达波是经过电离层反射后从上方照射到飞行器上的,因此它是探测隐身武器的有力工具。

国外试验表明,超视距雷达可以发现2800千米外、飞行高度150~7500米、雷达反射截面为0.1~0.3平方米的目标。

采用了相控阵技术的超视距雷达,能在1500公里处探测到像-2隐身轰炸机这样的目标。

超视距雷达在使用上也存在不少问题,例如只能获得目标的方位和距离信息,很难获得仰角信息;测量精度低、分辨率差;电波通道不稳定,干扰因素多,气候变化、北极光和太阳黑子直接影响天波超视距雷达的性能,甚至使它不能正常工作;在中波、短波波段,频谱拥挤,带宽窄,互相干扰严重。

《隐身技术概述》课件

《隐身技术概述》课件

应用前景与发展趋势
陆军
隐身技术的应用可以提升军 事行动的成功率和生存能力。
海军
隐身技术对于海上战舰和潜 艇的隐蔽行动和反制具有重 要意义。
空军
隐身技术可以提高飞机的生 存能力,增加空中打击的效 果。
航天
隐身技术的应用可以保护太空船和卫星等航天 器免受敌方的探测和破坏。
比赛与训练
隐身技术的发展可以为竞赛和训练提供全新的 视野和挑战。
通过干扰、混淆和掩蔽目标的电磁信号,使目标难以被识别和定位。
光学隐身技术
1
光学消隐技术
利用光学材料和结构设计,减少或遮挡目标的光学信号,降低目标在光学波段的 可见性。
2
红外消隐技术
采用吸热材料和冷却装置,降低目标的红外辐射信号,减少被红外探测器发现的 可能性。
3
涂层技术
利用特殊涂层和纹理处理,改变目标的反射和散射特性,达到隐身的效果。
《隐身技术概述》PPT课 件
隐身技术是一项关乎军事和科技的重要领域,本课程将概述隐身技术的定义、 发展历程、分类以及应用前景与发展趋势。
简介
1 隐身技术的定义
隐身技术是指利用各种手段和技术,使目标在电磁、光学、声学等波段难以被探测到的 科技领域。
2 隐身技术的发展历程
隐身技术始于20世纪20年代的雷达探测技术研究,经历了多个阶段的发展和突破。
目前的隐身技术仍存 在一些局限性,如受 到复杂电磁环境和目 标形状的限制。
空间干扰技术
借助干扰源和屏蔽设 备,干扰敌方电磁探 测和定位系统,提高 隐身效果。
合成孔径雷达 技术
利用合成孔径雷达的 高分辨率成像能力, 准确探测和识别隐身 目标。
生物仿生技术
借鉴自然界中隐身生 物的特点和结构,开 发新的隐身材料和技 术。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

探测隐身目标的技术和系统探测隐身目标的技术和系统王稚、王耿罗隐身平台最主要的特点是难以被发现和跟踪,反隐身首先必须解决能够发现和跟踪隐身目标的问题。

反隐身探测大致可分为常规的探测方法和非常规的探测方法。

常规探测方法主要指雷达探测,非常规探测包括无源微波探测、光学探测和声学探测等。

①提高雷达探测能力提高和改进雷达仍是反隐身探测的重要措施,实施的技术途径有两个:一是改进现有雷达本身的探测能力;二是研制新型雷达或使用新的探测方法。

A.超宽带雷达冲击式雷达或无载波雷达是一种超宽带雷达,它的发射脉冲极窄,峰值功率很高、频谱分布在很宽的范围内,具有相当高的距离分辨力,能够有效对付采用雷达吸波材料和平滑外形等隐身技术的隐身目标。

冲击式超宽带雷达的优势和能力有如下几点:a.测距分辨率可高达厘米量级,可以获得足够高的的分辨率。

b.具有能够识别和区分各目标的重要能力。

c.超宽带雷达发射的脉冲包含许多频率,因此它能够突破窄频段吸波材料的吸波效应。

d.具有对单个或多个目标的高分辨率成像能力。

e.具有较强的穿透植被、土壤和墙壁的能力。

f.能够通过距离选通(range gating)技术抑制杂乱回波和减少多径干扰。

g.具有一定对抗电子对抗的能力。

B.超视距雷达当前飞机等隐身武器系统主要对抗频率为0.2~29GHz的厘米波雷达,超视距雷达工作波长达10米,靠谐振效应探测目标,几乎不受现有雷达波吸收材料的影响。

电磁波的波长与目标的尺寸相当时,目标对它的反射最强,隐身飞机的尺寸与超视距雷达的波长相当,因此很容易被这种雷达发现。

同时,超视距雷达波是经过电离层反射后照射到飞行器上的,因此它成了探测隐身武器的有力工具。

国外试验表明,超视距雷达可以发现2800千米外、飞行高度150~7500米、雷达截面为0.1~0.3平方米的目标。

采用了相控阵技术的超视距雷达,能在1500公里处探测到像B-2隐身轰炸机这样的目标。

美军正在建造米波段的AN/FPS-118超视距预警雷达和可移动的小型战术超视距雷达。

澳大利亚、俄罗斯、英国、法国、日本等也在部署超视距雷达。

但超视距雷达的缺点是它提供的跟踪和位置数据不够精确。

美军也在不断发展毫米波雷达技术。

C.双基地或多基地雷达多基地雷达的发射机和接收机处在不同的地方,最简单的多基地雷达是由一部发射机和一部接收机组成的双基地雷达。

多基地雷达利用目标的侧向或前向反射回波,从不同的方向上对隐身飞机进行探测,破坏了隐身武器通过减少后向反射进行隐身的目的。

测试表明,利用前后向反射探测的雷达截面值比仅利用后向反射的高大约15dB。

多基地雷达的发射站和接收站相对目标之间的夹角越大,就更有可能捕获到隐身目标。

由于多基地雷达的接收机是被动接收,所以不会受到定向干扰和反辐射导弹的威胁。

双基地雷达预计今后5~10年内可提供使用。

D.双波段雷达和多种探测装置融合美国反隐身导弹技术的核心是频带相隔较宽的双波段雷达系统。

这种雷达使用一个频率非常低的频段,探测远距离目标;使用另一个频率较高的频段,对目标进行非常精确的测量和定位。

最后把融合的雷达信息与由光学和红外探测装置得到的部分数据进行综合,构成能精确确定和分析目标的多频谱系统。

美军正在研制的舰载X和S双波段雷达系统,一个波段用于搜索弹道导弹,而另一个波段与远程光学和红外系统用于收集导弹的物理量,其分离情况、材料甚至其精度。

E.穿透树叶雷达美军正在执行一项"反伪装、反隐蔽和反欺骗"计划,研制一种能够穿透树叶的机载合成孔径雷达,它采用UHF和VHF双波段,能够进行实时成像和自动探测目标。

F.机载和浮空器载雷达隐身飞行器的隐身重点一般放在鼻锥方向±45°角范围内,机载或浮空器载探测系统,通过俯视探测,容易探测隐身目标。

美空军的E-3A预警机的S波段脉冲多普勒雷达在高空巡航时可发现100千米距离以内、雷达截面为0.1~0.3平方米的目标。

美海军正在研制的"钻石眼"预警机也能有效地探测隐身目标,俄罗斯、英国、印度等国都很重视发展预警机的工作。

飞艇和气球等浮空器也有可能作为反隐身平台。

美国1996年批准"联合陆地攻击巡航导弹空中网络探测器"计划,这种在气球平台上载有监视雷达和跟踪照射雷达的系统能探测、跟踪、辅助拦截低空巡航导弹,可连续工作32天。

Mark7-CS对流层系留气球雷达,高度3000米,采用TPS-63雷达,探测隐身巡航导弹的距离为56千米。

G.利用天基雷达探测隐身目标美国对利用地球同步轨道卫星和低轨道卫星探测隐身目标的可行性进行了一系列的研究。

a.采用同步轨道卫星在地球上空35786千米处一般可采用脉冲雷达探测隐身目标。

根据计算,卫星需要12千瓦的功率,才能有90%的机会探测到目标。

而现在卫星的功率只有5千瓦。

将来需要解决功率问题,美空军在发展连续功率为20千瓦,峰值功率为50千瓦的卫星。

美军还在发展"灵活毯子"太阳能电池阵列,峰值功率可达150千瓦。

b.采用低轨卫星使用低轨卫星跟踪隐身飞机,需要的功率与距离四次方成比例,功率问题得到了解决,但又必须解决低轨卫星提供连续覆盖的问题。

为了提供连续覆盖,轨道高度若为1000千米,需要32颗卫星。

这些卫星放置在90度倾角的8个轨道平面中,每个轨道内有4颗间隔相同的卫星。

如果卫星的天线直径为5米,为达到90%的探测概率,探测目标只需0.78千瓦功率。

卫星天线直径若达到8米,跟踪目标需要2.02千瓦功率,这都容易实现。

5米和8米天线的功率图尺寸分别为61千米和38千米直径,对应覆盖面积2922和1134平方千米。

对于伊拉克441839平方千米的面积,5米天线直径的卫星需要花3秒钟可将该地区扫描一遍;8米天线卫星需用时1.2秒。

由分析可见,同步轨道卫星对现在的隐身飞机有威胁,但由于功率和功率图问题,只能起预警作用,无法区分目标,不能进行跟踪。

低地轨道卫星能够探测和跟踪隐身目标。

H.提高现有雷达的探测能力可以用来改进现有雷达,提高探测隐身目标能力的先进技术包括:频率捷变技术、扩频技术、低旁瓣或旁瓣对消、窄波束、置零技术、多波束、极化变换、伪随机噪声、恒虚警电路等技术等。

还可以通过功率合成技术和大时宽脉冲压缩技术,来增加雷达的发射功率。

继续增加雷达探测距离必须从提高雷达接收信号处理能力入手,力争使雷达的灵敏度提高几个数量级。

可以通过采用超高频和毫米波超高速集成电路、单片集成电路技术、计算机数据处理技术、数字滤波、电荷耦合器件、声表面滤波和光学方法等先进技术来提高信号处理能力。

在此基础上,再通过雷达联网来提高现有雷达的反隐身能力。

I.其它雷达探测技术正在研究的新体制雷达还有谐波雷达,它能够接收隐身兵器所辐射的入射波谐波,但辐射能量很低,有待于进一步解决。

另一种雷达是发现隐身飞机的尾流和废气。

探测从机翼和机体表面产生的翼尖旋涡与附面层产物所形成的尾流是一种可行的反隐身方法,美国国家海洋和大气局已经研制了一种探测和跟踪这种旋涡的短程雷达。

仔细选择雷达频率,能够探测飞机废气形成的大气电磁"空穴"的准确位置和尺度从而探测到隐身飞机。

激光雷达能够探测质点的运动,是探测发动机废气的最好选择。

②无源微波探测系统无源探测系统本身并不发射电磁波,而仅仅依靠被动地接收其它幅射源的电磁信号对隐身目标进行跟踪和定位。

按照所依靠辐射源的不同,无源探测系统分为两类:一类通过接收被探测目标幅射的电磁信号对其跟踪和定位。

隐身飞机在突防的过程中,为了搜索目标、指挥联络等,必然使用机载雷达等电子设备,电子设备发出的电磁波有可能被无源雷达发现。

据报导,捷克生产的" 塔玛拉"无源雷达能够探测到隐身飞机。

另一类利用电台、电视台甚至民用移动电话发射台在近地空间传输的电磁波,通过区分和处理隐身目标反射的这些电磁波的信号,探测、识别和跟踪隐身目标。

此方法的优点是:第一,民用电视发射机和中继站网、移动电话发射台,在实战中被敌方攻击的可能性小;第二,接收站不以辐射方式工作且机动性强,不易对其探测和攻击,生存能力强;第三,信号源是40~400兆赫的低频、波长较长的电磁波,有利于探测隐身目标和低空目标;第四,该系统简单,尺寸小,可以安装在机动平台上;第五,该系统可以昼夜和全天候工作;第六,价格低廉。

但是,这种被动探测方法需要解决一系列技术问题,主要是必须在无线电发射机直接辐射信号背景上鉴别出很弱的目标反射信号(衰减1万~1千万倍)。

此外,为测定目标角坐标需要高速测量和信号幅相特性处理设备,需要新一代超高性能信息处理机。

目前美国、法国和德国正在研制这种探测技术的系统。

A.美国的"隐蔽哨兵"雷达美国洛克希德2马丁公司研制的这种跟踪飞机、直升机、巡航导弹和弹道导弹的新型被动探测系统,称为"隐蔽哨兵"。

它实际是一个无源接收站,利用商业调频无线电台和电视台发射的50~800MHz连续波信号能量,检测和跟踪监视区内的运动目标。

该系统由大动态范围数字接收机、相控阵接收天线、每秒千兆次浮点运算的高性能商用并行处理器和软件等组成。

大约2.5米的面阵天线安装在建筑物一侧面,能获得关于频率反射能量的精确方向。

该测试系统采用标准电视接收天线,一个平面阵能覆盖105°方位,仰角50°,横向视角60°内覆盖最好。

要求覆盖360°方位则需要用多个面阵,它们可共用一个处理器,但更新速率会降低。

该系统的核心是所谓的"无源相干定位"技术。

该系统的早期试验证明,它跟踪10m2小目标的距离可达180千米,改进后可达220千米。

该系统经过改进后,最终能同时跟踪200个以上的目标,间隔分辨力为15米。

B.法国的"黑暗"雷达法国"汤姆森-CSF"公司研制了"黑暗"探测系统,配置在巴黎市郊,它从20千米外的埃菲尔铁塔上的以及距巴黎180公里的电视发射机信号中获得目标信息。

据称,该系统与典型的空间探测雷达的指标可一比高低。

在接收站试验时所用的是"亚其"式波道天线(八木天线),价格不超过400法郎。

该接收站将于2001~2003年进行综合试验。

C.德国的无源雷达德国西门子集团将移动电话设施可以作为对付隐身飞机的雷达系统。

该系统将移动电话基站作为"发射机",用于照射空中目标,使用手提箱大小的接收机系统截获目标反射的信号。

通过计算接收到的几个基站的信号之间的相位差,就能提供飞机的位置。

③利用光学装置探测隐身目标在导弹逼近告警中,光学探测设备占有极其重要的地位。

光电告警设备角分辨率高(可达微弧量级),体积小、重量轻、成本低,且无源工作,能准确引导干扰系统(特别是激光武器)实施干扰,所以能辅助雷达告警设备,是隐身导弹告警的重要技术手段。

相关文档
最新文档