高一数学立体几何综合试题

合集下载

高一数学立体几何综合测试题

高一数学立体几何综合测试题

高一数学必修2立体几何综合测试题一、选择题1.若a 与b 是异面直线,且直线c ∥a ,则c 与b 的位置关系是 ( )A .相交B .异面C .平行D .异面或相交 2.下列说法中正确的是 ( )A.平行于同一直线的两个平面平行; B.垂直于同一直线的两个平面平行; C.平行于同一平面的两条直线平行; D.垂直于同一平面的两个平面平行. 3.圆锥的底面半径为a ,侧面展开图是半圆面,那么此圆锥的侧面积是 ( )A .22a πB .24a πC .2a πD .23a π4.设α、β、r 是互不重合的平面,m ,n 是互不重合的直线,给出四个命题: ①若m ⊥α,m ⊥β,则α∥β ②若α⊥r ,β⊥r ,则α∥β ③若m ⊥α,m ∥β,则α⊥β ④若m ∥α,n ⊥α,则m ⊥n其中正确命题的个数是( )A .1B .2C .3D .45.已知水平放置的△ABC 的直观图△C B A ''' (斜二测画法)是边长为2a 的正三角形,则原△ABC 的面积为( )A .2a 2B .32a 2 C .62a 2 D .6a 26.空间四边形ABCD 中,若AB AD AC CB CD BD =====,则AC 与BD 所成角为A 、030B 、045C 、060D 、0907、.如图所示,定点A 、B 都在平面α内,定点P ∉α,PB ⊥α,C 是α内异于A 和B 的动点,且PC ⊥AC 。

那么,动点C 在平面α内的轨迹是A.一条线段,但要去掉两个点B.一个圆,但要去掉两个点C.一个椭圆,但要去掉两个点D.半圆,但要去掉两个点8、.在棱长为1的正方体ABCD -A 1B 1C 1D 1的面对角线A 1B 上存在一点P ,使得AP+D 1P 最短,则AP+D 1P 的最小值为22+ B.262C.22D.29、已知二面角AB αβ--的平面角是锐角θ,α内一点C 到β的距离为3,点C 到棱AB的距离为4,那么tan θ的值等于 A 、34B 、35 C 、77 D 、37710、如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1和CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为A 、2VB 、3VC 、4VD 、5V11.如图,A 1B 1C 1—ABC 是直三棱柱,∠BCA=90°,点D 1、F 1分别是A 1B 1、A 1C 1的中点,若BC=CA=CC 1,则BD 1与AF 1所成角的余弦值是 ( )A .1030 B .1015 C .1530D .2112、正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F ,且EF=12,则下列结论中错误的是 A. AC ⊥BE B.EF ∥平面ABCDC.三棱锥A-BEF 的体积为定值D.△AEF 的面积与△BEF 的面积相等二、填空题13、棱台上、下底面面积之比为1∶9,则棱台的中截面分棱台成两部分的体积之比是14、已知一圆柱内接于球O ,且圆柱的底面直径与母线长均为2,则球O 的表面积为_________ 15.已知△ABC 为直角三角形,且090=∠ACB ,AB=10,点P 是平面ABC 外一点, 若PA=PB=PC ,且P O⊥平面ABC ,O为垂足,则OC=__________________. 16.在四棱锥中,底面为平行四边形,,,为中点,平面,,为中点,则直线与平面所成角的正切值为QPC'B'A'CBAABCA 1B1C 1三、解答题17、如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD ⊥底面ABCD .(1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥;18.在直三棱柱ABC -A 1B 1C 1中,AB 1⊥BC 1,AB=CC 1=1,BC=2. (1)求证:A 1C 1⊥AB ; (2)求点B 1到平面ABC 1的距离.19.如图,四边形ABCD 是正方形,PB ⊥平面ABCD ,MA//PB ,PB=AB=2MA , (1)证明:AC//平面PMD ;(2)求直线BD 与平面PCD 所成的角的大小;(3)求平面PMD 与平面ABCD 所成的二面角(锐角)的大小。

高一数学立体几何练习题及部分答案大全.docx

高一数学立体几何练习题及部分答案大全.docx

立体几何试题一.选择题(每题 4 分,共 40 分)1. 已知 AB3003001500空间,下列命题正确的个数为()(1)有两组对边相等的四边形是平行四边形, (2)四边相等的四边形是菱形(4)有两边及其夹角对应相等的两个三角(3)平行于同一条直线的两条直线平行 ;形全等A 1B 2C 3D 43.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是()A平行B相交C在平面内D平行或在平面内4. 已知直线 m过平面外一点,作与平行的平面,则这样的平面可作()A 1 个或 2 个B 0个或1个C1个 D 0个6.如图 , 如果 MC 菱形 ABCD 所在平面 , 那么 MA与 BD的位置关系是 ( )A平行B垂直相交C异面D相交但不垂直7. 经过平面外一点和平面内一点与平面垂直的平面有()A 0 个B 1个C无数个 D 1个或无数个8.下列条件中 , 能判断两个平面平行的是 ( )B一个平面内的两条直线平行于另一个平面C一个平面内有无数条直线平行于另一个平面D一个平面内任何一条直线都平行于另一个平面9. 对于直线m ,n 和平面,, 使成立的一个条件是 ( )A m // n, n, mB m // n, n,mC m n,I m, nD m n, m //, n //)10 . 已知四棱锥 , 则中 , 直角三角形最多可以有 (A 1个B2个 C 3个D4个二.填空题(每题 4 分,共16 分)11. 已知ABC的两边 AC,BC分别交平面于点M,N,设直线AB与平面交于点O,则点 O与直线 MN的位置关系为 _________12.过直线外一点与该直线平行的平面有 ___________个,过平面外一点与该平面平行的直线有_____________条13. 一块西瓜切 3 刀最多能切 _________块14.将边长是 a 的正方形 ABCD沿对角线 AC 折起 , 使得折起后 BD得长为 a, 则三棱锥D-ABC的体积为 ___________三、解答题15(10 分)如图,已知 E,F 分别是正方形ABCD A1B1C1 D1的棱 AA1和棱 CC1上的点,且 AE C1 F 。

高一数学立体几何试题答案及解析

高一数学立体几何试题答案及解析

高一数学立体几何试题答案及解析1.设三棱柱的体积为,分别是侧棱上的点,且,则四棱锥的体积为()A.B.C.D.【答案】C【解析】假设重合,重合,则【考点】棱柱棱锥的体积2.如图,四棱锥中,,四边形是边长为的正方形,若分别是线段的中点.(1)求证:∥底面;(2)若点为线段的中点,求三角形的面积。

【答案】(1)见解析;(2)【解析】要想证明线面平行,只需证明出该线段与面内的任意一条线段平行即可,在本题中,需要连接辅助线进行解答,在解此问题时主要运用了三角形内中位线平行于底边的性质;首先需要掌握知识,三角形的中位线的长度为底边的一半,先求出所需边的长度,再运用余弦定理,求出角的度数,在运用三角形面积公式即可得到结果。

试题解析:(1)解:连接,由题意知,为中点,为的中位线,平面平面平面(2)连接由(1)知:,同理可得:,,【考点】空间几何的运算3.如图,在四棱台中,底面,四边形为正方形,,,平面.(1)证明:为的中点;(2)求点到平面的距离.【答案】(1)详见解析;(2)【解析】(1)根据线面平行的性质定理,线面平行则,线线平行,所以可证,可证四边形是平行四边形,即证明是中点;(2)根据等体积转化,可证是直角三角形,写出体积公式,求解距离.试题解析:解(1)连接AD1,则D1C1∥DC∥AB,∴A、E、C1、D1四点共面,∵C1E∥平面ADD1A1,则C1E∥AD1,∴AEC1D1为平行四边形,∴AE=D1C1=1,∴E为AB的中点.(6分)(2),∵AD⊥DC,AD⊥DD1,∴AD⊥平面DCC1D1,AD⊥DC1.设点E到平面ADC1的距离为h,则,解得.【考点】1.线面平行的性质定理;2.等体积转化.4.设长方体的长、宽、高分别为2,1, 1,其顶点都在同一个球面上,则该球的体积为_______.【答案】【解析】球直径为长方体的体对角线,故半径为【考点】球内接长方体的性质,球体积的计算5.(本小题12分)如图所示,三棱柱ABC-A1B1C1中,.(1)证明:;(2)若,求三棱柱ABC-A1B1C1的体积.【答案】(1)见解析;(2)3【解析】(1)取AB的中点O,连接OC,OA1,A1B,证得,,则根据线面垂直的判定定理可得,进而得出;(2)先证明,进而证出,再求出,最后利用柱体的体积公式求出体积;试题解析:(1)取AB 的中点O ,连接.因为,所以.由于,故△AA 1B 为等边三角形,所以.因为,所以.又,故.(2)由题设知△ABC 与△AA 1B 都是边长为2的等边三角形,所以. 又,则,故.因为所以,为三棱柱的高.又△ABC 的面积,故三棱柱的体积.【考点】1.线面垂直的判定定理;2.线线垂直的证明方法;3.柱体的体积公式;6. 如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误的是( ).A .BD ∥平面CB 1D 1 B .AC 1⊥BDC .AC 1⊥平面CB 1D 1D .异面直线AD 与CB 1角为60°【答案】D【解析】因为易证∥,由线面平行的判定定理可证得∥面,所以A 选项结论正确; 由正方体可得面,可证得,由为正方体得,因为,所以面,从而可证得.同理可证明,根据线面垂直的判定定理可证得面,所以B ,C 选项结论都正确; 因为∥,所以为异面直线与所成的角,由正方体可得,所以D 选项的内容不正确. 故选D 。

高一数学立体几何题目

高一数学立体几何题目

1.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:AB⊥C1F;(2)求证:C1F∥平面ABE;(3)求三棱锥E﹣ABC的体积.2.如图所示,矩形ABCD中,DA⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE,AC和BD交于点G.(Ⅰ)求证:AE∥平面BFD;(Ⅱ)求三棱锥C﹣BFG的体积.3.如图,直三棱柱ABC﹣A1B1C1中,CA=CB,M,N,P分别为AB,A1C1,BC的中点.求证:(1)C1P∥平面MNC;(2)平面MNC⊥平面ABB1A1.4.如图,在正方体ABCD﹣A1B1C1D1中,E,F分别是棱BC,C1D1的中点,求证:EF∥平面BB1D1D.5.如图,在直三棱柱ABC﹣A1B1C1中,AC⊥BC,点D是AB的中点.求证:(1)AC⊥BC1;(2)AC1∥平面B1CD.6.如图,在底面为平行四边形的四棱锥P﹣ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,点E是PD的中点.(Ⅰ)求证:AC⊥PB;(Ⅱ)求证:PB∥平面AEC.7.如图所示,在正方体ABCD﹣A1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、CD和SC 的中点.求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.8.如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°.BC=CC1=a,AC=2a.(1)求证:AB1⊥BC1;(2)求二面角B﹣AB1﹣C的正弦值.9.如图所示,在四棱锥P﹣ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点,PA=AD.求证:(1)CD⊥PD;(2)EF⊥平面PCD.10.如图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2,N为线段PB的中点.(Ⅰ)证明:NE⊥PD;(Ⅱ)求三棱锥E﹣PBC的体积.-中,PD⊥平面ABCD,底面ABCD是平行四边形,11.如图,在四棱锥P ABCD,,,,O为AC与BD的交点,E为棱PB上∠====6023BAD AB PD AD BD一点.(1)证明:平面EAC ⊥平面PBD ;(2)若2PE EB =,求二面角E AC B --的大小.12.如图,已知AF ⊥面ABCD ,四边形ABEF 为矩形,四边形ABCD 为直角梯形,∠DAB=90°,AB ∥CD ,AD=AF=CD=1,AB=2(1)求证:AF ∥面BCE ;(2)求证:AC ⊥面BCE ;(3)求三棱锥E ﹣BCF 的体积.13.如图,四棱锥P ﹣ABCD 的底面是正方形,PD⊥底面ABCD ,点E 在棱PB 上.(1)求证:平面AEC⊥平面PDB ;(2)当PD=AB ,且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.试卷答案1.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行的判定.【分析】(1)由BB1⊥平面ABC得AB⊥BB1,又AB⊥BC,故AB⊥平面B1BCC1,所以AB⊥C1F;(2)取AB的中点G,连接EG,FG.则易得四边形EGFC1是平行四边形,故而C1F∥EG,于是C1F∥平面ABE;(3)由勾股定理求出AB,代入棱锥的体积公式计算即可.【解答】(1)证明:∵BB1⊥底面ABC,AB⊂平面ABC∴BB1⊥AB.又∵AB⊥BC,BC⊂平面B1BCC1,BB1⊂平面B1BCC1,BC∩BB1=B,∴AB⊥平面B1BCC1,又∵C1F⊂平面B1BCC1,∴AB⊥C1F.(2)证明:取AB的中点G,连接EG,FG.∵F,G分别是BC,AB的中点,∴FG∥AC,且FG=AC,∵AC A1C1,E是A1C1的中点,∴EC1=A1C1.∴FG∥EC1,且FG=EC1,∴四边形FGEC1为平行四边形,∴C1F∥EG.又∵EG⊂平面ABE,C1F⊄平面ABE,EG⊂平面ABE,∴C1F∥平面ABE.(3)解:∵AA1=AC=2,BC=1,AB⊥BC,∴AB==.∴三棱锥E﹣ABC的体积V=S△ABC•AA1=×××1×2=.2.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行的判定.【分析】(1)连结FG,证明FG∥AE,然后证明AE∥平面BFD.(2)利用V C﹣BGF=V G﹣BCF,求出S△CFB.证明FG⊥平面BCF,求出FG,即可求解几何体的体积.【解答】(1)证明:由题意可得G是AC的中点,连结FG,∵BF⊥平面ACE,∴CE⊥BF.而BC=BE,∴F是EC的中点,…(2分)在△AEC中,FG∥AE,∴AE∥平面BFD.…(2)解:∵AD⊥平面ABE,AD∥BC,∴BC⊥平面ABE,则AE⊥BC.又∵BF⊥平面ACE,则AE⊥BF,又BC∩BF=B,∴AE⊥平面BCE.…(8分)∵AE∥FG.而AE⊥平面BCE,∴FG⊥平面BCF.∵G是AC中点,F是CE中点,∴FG∥AE且FG=AE=1.∴Rt△BCE中,BF=CE=CF=,…(10分)∴S△CFB=××=1.∴V C﹣BGF=V G﹣BCF=•S△CFB•FG=×1×1=.…(12分)【点评】本题考查直线与平面平行的判定定理的应用,三角锥的体积的求法,考查转化思想以及计算能力.3.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)连接MP,只需证明四边形MPC1N是平行四边形,即可得MN∥C1P∵C1P,即可证得C1P∥平面MNC;(2)只需证明CM⊥平面MNC,即可得平面MNC⊥平面ABB1A1.【解答】证明:(1)连接MP,因为M、P分别为AB,BC的中点∵MP∥AC,MP=,又因为在直三棱柱ABC﹣A1B1C1中,∴AC∥A1C1,AC=A1C1且N是A1C1的中点,∴MP∥C1N,MP=C1N∴四边形MPC1N是平行四边形,∴C1P∥MN∵C1P⊄面MNC,MN⊂面MNC,∴C1P∥平面MNC;(2)在△ABC中,CA=CB,M为AB的中点,∴CM⊥AB.在直三棱柱ABC﹣A1B1C1中,B1B⊥面ABC.∵CM⊂面ABC,∴BB1⊥CM由因为BB1∩AB=B,BB1,AB⊂平面面ABB1A1又CM⊂平面MNC,∴平面MNC⊥平面ABB1A1.4.【考点】LS:直线与平面平行的判定.【分析】先证明四边形OFEB为平行四边形,可得EF∥BO,利用线面平行的判定定理,即可证明EF∥平面BB1D1D.【解答】证明:取D1B1的中点O,连OF,OB,∵OF∥B1C1,OF=B1C1,∵BE∥B1C1,BE=B1C1,∴OF∥BE,OF=BE,∴四边形OFEB为平行四边形,∴EF∥BO,∵EF⊄平面BB1D1D,BO⊂平面BB1D1D,∴EF∥平面BB1D1D.5.【考点】LS:直线与平面平行的判定;LO:空间中直线与直线之间的位置关系.【分析】(1)利用线面垂直的判定定理先证明AC⊥平面BCC1B1,BC1⊂平面BCC1B1,即可证得AC⊥BC1;(2)取BC1与B1C的交点为O,连DO,则OD是三角形ABC1的中位线,OD∥AC1,而AC1⊂平面B1CD,利用线面平行的判定定理即可得证.【解答】证明:(1)在直三棱柱ABC﹣A1B1C1中,∵CC1⊥平面ABC,∴CC1⊥AC,又AC⊥BC,BC∩CC1=C,∴AC⊥平面BCC1B1∴AC⊥BC1.(2)设BC1与B1C的交点为O,连接OD,BCC1B1为平行四边形,则O为B1C中点,又D是AB的中点,∴OD是三角形ABC1的中位线,OD∥AC1,又∵AC1⊄平面B1CD,OD⊂平面B1CD,∴AC1∥平面B1CD.6.【考点】LF:棱柱、棱锥、棱台的体积;LO:空间中直线与直线之间的位置关系;LS:直线与平面平行的判定.【分析】(Ⅰ)由已知得AC⊥AB,AC⊥PA,从而AC⊥平面PAB,由此能证明AC⊥PB.(Ⅱ)连接BD,与AC相交于O,连接EO,由已知得EO∥PB,由此能证明PB∥平面AEC.【解答】(Ⅰ)证明:∵在底面为平行四边形的四棱锥P﹣ABCD中,AB⊥AC,PA⊥平面ABCD,∴AC⊥AB,AC⊥PA,又AB∩PA=A,∴AC⊥平面PAB,∵PB⊂平面PAB,∴AC⊥PB.(Ⅱ)证明:连接BD,与AC相交于O,连接EO,∵ABCD是平行四边形,∴O是BD的中点,又E是PD的中点,∴EO∥PB,又PB不包含于平面AEC,EO⊂平面AEC,∴PB∥平面AEC.7.【考点】LS:直线与平面平行的判定;LU:平面与平面平行的判定.【分析】(1)连结SB,由已知得EG∥SB,由此能证明直线EG∥平面BDD1B1.(2)连结SD,由已知得FG∥SD,从而FG∥平面BDD1B1,又直线EG∥平面BDD1B1,由此能证明平面EFG∥平面BDD1B1.【解答】证明:(1)如图,连结SB,∵E、G分别是BC、SC的中点,∴EG∥SB,又SB⊂平面BDD1B1,EG不包含于平面BDD1B1,∴直线EG∥平面BDD1B1.(2)如图,连结SD,∵F,G分别是DC、SC的中点,∴FG∥SD,又SD⊂平面BDD1B1,FG不包含于平面BDD1B1,∴FG∥平面BDD1B1,又直线EG∥平面BDD1B1,且直线EG⊂平面EFG,直线FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面BDD1B1.8.【考点】MT:二面角的平面角及求法.【分析】(1)由已知可得AC⊥平面B1BCC1,则AC⊥BC1,再由BC=CC1,得BC1⊥B1C,由线面垂直的判定可得BC1⊥平面AB1C,从而得到AB1⊥BC1;(2)设BC1∩B1C=O,作OP⊥AB1于点P,连结BP.由(1)知BO⊥AB1,进一步得到AB1⊥平面BOP,说明∠OPB是二面角B﹣AB1﹣C的平面角.然后求解直角三角形得答案.【解答】(1)证明:∵ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC,则AC⊥CC1.又∵AC⊥BC,BC∩CC1=C,∴AC⊥平面B1BCC1,则AC⊥BC1,∵BC=CC1,∴四边形B1BCC1是正方形,∴BC1⊥B1C,又AC∩B1C=C,∴BC1⊥平面AB1C,则AB1⊥BC1;(2)解:设BC1∩B1C=O,作OP⊥AB1于点P,连结BP.由(1)知BO⊥AB1,而BO∩OP=O,∴AB1⊥平面BOP,则BP⊥AB1,∴∠OPB是二面角B﹣AB1﹣C的平面角.∵△OPB1~△ACB1,∴,∵BC=CC1=a,AC=2a,∴OP=,∴=.在Rt△POB中,sin∠OPB=,∴二面角B﹣AB1﹣C的正弦值为.9.【考点】LW:直线与平面垂直的判定.【分析】(1)由线面垂直得CD⊥PA,由矩形性质得CD⊥AD,由此能证明CD⊥PD.(2)取PD的中点G,连结AG,FG.由已知条件推导出四边形AEFG是平行四边形,所以AG∥EF.再由已知条件推导出EF⊥CD,由此能证明EF⊥平面PCD.【解答】(本题满分8分)证明:(1)∵PA⊥底面ABCD,∴CD⊥PA.又矩形ABCD中,CD⊥AD,且AD∩PA=A,∴CD⊥平面PAD,∴CD⊥PD.(2)取PD的中点G,连结AG,FG.又∵G、F分别是PD、PC的中点,∴GF平行且等于CD,∴GF平行且等于AE,∴四边形AEFG是平行四边形,∴AG∥EF.∵PA=AD,G是PD的中点,∴AG⊥PD,∴EF⊥PD,∵CD⊥平面PAD,AG⊂平面PAD.∴CD⊥AG.∴EF⊥CD.∵PD∩CD=D,∴EF⊥平面PCD.10.【考点】LF:棱柱、棱锥、棱台的体积;LO:空间中直线与直线之间的位置关系.【分析】(Ⅰ)连结AC与BD交于点F,则F为BD的中点,连结NF,由三角形中位线定理可得NF∥PD,,在结合已知得四边形NFCE为平行四边形,得到NE∥AC.再由PD ⊥平面ABCD,得AC⊥PD,从而证得NE⊥PD;(Ⅱ)由PD⊥平面ABCD,得平面PDCE⊥平面ABCD,可得BC⊥CD,则BC⊥平面PDCE.然后利用等积法把三棱锥E﹣PBC的体积转化为B﹣PEC的体积求解.【解答】(Ⅰ)证明:连结AC与BD交于点F,则F为BD的中点,连结NF,∵N为线段PB的中点,∴NF∥PD,且,又EC∥PD且,∴NF∥EC且NF=EC.∴四边形NFCE为平行四边形,∴NE ∥FC ,即NE ∥AC .又∵PD ⊥平面ABCD ,AC ⊂面ABCD , ∴AC ⊥PD ,∵NE ∥AC ,∴NE ⊥PD ;(Ⅱ)解:∵PD ⊥平面ABCD ,PD ⊂平面PDCE , ∴平面PDCE ⊥平面ABCD ,∵BC ⊥CD ,平面PDCE ∩平面ABCD=CD ,BC ⊂平面ABCD , ∴BC ⊥平面PDCE . 三棱锥E ﹣PBC 的体积=.11.(1)证明见解析;(2)60°.试题解析:(1)∵PD ⊥平面ABCD ,AC ⊂平面ABCD ,∴AC PD ⊥. ∵,60AD BD BAD =∠=,∴ABD ∆为正三角形,四边形ABCD 是菱形, ∴AC BD ⊥,又PD BD D=⋂,∴AC ⊥平面PBD ,而AC ⊂平面EAC ,∴平面EAC ⊥平面PBD .(2)如图,连接OE ,又(1)可知EO AC ⊥,又AC BD ⊥, ∴EOB ∠即为二面角E AC B --的平面角, 过E 作EHPD ,交BD 于点H ,则EH BD ⊥,又31 2,2,3,,33PE EB AB PD EH OH=====,在RT EHO∆中,tan3EHEOHOH∠==60EOH∠=,即二面角E AC B--的大小为60.考点:线面垂直的判定定理、面面垂直的判定定理及二面角的求法.12.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定;直线与平面垂直的判定.【分析】(1)推导出AF∥BE,由此能证明AF∥面BCE.(2)推导出AC⊥BE,AC⊥BC,由此能证明AC⊥面BCE.(3)三棱锥E﹣BCF的体积V E﹣BCF=V C﹣BEF,由此能求出结果.【解答】证明:(1)∵四边形ABEF为矩形,∴AF ∥BE,∵AF⊄平面BCE,BE⊄平面BCE,∴AF∥面BCE.(2)∵AF⊥面ABCD,四边形ABEF为矩形,∴BE⊥平面ABCD,∵AC⊂平面ABCD,∴AC⊥BE,∵四边形ABCD为直角梯形,∠DAB=90°,AB∥CD,AD=AF=CD=1,AB=2∴AC=BC==,∴AC2+BC2=AB2,∴AC⊥BC,∵BC∩BE=B,∴AC⊥面BCE.解:(3)三棱锥E﹣BCF的体积:V E﹣BCF=V C﹣BEF====.13.【考点】直线与平面垂直的判定;直线与平面所成的角.【专题】计算题;证明题.【分析】(Ⅰ)欲证平面AEC⊥平面PDB,根据面面垂直的判定定理可知在平面AEC内一直线与平面PDB垂直,而根据题意可得AC⊥平面PDB;(Ⅱ)设AC∩BD=O,连接OE,根据线面所成角的定义可知∠AEO为AE与平面PDB所的角,在Rt△AOE中求出此角即可.【解答】(Ⅰ)证明:∵四边形ABCD是正方形,∴AC⊥BD,∵PD⊥底面ABCD,∴PD⊥AC,∴AC⊥平面PDB,∴平面AEC⊥平面PDB.(Ⅱ)解:设AC∩BD=O,连接OE,由(Ⅰ)知AC⊥平面PDB于O,∴∠AEO为AE与平面PDB所的角,∴O,E分别为DB、PB的中点,∴OE∥PD,,又∵PD⊥底面ABCD,∴OE⊥底面ABCD,OE⊥AO,在Rt△AOE中,,∴∠AEO=45°,即AE与平面PDB所成的角的大小为45°.【点评】本题主要考查了直线与平面垂直的判定,以及直线与平面所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.。

高一立体几何试卷及答案

高一立体几何试卷及答案

高一立体几何试卷及答案The document was prepared on January 2, 2021立体几何试题一.选择题每题4分,共40分1.已知AB 0300300150空间,下列命题正确的个数为1有两组对边相等的四边形是平行四边形,2四边相等的四边形是菱形3平行于同一条直线的两条直线平行 ;4有两边及其夹角对应相等的两个三角形全等A 1B 2C 3D 43.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是A 平行B 相交C 在平面内D 平行或在平面内4.已知直线m αα过平面α外一点,作与α平行的平面,则这样的平面可作A 1个 或2个B 0个或1个C 1个D 0个6.如图,如果MC ⊥菱形ABCD 所在平面,那么MA 与BD 的位置关系是A 平行B 垂直相交C 异面D 相交但不垂直7.经过平面α外一点和平面α内一点与平面α垂直的平面有A 0个B 1个C 无数个D 1个或无数个8.下列条件中,能判断两个平面平行的是A 一个平面内的一条直线平行于另一个平面;B 一个平面内的两条直线平行于另一个平面C 一个平面内有无数条直线平行于另一个平面D 一个平面内任何一条直线都平行于另一个平面9.对于直线m ,n 和平面,αβ,使αβ⊥成立的一个条件是A //,,m n n m βα⊥⊂B //,,m n n m βα⊥⊥C ,,m n m n αβα⊥=⊂D ,//,//m n m n αβ⊥10 .已知四棱锥,则中,直角三角形最多可以有A 1个B 2个C 3个D 4个二.填空题每题4分,共16分11.已知∆ABC 的两边AC,BC 分别交平面α于点M,N,设直线AB 与平面α交于点O,则点O 与直线MN 的位置关系为_________12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有_____________条13.一块西瓜切3刀最多能切_________块14.将边长是a 的正方形ABCD 沿对角线AC 折起,使得折起后BD 得长为a,则三棱锥D-ABC 的体积为___________三、 解答题1510分如图,已知E,F 分别是正方形1111ABCD A B C D -的棱1AA 和棱1CC 上的点,且1AE C F =.求证:四边形1EBFD 是平行四边形1610分如图,P 为ABC ∆所在平面外一点,AP=AC,BP=BC,D 为PC 的中点, 证明:直线PC 与平面ABD 垂直CB1712分如图,正三棱锥A-BCD,底面边长为a,则侧棱长为2a,E,F分别为AC,AD 上的动点,求截面BEF∆周长的最小值和这时E,F的位置.DC1812分如图,长方形的三个面的对角线长分别是a,b,c,求长方体对角线AC'的长C1bC BA答案1三点共线2无数 无数3a 1证明: 1AE C F = 11AB C D =11EAB FC D ∠=∠∴ 11EAB FC D ∆≅∆1EB FD ∴=过1A 作11//A G D F又由1A E ∥BG 且1A E =BG可知1//EB AG 1//EB D F ∴∴四边形1EBFD 是平行四边形2 ∵AP AC =D 为PC 的中点∴AD PC ⊥∵BP BC =D 为PC 的中点∴BD PC ⊥∴PC ⊥平面ABD∴AB PC ⊥3 提示:沿AB 线剪开 ,则BB '为周长最小值.易求得EF 的值为34a ,则周长最小值为114a . 4解:()()()222AC AC CC ''=+ ()()222()AB BC CC '=++222a b c =++。

立体几何小题综合原卷版--高一下学期备战期末

立体几何小题综合原卷版--高一下学期备战期末

期末专题07 立体几何小题综合一、单选题1.(2022春·江苏淮安·高一统考期末)用半径为2的半圆形铁皮围成一个圆锥筒,则该圆锥筒的高为( )A.1B C .2D .62.(2022春·江苏南通·高一统考期末)已知正三棱锥的底面边长为4,高为2,则该三棱锥的表面积是( )A .B .C .D .3.(2022春·江苏镇江·高一统考期末)已知a ,b 为异面直线,a ⊂α,b ⊂β,α∩β=c ,则直线c 一定( ) A .同时和直线a ,b 相交 B .至少与直线a ,b 中的一条相交 C .至多与直线a ,b 中的一条相交D .与直线a ,b 中一条相交,一条平行4.(2022春·江苏镇江·高一统考期末)已知m ,n 是空间中两条不同的直线,α,β是空间中两个不同的平面,则下列说法中,正确的个数是( )(1)若m ⊥α,m ⊥β,则α//β;(2)若m //α,n //α,则m //n ; (3)若m ⊥α,n ⊥α,则m //n ;(4)若m ⊥α,n ⊥β,α⊥β,则m //n . A .1B .2C .3D .45.(2022春·江苏徐州·高一统考期末)设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,下列命题中正确的是( )A .若//αβ,m α⊂,n β⊂,则//m n B .若αβ⊥,m α⊂,n β⊂,则m n ⊥ C .若m α⊥,n β⊥,αβ⊥,则m n ⊥ D .若αγ⊥,βγ⊥,则//αβ6.(2022春·江苏宿迁·高一沭阳县修远中学校考期末)已知,αβ是两个不重合的平面,l ,m 是两条不同的直线,则下列说法正确的是( ) A .若,∥∥l m l β,则m β B .若,,⊂⊂∥αβm αl β,则m l ∥ C .若,m l m α⊥⊥,则l α∥ D .若,,⊂=∥m αm βαβl ,则m l ∥ 7.(2022春·江苏苏州·高一江苏省昆山中学校考期末)陀螺是我国民间最早的娱乐工具之一.如图,一个倒置的陀螺,上半部分为圆锥,下半部分为同底圆柱,其中总高度为10cm ,圆柱部分高度为7cm ,已知陀螺的总体积为3120cm ,则此陀螺圆柱底面的面积为( )A .210cmB .215cmC .216cmD .220cm8.(2022春·江苏宿迁·高一沭阳县修远中学校考期末)某圆锥的侧面积为1,用一个平行于圆锥底面的平面截该圆锥得到一个圆台,若圆台上底面和下底面半径之比为12,则该圆台的侧面积为( ) A .12BC .34D .789.(2022春·江苏南京·高一统考期末)《九章算术》把底面为直角三角形,且侧棱垂直于底面的三棱柱称为“堑堵”,把底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”,现有如图所示的“堑绪"111ABC A B C -,其中AC BC ⊥,11AA AC ==,当“阳马”(即四棱锥11B A ACC −)体积为13时,则“堑堵”即三棱柱111ABC A B C -的外接球的体积为( )A .3π BCD10.(2022春·江苏南通·高一统考期末)如图,直三棱柱111ABC A B C −中,D 是1CC 的中点,则11111D A B C D ABB A V V −− = ( )A .16B .15C .14D .2311.(2022春·江苏连云港·高一统考期末)一个直角梯形上底、下底和高之比为2:将此直角梯形以垂直于底的腰为轴旋转一周形成一个圆台,则这个圆台上底面积、下底面积和侧面积之比为( ) A .4:9:3B .4:9:8C .4:9:9D .4:9:1012.(2022春·江苏宿迁·高一统考期末)已知圆锥的侧面积为3π,它的侧面展开图是圆心角为23π的扇形,则此圆锥的底面半径为( )A B .1C .πD .213.(2022春·江苏无锡·高一统考期末)一个斜边长为2的等腰直角三角形绕斜边旋转一周,所形成的几何体的表面积为( )A .4πB .23πC D .14.(2022春·江苏苏州·高一校联考期末)如图将正方形ABCD 沿对角线BD 折成直二面角A BD C −−,有如下四个结论①AC BD ⊥ ② ACD 是等边三角形③AB 与CD 所成的角为60 ④AB 与平面BCD 所成的角为60 其中错误的结论是( )A .①B .②C .③D .④15.(2022春·江苏南通·高一金沙中学校考期末)直三棱柱111ABC A B C −中,1AB AC AA ==,AB AC ⊥,则1AB 与平面11BCC B 所成的角为( )A .π6B .π4C .π3D .π216.(2022春·江苏南通·高一金沙中学校考期末)已知P 是ABC 所在平面外一点,P 到AB ,AC ,BC 的距离相等,且P 在ABC 所在平面的射影O 在ABC 内,则O 一定是ABC 的( )A .内心B .外心C .垂心D .重心17.(2022春·江苏扬州·高一期末)如图,三棱锥−P ABC 中,平面PAB ⊥平面ABC ,1AC BC ==,PA BA ==2PB =.三棱锥−P ABC 的四个顶点都在球O 的球面上,则球心O 到平面ABC 的距离为( )A B CD 18.(2022春·江苏泰州·高一统考期末)某工厂需要制作一个如图所示的模型,该模型为长方体ABCD A B C D −′′′′挖去一个四棱锥O EFGH −后所得的几何体,其中O 为长方体ABCD A B C D −′′′′的中心,E ,F ,G ,H 分别为所在棱的中点,4cm AB BC ==,2cm AA ′=,那么该模型的表面积为( )2cm .A .B .C .D .19.(2022春·江苏苏州·高一校考期末)在三棱锥S ABC −中,SA ⊥平面,90ABC ABC ∠= ,且3,4,5SA AB AC ===,若球O 在三棱锥S ABC −的内部且与四个面都相切(称球O 为三棱锥S ABC −的内切球),则球O 的表面积为( ) A .169πB .49π C .3227πD .1681π20.(2022春·江苏南京·高一江苏省江浦高级中学校联考期末)如图,水平放置的四边形ABCD 的斜二测直观图为矩形A B C D ′′′′,已知1A O O B ′′=′′=,1B C ′′=,则四边形ABCD 的周长为( )A .8B .10C .12D .4+21.(2022春·江苏徐州·高一统考期末)已知正四棱锥的侧棱长为3,其顶点均在同一个球面上,若球的体积为36π,则该正四棱锥的体积为( ) A .92B .274C .272D .81422.(2022春·江苏南通·高一统考期末)2,侧面积为6π,则该圆台的体积为( )A B C . D .23.(2022春·江苏南京·高一南京市中华中学校考期末)已知四棱锥P ABCD −中,底面ABCD 是边长为4的正方形,平面PAB ⊥平面ABCD ,且PAB 为等边三角形,则该四棱锥的外接球的表面积为( ) A .283π B .1123π C .32π D .2563π 24.(2022春·江苏扬州·高一期末)刘徽构造的几何模型“牟合方盖”中说:“取立方棋八枚,皆令立方一寸,积之为立方二寸.规之为圆困,径二寸,高二寸.又复横规之,则其形有似牟合方盖矣.”牟合方盖是一个正方体被两个圆柱从纵横两侧面作内切圆柱体时的两圆柱体的公共部分,计算其体积的方法是将原来的“牟合方益”平均分为八份,取它的八分之一(如图一).的边长为r ,设OP h =,过P 点作平面PQRS平行于平面OABC .OS OO r ==,由勾股定理有PS PQ ==故此正方形PQRS 面积是22r h −.如果将图一的几何体放在棱长为r 的正方体内(如图二),不难证明图二中与图一等高处阴影部分的面积等于2h .(如图三)设此棱锥顶点到平行于底面的截面的高度为h ,不难发现对于任何高度h ,此截面面积必为2h ,根据祖暅原理计算牟合方盖体积( )注:祖暅原理:“幂势既同,则积不容异”.意思是两个同高的立体,如在等高处的截面积相等,则体积相等A .383rB .383r πC .3163r D .3163r π 二、多选题25.(2022春·江苏扬州·高一期末)如图,正方体1111ABCD A B C D −的棱长为2,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且满足1//B F 平面1A BE ,则下列结论中正确的是( )A .平面1A BE 截正方体1111ABCD ABCD −所得截面面积为92B .点F 的轨迹长度为4π C .存在点F ,使得11B F CD ⊥D .平面1A BE 与平面11CDD C 所成二面角的正弦值为1326.(2022春·江苏常州·高一统考期末)如图,二面角l αβ−−的大小为120°,点A ,B 在二面角的棱l 上,过点A ,B 分别在平面α和β内作直线l 的垂线段AC 和BD ,且6AC =,8BD =,AB = ).A .异面直线AC 和BD 的所成之角为120°B .14CD =C .点C 到平面β与点D 到平面α的距离之比为3:4D .异面直线AB 和CD 27.(2022春·江苏连云港·高一连云港高中校考期末)对于两个平面α,β和两条直线m ,n ,下列命题中假命题是( ) A .若m ⊥α,m ⊥n ,则n ∥α B .若m ∥α,α⊥β,则m ⊥β C .若m ∥α,n ∥β,α⊥β,则m ⊥nD .若m ⊥α,n ⊥β,α⊥β,则m ⊥n28.(2022春·江苏连云港·高一统考期末)在长方体1111ABCD A B C D −中,矩形11ABB A 、矩形11ADD A 、矩形ABCD )A .1AB =BC .直线AC 与1BCD .二面角1B AC B −−的正切值为229.(2022春·江苏徐州·高一统考期末)在棱长为2的正方体1111ABCD A B C D −中,点E 为棱1DD 的中点,点F 是正方形1111D C B A 内一动点(含边界),则下列说法中正确的是( )A .直线1BC 与直线AC 夹角为60°B .平面1BC E 截正方体所得截面为等腰梯形C .若EF =F 的轨迹长度为2πD .若//AF 平面1BCE ,则动点F 30.(2022春·江苏南通·高一统考期末)如图1所示,在边长为4的正方形ABCD 中,E ,F 分别为BC ,CD 的中点,将AEB AFD ,和EFC 分别沿AE ,AF 及EF 所在的直线折起,使B ,C ,D 三点重合于点P ,得到三棱锥P -AEF 如图2所示),设M 为底面AEF内的动点,则( )A .P A ⊥EFB .二面角P -EF -A 的余弦值为23C .直线P A 与EMD .三棱锥P -AEF 的外接球的表面积为24π31.(2022春·江苏南通·高一金沙中学校考期末)设α和β为不重合的两个平面,下列说法中正确的是( )A .若α外一条直线l 与α内的一条直线平行,则l 和α平行B .直线l 与α垂直的充要条件是l 与α内的两条直线垂直C .若α内的两条相交直线分别平行于β内的两条直线,则α平行于βD .设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直32.(2022春·江苏扬州·高一统考期末)在棱长为1的正方体1111ABCD A B C D −中,点P 在线段11A C 上运动(包括端点),则下列结论正确的有( ).A .三棱锥1D ABC −的外接球的表面积为3πB .异面直线1C P 和1CB 所成的角为60°C .直线CP 和平面11ABB A 所成的角为定值D .2()BP CP +的最小值为3 33.(2022春·江苏苏州·高一校考期末)已知正三棱柱111ABC A B C 的棱长均为2,点D 是棱1BB 上(不含端点)的一个动点.则下列结论正确的是( ) A .棱11A C 上总存在点E ,使得直线1//B E 平面1ADC B .1ADC △的周长有最小值,但无最大值C .三棱锥1−A DC C 外接球的表面积的取值范围是2528,33ππD .当点D 是棱1BB 的中点时,二面角1A DC C −−34.(2022春·江苏南京·高一江苏省江浦高级中学校联考期末)在棱长为2的正方体1111ABCD A B C D −中,M 为棱1BB 的中点,下列说法正确的是( )A .直线AC 与直线1A D 所成的角为π4B .直线AC 与直线1BD 所成的角为π2C .若平面α过点M ,且1BD α⊥,则平面α截正方体所得的截面图形的周长为D .动点P 在侧面11BCC B 及其边界上运动,且1AP BD ⊥,则AP 与平面11BCC B 所成角的正切值的取值范围是35.(2022春·江苏苏州·高一校联考期末)如图,在棱长为2的正方体1111ABCD A B C D −中,点E ,F 分别是棱BC ,1CC 的中点,则下列结论正确的是( )A .1A D AF ⊥B .三棱锥A BCF −外接球的表面积为9πC .点C 到平面AEF 的距离为23D .平面AEF 截正方体所得的截面面积为9236.(2022春·江苏苏州·高一统考期末)已知正方体1111ABCD A B C D −的棱长为1,则下列选项正确的有( )A .若P 为棱1CC 的中点,则异面直线AP 与BCB .若P 为棱1CC 的中点,则过点P 有且仅有一条直线与直线11AB,AD 都相交 C .若P 为以1CC 为直径的球面上的一个动点,当三棱锥1P B BC −的体积最大时,三棱锥1P B BC −外接球的表面积为2πD .若平面1AC α⊥,则α截此正方体所得截面图形的面积越大,其周长越大37.(2022春·江苏南通·高一统考期末)在正方体1111ABCD A B C D −中,点P 是线段1B C 上一动点,则下列各选项正确的是( )A .11D P AC ⊥B .1//D P 平面1A BDC .直线1D P 与平面11BCC B 所成角随1PB 长度变化先变小再变大 D .存在点P 使得过A 有4条直线分别与11A B 和AP 所成角大小为30 三、填空题38.(2022春·江苏苏州·若圆台上下底面半径分别为1和2则此圆台的体积为___________.39.(2022春·江苏镇江·高一扬中市第二高级中学校考期末)如图在正三棱锥A BCD −中,E F 、分别是AB BC 、的中点,EF DE ⊥,且1BC =,则正三棱锥A BCD −的体积是___________;40.(2022春·江苏镇江·高一扬中市第二高级中学校考期末)长方体1111ABCD A B C D −中,2AB =,4BC =,11AA =,则一只小虫从A 点沿长方体的表面爬到1C 点的最短距离是___________.41.(2022春·江苏南通·高一统考期末)的正四面体BDA 1C 1的体积:构造一个棱长为1的正方体ABCD -A 1B 1C 1D 1,我们称之为该正四面体的”生成正方体”(如图一),正四面体BDA 1C 1的体积111111−=−正四面体正方体A B C D BDA C ABCD V V11111111−−−−−−−A ABD C BCD B A B C D A C D V V V V .一个对棱长都相等的四面体,通常称之为等腰四面,则该四面体的体积为__________.42.(2022春·江苏宿迁·高一沭阳县修远中学校考期末)如图,已知圆锥轴截面PAB 为等腰直角三角形,底面圆O 的直径为2,点C 在圆O 上,且BC E 为线段PB 上异于P ,B 的点,则CE OE +的最小值为___________.43.(2022春·江苏南通·高一统考期末)我国古典数学著作《九章算术》中记载,四个面都为直角三角形的四面体称之为鳖臑.现有一个“鳖臑”,PA ⊥底面ABC ,AC BC ⊥,且3PA =,2BC =,AC =__________. 44.(2022春·江苏镇江·高一统考期末)一个正四面体的四个顶点都在一个表面积为24π的球面上,则该四面体的体积为_____.45.(2022春·江苏扬州·高一期末)在《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑如图,三棱锥D ABC −为一个鳖臑,其中DA ⊥平面ABC ,AB BC ⊥,2DA AB BC ===,AM DC ⊥,M 为垂足,则三棱锥M ABC −的外接球的表面积为________.。

高一数学立体几何试题

高一数学立体几何试题

高一数学立体几何试题1.设三棱柱的体积为,分别是侧棱上的点,且,则四棱锥的体积为()A.B.C.D.【答案】C【解析】假设重合,重合,则【考点】棱柱棱锥的体积2.一个圆锥被过顶点的平面截去了较小的一部分几何体,余下的几何体的三视图如图,则该圆锥的体积为()A.πB.2πC.πD.π【答案】A【解析】由该几何体的三视图得到该圆锥的底面半径是:,高是,所以体积是:.【考点】1.三视图;2.几何体的体积.3.如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为.(1)求侧面与底面所成的二面角的大小;(2)若是的中点,求异面直线与所成角的正切值;(3)问在棱上是否存在一点,使⊥侧面,若存在,试确定点的位置;若不存在,说明理由.【答案】(1)(2)(3)点为的四等分点【解析】(1)取中点,设面,连接则为二面角的平面角,设,则可利用表示出和,从而根据,即可求得,即可求出二面角的大小。

(2)连接为异面直线与所成的角,根据,判断出面,从而可推断,从而可知为直线与所成的角,根据勾股定理求得,从而求出,则即可求得。

(3)延长交于,取中点,连接,先证出平面和平面垂直,再通过已知条件证出平面,取中点,利用,推断出,可知,最后可推断出平面,即为四等分点。

试题解析:(1)取中点,连接,依条件可知,则为所求二面角P-AD-O的平面角.∵面,∴为侧棱与底面所成的角.∴,7(2)连接,∴∠OEA为异面直线PD与AE所成的角.为异面直线与所成的角∵,,∴⊥平面.又平面,∴⊥.(3)延长交于,取中点,连.,∴⊥平面.∴平面⊥平面.又,∴为正三角形..又平面平,∴MG⊥平面PBC.平面取中点,,∴平面.点为的四等分点.【考点】(1)直线与平面垂直的判定(2)二面角的求法4.下列说法不正确的是A.空间中,一组对边平行且相等的四边形是一定是平行四边形;B.同一平面的两条垂线一定共面;C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;D.过一条直线有且只有一个平面与已知平面垂直.【答案】D【解析】A中由平行四边形判定定理可知结论正确;B中两垂线平行,因此确定一个平面;C中由线面垂直的判定定理可知结论正确;D中过一条直线有无数平面与已知平面垂直【考点】线面平行垂直的判定与性质5.已知是直线,是平面,下列命题中:①若垂直于内两条直线,则;②若平行于,则内可有无数条直线与平行;③若m⊥n,n⊥l则m∥l;④若,则;正确的命题个数为()A.1B.2C.3D.4【答案】A【解析】①改为垂直于平面内的两条相交直线;②正确;③改为或相交或异面;④改为或异面.故选A.【考点】线与线,面与面,线与面位置关系6.长方体的表面积是,所有棱长的和是,则对角线的长是()A.B.C.D.【答案】D【解析】设长方体的长、宽、高分别为.则有.则长方体的对角线长为.故D正确.【考点】长方体的表面积,对角线.【思路点晴】本题主要考查的是长方体的表面积,属容易题.应先设出长方体的长、宽、高,表示出长方体的全面积,十二条棱长度之和,然后根据勾股定理可得对角线的长度.7.用到球心距离为2的平面去截球,所得的截面面积为,则球的体积为()A.B.C.D.【答案】B【解析】用到球心距离为2的平面去截球,所得的截面面积为,所以小圆的半径为1,已知球心到该截面的距离为2,所以球的半径为,所以球的体积为:;故选B.【考点】球的体积与表面积8.设是两条不同的直线,是两个不同的平面,下列命题中正确的是A.若,,则B.若,,则C.若,,则D.若,,,则【答案】D【解析】A中,与可垂直、可异面、可平行;B中与可平行、可异面;C中若,仍然满足,故C错误;故D正确.【考点】1.直线与直线的平行与垂直;2.平面与平面平行与垂直的命题判断.9.设是两个不同的平面,是一条直线,以下命题正确的是()A.若,则B.若,则C.若,则D.若,则【答案】C【解析】若,则或∥,故A不正确;若,则或∥,故B不正确;若,则,故C正确;若,则或或∥,故D不正确,所以C为正确答案.【考点】直线与平面的位置关系.10.边长为的正三角形,在斜二测画法下的平面直观图的面积为.【答案】【解析】,所以.【考点】直观图.11.下列说法正确的是()A.底面是正多边形,侧面都是正三角形的棱锥是正棱锥B.各个侧面都是正方形的棱柱一定是正棱柱C.对角面是全等的矩形的直棱柱是长方体D.两底面为相似多边形,且其余各面均为梯形的多面体必为棱台【答案】A【解析】由正棱锥的定义可知A正确;B不正确,例如各个侧面都是正方形的四棱柱的底面一定是菱形,但不一定是正方形,所以此时的四棱柱不一定是正四棱柱;C不正确,对角面是全等的矩形的直棱柱的底面可能是等腰梯形;D不正确,不能保证此多面体的各侧棱交于一点.【考点】几何体的概念问题.12.一个几何体的三视图如图所示,则这个几何体的体积为()A.B.C.D.【答案】A【解析】由已知中的三视图可知该几何体是一个组合体,由一个底面半径为,高为的半圆锥和一个底面边长为的正方形,高为的四棱锥组合而成,分别代入圆锥和棱锥的体积公式,可得这个几何体的体积,故选A.【考点】由三视图求面积、体积.13.(2009•浙江)设α,β是两个不同的平面,l是一条直线,以下命题正确的是()A.若l⊥α,α⊥β,则l⊂βB.若l∥α,α∥β,则l⊂βC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β【答案】C【解析】本题考查的知识点是直线与平面之间的位置关系,逐一分析四个答案中的结论,发现A,B,D中由条件均可能得到l∥β,即A,B,D三个答案均错误,只有C满足平面平行的性质,分析后不难得出答案.解:若l⊥α,α⊥β,则l⊂β或l∥β,故A错误;若l∥α,α∥β,则l⊂β或l∥β,故B错误;若l⊥α,α∥β,由平面平行的性质,我们可得l⊥β,故C正确;若l∥α,α⊥β,则l⊥β或l∥β,故D错误;故选C【考点】空间中直线与平面之间的位置关系.14.(2015秋•鞍山校级期末)正六棱柱ABCDEF﹣A1B1C1D1E1F1的底面边长为,侧棱长为1,则动点从A沿表面移动到点D1时的最短的路程是.【答案】【解析】根据题意,画出图形,结合图形得出从A点沿表面到D1的路程是多少,求出即可.解:将所给的正六棱柱按图1部分展开,则AD′1==,AD1==,∵AD′1<AD1,∴从A点沿正侧面和上底面到D1的路程最短,为.故答案为:.【考点】多面体和旋转体表面上的最短距离问题.15.(2014•埇桥区校级学业考试)已知A(1,0,2),B(1,﹣3,1),点M在z轴上且到A、B两点的距离相等,则M点坐标为()A.(﹣3,0,0) B.(0,﹣3,0)C.(0,0,﹣3) D.(0,0,3)【答案】C【解析】点M(0,0,z),利用A(1,0,2),B(1,﹣3,1),点M到A、B两点的距离相等,建立方程,即可求出M点坐标解:设点M(0,0,z),则∵A(1,0,2),B(1,﹣3,1),点M到A、B两点的距离相等,∴∴z=﹣3∴M点坐标为(0,0,﹣3)故选C.【考点】两点间的距离公式.16.已知向量=(1,2),=(2,3﹣m),且∥,那么实数m的值是()A.﹣1B.1C.4D.7【答案】A【解析】根据向量的平行的条件和向量的坐标运算即可求出.解:向量=(1,2),=(2,3﹣m),且∥,∴1×(3﹣m)=2×2,∴m=﹣1,故选:A.【考点】平面向量共线(平行)的坐标表示.17.如图是一个几何体的三视图(单位:cm).(1)画出这个几何体的直观图(不要求写画法)(2)求这个几何体的表面积及体积.【答案】(1)见解析;(2)表面积;体积3.【解析】(1)由三视图可知该几何体为平放的三棱柱,则可画出其三棱柱;(2)由三视图可知棱柱的两底面为等腰三角形且底边长为2,高为1.一个侧面是长为3宽为2的矩形;另两个侧面都是长为3宽为的矩形,从而可得其表面积和体积.试题解析:(1)由三视图可知该几何体为平放的三棱柱,直观图为:(2)由三视图可知,该棱柱的高,底面等腰的底,的,高为1,.故所求全面积.几何体的体积.【考点】1三视图;2几何体的表面积,体积.18.(2011•南昌三模)如图,水平放置的三棱柱的侧棱长和底面边长均为2,且侧棱AA1⊥底面A1B1C1,主视图是边长为2的正方形,该三棱柱的左视图面积为()A.4B.C.D.【答案】B【解析】由三视图和题意可知三棱柱是正三棱柱,结合正视图,俯视图,不难得到侧视图,然后求出面积.解:由三视图和题意可知三棱柱是正三棱柱,底面边长为2,侧棱长2,结合正视图,俯视图,得到侧视图是矩形,长为2,宽为面积为:故选B.【考点】由三视图求面积、体积.19.(2015秋•沈阳校级月考)如图,四棱锥P﹣ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB,E,F,G,H分别为PC、PD、BC、PA的中点.求证:(1)PA∥平面EFG;(2)DH⊥平面EFG.【答案】见解析【解析】(1)根据面面平行的性质推出线面平行;(2)由题意可证DH⊥PA,DH⊥AB,可证DH⊥平面PAB,从而证明DH⊥PB,由(1)EF∥AB,EG∥PB,从而证明DH⊥EG,DH⊥EF,即可证明DH⊥平面EFG.证明:(1)∵E、G分别是PC、BC的中点,∴EG是△PBC的中位线,∴EG∥PB,又∵PB⊂平面PAB,EG⊄平面PAB,∴EG∥平面PAB,∵E、F分别是PC、PD的中点,∴EF∥CD,又∵底面ABCD为正方形,∴CD∥AB,∴EF∥AB,又∵AB⊂平面PAB,EF⊄平面PAB,∴EF∥平面PAB,又EF∩EG=E,∴平面EFG∥平面PAB,∵PA⊂平面PAB,∴PA∥平面EFG.(2)∵PD⊥AD,PD=AD,H为的中点,∴DH⊥PA,∵BA⊥平面PDA,DH⊂平面PDA,∴DH⊥AB,∴DH⊥平面PAB,∴DH⊥PB,由(1)EF∥AB,EG∥PB,∴DH⊥EG,DH⊥EF,∴DH⊥平面EFG.【考点】直线与平面垂直的判定;直线与平面平行的判定.20.(2015春•咸宁期末)如图是正方体的平面展开图,则在这个正方体中:①BM与ED平行②CN与BE是异面直线③CN与BM成60°角④DM与BN是异面直线以上四个命题中,正确的命题序号是()A.①②③B.②④C.③④D.②③④【答案】C【解析】根据恢复的正方体可以判断出答案.解:根据展开图,画出立体图形,BM与ED垂直,不平行,CN与BE是平行直线,CN与BM成60°,DM与BN是异面直线,故③④正确.故选:C【考点】空间中直线与直线之间的位置关系.21.(2015秋•河池期末)下列结论判断正确的是()A.任意三点确定一个平面B.任意四点确定一个平面C.三条平行直线最多确定一个平面D.正方体ABCD﹣A1B1C1D1中,AB与CC1异面【答案】D【解析】根据题意,容易得出选项A、B、C错误,画出图形,结合异面直线的定义即可判断D 正确.解:对于A,不在同一直线上的三点确定一个平面,∴命题A错误;对于B,不在同一直线上的四点确定一个平面,∴命题B错误;对于C,三条平行直线可以确定一个或三个平面,∴命题C错误;对于D,如图所示,正方体ABCD﹣A1B1C1D1中,AB与CC1是异面直线,命题D正确.故选:D.【考点】平面的基本性质及推论.22.设点M是等腰直角三角形ABC的斜边BA的中点,P是直线BA上任意一点,PE⊥AC于E,PF⊥BC于F,求证:(1)ME=MF;(2)ME⊥MF.【答案】见解析【解析】(1)以等腰直角三角形的直角顶点C为坐标原点O,以OA为单位长,以直线OA.OB分别为x轴.y轴建立平面直角坐标系,由此能证明ME=MF.(2)分别求出ME2+MF2=,,由此能证明ME⊥MF.证明:(1)如图,以等腰直角三角形的直角顶点C为坐标原点O,以OA为单位长,以直线OA.OB分别为x轴.y轴建立平面直角坐标系,则A(1,0),B(0,1),…(2分)设P(x0,y),则有x+y=1,∵PE⊥OA,PF⊥OB,∴E(x0,0),F(0,y),,,∵,∴ME=MF.…(7分)(2)∵ME2+MF2=()2+++(﹣y)2=,,∴ME2+MF2=EF2,∴ME⊥MF.…(12分)【考点】空间中直线与直线之间的位置关系.23.已知l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥α,m⊂α,则l⊥mB.若l⊥m,m⊂α,则l⊥αC.若l∥α,m⊂α,则l∥mD.若l∥α,m∥α,则l∥m【答案】A【解析】对四个命题分别进行判断,即可得出结论.解:对于A,若l⊥α,m⊂α,则根据直线与平面垂直的性质定理知:l⊥m,故A正确;对于B,若l⊥m,m⊂α,则根据直线与平面垂直的判定定理知:l⊥α不正确,故B不正确;对于C,∵l∥α,m⊂α,∴由直线与平面平行的性质定理知:l与m平行或异面,故C不正确;对于D,若l∥α,m∥α,则l与m平行,异面或相交,故D不正确.故选:A.【考点】平面与平面之间的位置关系;空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系.24.如图,四边形ABCD与A′ABB′都是边长为a的正方形,点E是A′A的中点,AA′⊥平面ABCD(1)求证:A′C∥平面BDE;(2)求证:平面A′AC⊥平面BDE.【答案】见解析【解析】(1)首先找到线面平行的充分条件,可以通过中位线找到线线平行,再进一步证明线面平行.(2)要证明平面A′AC⊥平面BDE.可以通过BD⊥平面A'AC来进行转化,进一步找到BD⊥平面A'AC的充分条件,从而得到结果.证明:(1)设BD交AC于M,连结ME.∵ABCD为正方形,所以M为AC中点,又∵E为A'A的中点∴ME为△A'AC的中位线∴ME∥A'C又∵ME⊂平面BDE,A'C⊄平面BDE∴A'C∥平面BDE.(2)∵ABCD为正方形∴BD⊥AC∵A'A⊥平面ABCD∴A'A⊥BD.又AC∩A'A=A AC⊂面A'AC AA'⊂面A'AC∴BD⊥平面A'AC∵BD⊂平面BDE∴平面A'AC⊥平面BDE.【考点】平面与平面垂直的判定;直线与平面平行的判定.25.如图,在正方体中,分别为棱的中点.(Ⅰ)求证:∥平面;(Ⅱ)求异面直线与所成角.【答案】(Ⅰ)详见解析(Ⅱ)【解析】(Ⅰ)证明线面平行可通过证明线线平行或面面平行得以实现,本题证明时利用中点产生的中位线加以证明;(Ⅱ)求异面直线所成角时首先将异面直线平移为相交直线,求其夹角即可,本题中通过平移可知就是异面直线与所成角,通过求解角所在的三角形三边得到角的大小试题解析:(1)连结BD,分别为AD,AB的中点,所以EF∥BD,由所以四边形是平行四边形,所以,平面平面平面(Ⅱ)连接,四边形是平行四边形又∥就是异面直线与所成角在正方体中即异面直线与所成角为【考点】1.线面平行的判定;2.异面直线所成角26.将正方体截取一个四棱锥后得到的几何体如图所示,则有关该几何体的三视图表述正确的是()A.正视图与俯视图形状完全相同B.侧视图与俯视图形状完全相同C.正视图与侧视图形状完全相同D.正视图、侧视图与俯视图形状完全相同【答案】C【解析】根据三视图的特点,画出几何体的三视图,可得答案.解:该几何体的三视图如下所示:主视图:侧视图:俯视图:则正视图与侧视图形状完全相同,故选:C【考点】简单空间图形的三视图.27.如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.(1)若PA=PD,求证:平面PQB⊥平面PAD;(2)若平面PAD⊥平面ABCD,且PA=PD=AD=2,点M在线段PC上,且PM=3MC,求三棱锥P﹣QBM的体积.【答案】(1)见解析;(2)【解析】(1)由PA=PD,得到PQ⊥AD,又底面ABCD为菱形,∠BAD=60°,得BQ⊥AD,利用线面垂直的判定定理得到AD⊥平面PQB利用面面垂直的判定定理得到平面PQB⊥平面PAD;2)由平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PQ⊥AD,得PQ⊥平面ABCD,BC⊂平面ABCD,得PQ⊥BC,得BC⊥平面PQB,即得到高,利用椎体体积公式求出;解:(1)∵PA=PD,∴PQ⊥AD,又∵底面ABCD为菱形,∠BAD=60°,∴BQ⊥AD,PQ∩BQ=Q,∴AD⊥平面PQB又AD⊂平面PAD,∴平面PQB⊥平面PAD;(2)∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PQ⊥AD,∴PQ⊥平面ABCD,BC⊂平面ABCD,∴PQ⊥BC,又BC⊥BQ,QB∩QP=Q,∴BC⊥平面PQB,又PM=3MC,∴V﹣QBM=V M﹣PQB=P【考点】平面与平面垂直的判定;棱柱、棱锥、棱台的体积.28.如图,平面α⊥平面β,A∈α,B∈β,AB与两平面α、β所成的角分别为和.过A、B 分别作两平面交线的垂线,垂足为A′、B′,则AB:A′B′=()A.2:1 B.3:1 C.3:2 D.4:3【答案】A【解析】设AB的长度为a用a表示出A'B'的长度,即可得到两线段的比值.解:连接AB'和A'B,设AB=a,可得AB与平面α所成的角为,在Rt△BAB'中有AB'=,同理可得AB与平面β所成的角为,所以,因此在Rt△AA'B'中A'B'=,所以AB:A'B'=,故选A.【考点】平面与平面垂直的性质.29.对于直线m,n和平面α,β,能得出α⊥β的一个条件是()A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n⊂αC.m∥n,n⊥β,m⊂αD.m∥n,m⊥α,n⊥β【答案】C【解析】在A中,α与β相交或相行;在B中,α与β不一定垂直;在C中,由由面面垂直的判定定理得α⊥β;在D中,由面面平行的判定定理得α∥β.解:在A中,m⊥n,m∥α,n∥β,则α与β相交或相行,故A错误;在B中,m⊥n,α∩β=m,n⊂α,则α与β不一定垂直,故B错误;在C中,m∥n,n⊥β,m⊂α,由由面面垂直的判定定理得α⊥β,故C正确;在D中,m∥n,m⊥α,n⊥β,则由面面平行的判定定理得α∥β,故D错误.故选:C.【考点】空间中直线与平面之间的位置关系.30.正方体ABCD﹣A1B1C1D1的棱长为,△AB1D1面积为,三棱锥A﹣A1B1D1的体积为.【答案】,【解析】正方体ABCD﹣A1B1C1D1的棱长为,△AB1D1是边长为=2的等边三角形,由此能求出△AB1D1面积和三棱锥A﹣A1B1D1的体积.解:∵正方体ABCD﹣A1B1C1D1的棱长为,∴△AB1D1是边长为=2的等边三角形,∴△AB1D1面积S==.== =.故答案为:,.【考点】棱柱、棱锥、棱台的体积.31.已知正四面体中,是的中点,则异面直线与所成角的余弦值为()A.B.C.D.【答案】B【解析】如图,取中点,连接,因为是中点,则,或其补角就是异面直线所成的角,设正四面体棱长为1,则,,.故选B.【考点】异面直线所成的角.【名师】求异面直线所成的角的关键是通过平移使其变为相交直线所成角,但平移哪一条直线、平移到什么位置,则依赖于特殊的点的选取,选取特殊点时要尽可能地使它与题设的所有相减条件和解题目标紧密地联系起来.如已知直线上的某一点,特别是线段的中点,几何体的特殊线段.32.对于四面体ABCD,下列命题正确的是________.(写出所有正确命题的编号).①相对棱AB与CD所在的直线是异面直线;②由顶点A作四面体的高,其垂足是△BCD三条高线的交点;③若分别作△ABC和△ABD的边AB上的高,则这两条高的垂足重合;④任何三个面的面积之和都大于第四个面的面积;⑤分别作三组相对棱中点的连线,所得的三条线段相交于一点.【答案】①④⑤【解析】本题考查空间几何体的线线关系,以及空间想象能力.如图所示,四面体ABCD中,AB与CD是异面直线,故①正确;当四面体ABCD中,对棱AB与CD不垂直时,由顶点A作四面体的高,其垂足不是△BCD三条高线的交点,故②不正确;若分别作△ABC和△ABD的边AB上的高,则这两条高的垂足不一定重合,故③不正确;如图,过顶点A 作AO ⊥面BCD ,O 为垂足,连结OB 、OC 、OD ,则S △ABC >S △BOC ,S △ACD >S △COD ,S △ABD >S △BOD ,∴S △ABC +S △ACD +S △ABD >S △BOC +S △COD +S △BOD =S △BCD , 故④正确. 如图四面体ABCD 中取AB 、CD 、AD 、BC 的中点分别为E 、F 、M 、N ,连线EF 、MN ,则EF 、MN 分别为▱EMFN 的对角线,∴EF 、MN 相交于点O ,且O 为EF 、MN 的中点,取AC 、BD 的中点分别为R 、H ,则ERFH 为平行四边形,即点O 也是RH 的中点,故⑤正确.33. 一个正三棱柱的三视图如图所示,求这个正三棱柱的体积和表面积。

高一数学立体几何综合试题

高一数学立体几何综合试题

高一数学立体几何综合试题1.如图所示,直观图四边形是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A.B.C.D.【答案】A【解析】由题可得A¢D¢=A¢B¢=1,B¢C¢=1+,所以原平面图形中AD=1,AB=2,BC=1+,根据梯形的面积计算公式可得【考点】斜二测画法.2.定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和两平面的交线平行.请对上面定理加以证明,并说出定理的名称及作用.【答案】证明过程详见解析.此定理是直线与平面平行的性质定理;定理的作用是由“线与面平行”判断或证明“线、线平行”.【解析】首先将定理翻译为数学语言,要证∥,只须证明与在同一平面内,且没有公共点,这由已知中的平行关系可得.试题解析:已知:∥.求证:∥.证明:如图:因为∥所以和没有公共点又因为在内,所以和也没有公共点,因为和都在平面内,且没有公共点,所以∥.此定理是直线与平面平行的性质定理.定理的作用是由“线与面平行”判断或证明“线、线平行”.【考点】1.直线与平面的概念;2.直线与直线平行的定义.3.如图,四边形中(图1),,中点为,将图1沿直线折起,使二面角为(图2)(1)过作直线平面,且平面=,求的长度。

(2)求直线与平面所成角的正弦值。

【答案】(1)(2)【解析】因为,中点为,连接AF,EF.∵∴AF⊥BD,∵,∴DB2+DC2=BC2,∴△BCD是以BC为斜边的直角三角形,BD⊥DC,∵平面,DB=2,∴EF为△BCD的中位线,∴EF∥CD,且EF=CD,∴EF⊥BD,EF=,∴∠AFE是二面角A-BD-C的平面角,∠AFE=60°.∴△ABD为等腰直角三角形,∴AF=BD=1,∴AE=,在直角三角形DFE中,.(2)以F为原点,FB所在直线为x轴,FE所在直线为y轴,平行于EA的直线为z轴,建立空间直角坐标系,则由(1)及已知条件可知B(1,0,0),E(0,,0),A(0,,),D(-1,0,0),C(-1,1,0),则=(1,-,-) ,=(0,-1,0),=(-1,-,-),。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学立体几何综合试题1.正方体的棱长为1,为的中点,为线段的动点,过的平面截该正方体所得的截面记为,则下列命题正确的是①当时,为四边形②当时,为等腰梯形③当时,与的交点满足④当时,为六边形⑤当时,的面积为【答案】①②③⑤【解析】如图,当时,,即Q为CC1中点,此时可得,故可得截面APQD1为等腰梯形,故②正确;由上图当点Q向C移动时,满足,只需在DD1上取点M满足AM∥PQ,即可得截面为四边形APQM,故①正确;③时,如图,延长DD1至N,使,连接AN交A1D1于S,连接NQ交C1D1于R,连接SR,可证,由1,可得,故可、得,故正确;④由③可知当时,只需点Q上移即可,此时的截面形状仍然上图所示的APQRS,显然为五边形,故错误;⑤当时,Q与C1重合,取A1D1的中点F,连接AF,可证,可知截面为APC1F为菱形,故其面积为,故正确.【考点】空间图形与平面图形的关系2.下列说法正确的是( )A.三点确定一个平面B.平面和有不同在一条直线上的三个交点C.梯形一定是平面图形D.四边形一定是平面图形【答案】C【解析】A中应为不共线的三点确定一个平面,B与公理2矛盾,D中有空间四边形,而C中梯形有一组对边平行,是平面图形,所以选C.【考点】平面的基本性质.3.等腰梯形,上底,腰,下底,以下底所在直线为x轴,则由斜二测画法画出的直观图的面积为_______.【答案】【解析】如上图,,,,因为,所以,所以,在直观图中,【考点】斜二测画法4.如图,在五面体中,四边形是正方形,平面∥(1)求异面直线与所成角的余弦值;(2)证明:平面;(3)求二面角的正切值。

【答案】(1);(2)略;(3)。

【解析】(1)因为四边形ADEF是正方形,所以FA∥ED.故∠CED为异面直线CE与AF所成的角.因为FA⊥平面ABCD,所以FA⊥CD.故ED⊥CD.在Rt△CDE中,CD=1,ED=2, CE==3,故cos∠CED==.所以异面直线CE和AF所成角的余弦值为。

(2)证明:过点B作BG∥CD,交AD于点G,则∠BGA=∠CDA=45°.由∠BAD=45°,可得BG⊥AB,从而CD⊥AB,又CD⊥FA,FA∩AB=A,所以CD⊥平面ABF;(3)解:由(Ⅱ)及已知,可得AG=,即G为AD的中点.取EF的中点N,连接GN,则GN⊥EF,因为BC∥AD,所以BC∥EF.过点N作NM⊥EF,交BC于M,则∠GNM为二面角B-EF-A的平面角.连接GM,可得AD⊥平面GNM,故AD⊥GM.从而BC⊥GM.由已知,可得GM=.由NG∥FA,FA⊥GM,得NG⊥GM.在Rt△NGM中,tan∠GNM=,所以二面角B-EF-A的正切值为.【考点】异面直线所成的角、直线与平面垂直、二面角的计算。

点评:中档题,立体几何问题的解法,要牢记“转化与化归思想”,空将间题转化成平面问题.立体几何中的计算问题,要注意遵循“一作,二证,三计算”,避免出现只算不证的错误。

5.如图,四边形中(图1),,中点为,将图1沿直线折起,使二面角为(图2)(1)过作直线平面,且平面=,求的长度。

(2)求直线与平面所成角的正弦值。

【答案】(1)(2)【解析】因为,中点为,连接AF,EF.∵∴AF⊥BD,∵,∴DB2+DC2=BC2,∴△BCD是以BC为斜边的直角三角形,BD⊥DC,∵平面,DB=2,∴EF为△BCD的中位线,∴EF∥CD,且EF=CD,∴EF⊥BD,EF=,∴∠AFE是二面角A-BD-C的平面角,∠AFE=60°.∴△ABD为等腰直角三角形,∴AF=BD=1,∴AE=,在直角三角形DFE中,.(2)以F为原点,FB所在直线为x轴,FE所在直线为y轴,平行于EA的直线为z轴,建立空间直角坐标系,则由(1)及已知条件可知B(1,0,0),E(0,,0),A(0,,),D(-1,0,0),C(-1,1,0),则=(1,-,-) ,=(0,-1,0),=(-1,-,-),。

设平面ACD的法向量为=(x,y,z),则,∴,y=0,令x=,则z=-2,∴=(,0,-2),故由公式可得直线与平面所成角的正弦值为。

【考点】三棱锥的几何特征,平行关系,垂直关系,角的计算。

点评:中档题,立体几何问题中,平行关系、垂直关系,角、距离、面积、体积等的计算,是常见题型,基本思路是将空间问题转化成为平面问题,利用平面几何知识加以解决。

要注意遵循“一作,二证,三计算”。

通过建立空间直角坐标系,利用空间向量,可简化证明过程。

6.如图,四边形是正方形,为对角线和的交点,,为的中点;(1)求证:;(2)求证:.【答案】(1)连接,为的中点,所以∵∴(2)∵∴∴∴又∵∴【解析】(1)连接∵四边形是正方形,为对角线和的交点∴为的中点. 1分又∵为的中点.∴为的中位线,即. 3分又∵ 4分∴. 5分(2)∵. 6分∴. 7分又∵四边形是正方形∴. 8分又∵. 9分∴. 10分又∵. 11分∴. 12分【考点】线面平行的判定与面面垂直的判定点评:证明线面平行需证平面外一条直线与平面内一条直线平行;证明面面垂直,需证一个平面内的一条直线垂直于另一个平面,即转化为线面垂直7. .点在正方体的面对角线上运动,则下列四个命题中:(1);(2)平面;(3)三棱锥的体积随点的运动而变化。

其中真命题的个数是()A.1 B.2 C.3 D.0【答案】A【解析】解:对于(3),容易证明AD1∥BC1,从而BC1∥平面AD1C,故BC1上任意一点到平面AD1C的距离均相等,所以以P为顶点,平面AD1C为底面,则三棱锥A-D1PC的体积不变;不正确;对于(2),连接A1B,A1C1容易证明A1C1∥AD1且相等,由于①知:AD1∥BC1,所以BA1C1∥面ACD1,从而由线面平行的定义可得;正确;对于(1)由于DC⊥平面BCB1C1,所以DC⊥BC1平面,若DP⊥BC1,则DC与DP重合,与条件矛盾;错误;故答案为A8.正方体ABCD-A1B1C1D1中,平面AB1D1和平面BC1D的位置关系为【答案】【解析】解:∵AB1∥C1D,AD1∥BC1,AB1⊂平面AB1D1,AD1⊂平面AB1D1,AB1∩AD1=AC1D⊂平面BC1D,BC1⊂平面BC1D,C1D∩BC1=C1由面面平行的判定理我们易得平面AB1D1∥平面BC1D故答案为:平行9.空间三条直线,如果其中一条直线和其它两条直线都相交,则这三条直线能确定平面的个数是()A.1个或3个B.2个或3个C.1个或2个或3个D.1个或2个或3个或4个【解析】解:因为根据平面中确定平面的方法可知,空间三条直线,如果其中一条直线和其它两条直线都相交,则这三条直线能确定平面的个数是1个或2个或3个,选C10.在四棱锥的四个侧面中,直角三角形最多可有 ( )A.4个B.2个C.3个D.1个【答案】A【解析】解:a、b是两条异面直线,c∥a,那么c与b的位置关系如果平行的话,则利用平行的传递性,得到a,b平行与已知矛盾,这样反证法说明了不会平行,可能相交或者异面。

11.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=2,E是PC的中点,作EF⊥PB交PB于点F.(1)证明 PA//平面EDB;(2)证明PB⊥平面EFD;(3)求.【答案】(1)证明:连结AC,AC交BD于O.连结EO.∵底面ABCD是正方形,∴点O是AC的中点.在△PAC中,EO是中位线,∴ PA//EO.而平面EDB,且平面EDB,所以,PA//平面EDB.(2)证明:∵ PD⊥底面ABCD,且底面ABCD,∴ PD⊥DC.∵底面ABCD是正方形,有DC⊥BC, ∴ BC⊥平面PDC.而平面PDC,∴ BC⊥DE.又∵PD=DC,E是PC的中点,∴ DE⊥PC. ∴ DE⊥平面PBC.而平面PBC,∴ DE⊥PB.又EF⊥PB,且,所以PB⊥平面EFD.(3) =【解析】略12.在空间四边形各边上分别取四点,如果与能相交于点,那么A.点必在直线上B.点必在直线BD上C.点必在平面内D.点必在平面外【答案】A【解析】分别在上,则面,面。

若相交于点,则,从而有面,面。

所以点在面和面的交线上,故选A13.正三棱锥的一个侧面面积与底面面积之比为,则此三棱锥的高与斜高之比为A.B.C.D.【解析】正三棱锥的侧面面积与底面面积之比为,因为两个面底相同,所以正三棱锥的斜高与底面上的高之比为,从而可得正三棱锥的斜高与底面边长之比为。

设正三棱锥的底面边长为,所以正三棱锥的斜高为,从而可得正三棱锥的高为,所以此三棱锥的高与斜高之比为,故选A14.若直线不平行于平面,且,则下列结论成立的是:A.内的所有直线与异面B.内不存在与平行的直线C.内存在唯一的直线与平行D.内的直线与都相交【答案】B【解析】解:若直线a不平行于平面α,且aα,则线面相交A选项不正确,α内存在直线与a相交;C选项不正确,α内的直线与直线a的位置关系是相交或者异面,不可能平行;D选项不正确,α内只有过直线a与面的交点的直线与a相交;B选项正确,因为α内的直线与直线a的位置关系是相交或者异面,不可能平行.综上知,B选项正确故选B15.在空间四边形中,、分别是和的中点,,,则和所成的角是()A.B.C.D.【答案】A【解析】此题考查异面直线的夹角思路:将草图作出后,平移和,是两者相交,交线的夹角就是所求连接BD,作点E为BD的中点,连接EN,EM,MNM,N,E都为中点同理:AD与BC的夹角为答案:A点评:利用中位线的知识很快可以得出答案16.(本小题共14分)如图,四棱锥的底面是正方形,,点E在棱PB上.(Ⅰ)求证:平面;(Ⅱ)当且E为PB的中点时,求AE与平面PDB所成的角的大小.【答案】(1)略(2)【解析】解:(Ⅰ)∵四边形ABCD是正方形,∴AC⊥BD,∵,∴PD⊥AC,∴AC⊥平面PDB,∴平面.·····················6分(Ⅱ)设AC∩BD=O,连接OE,由(Ⅰ)知AC⊥平面PDB于O,∴∠AEO为AE与平面PDB所的角,∴O,E分别为DB、PB的中点,∴OE//PD,,·······················10分又∵,∴OE⊥底面ABCD,OE⊥AO,在Rt△AOE中,∴,即AE与平面PDB所成的角的大小为.·····················14分17.在直角梯形ABCD中, A为PD的中点,如下图,将△PAB沿AB折到△SAB的位置,使SB⊥BC,点E在SD上,(1)求证:SA⊥平面ABCD;(2)求二面角E-AC-D的余弦值;(3)在线段BC上是否存在点F,使SF//平面EAC?若存在,确定F点的位置,若不存在,请说明理由?【答案】(1)证:由原图可知:BC⊥AB,又SB⊥BC,且AB∩AB=B,得BC⊥面SAB,得BC⊥SA,又原图可知SA⊥AB,且AB∩BC=B,即证:SA⊥面ABCD【解析】略18.若直线不平行于平面,且,则下列结论成立的是A.内所有的直线与异面.B.内不存在与平行的直线.C.内存在唯一的直线与平行.D.内的直线与都相交.【答案】B【解析】略19.(本题满分12分)如图,在四边形中,,,,,,求四边形绕旋转一周所成几何体的表面积及体积.【答案】解:……6分……12分【解析】略20.如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则AC1与平面A1B1C1D1所成角的正弦值为 .(第19题)(第20题) (第21题)【答案】【解析】略21.(本小题满分14分)如图,四边形为矩形,平面,,平面于点,且点在上,点是线段的中点。

相关文档
最新文档