2.3.1平面向量基本定理(教、学案)
新人教A版必修4高中数学2.3.1 平面向量基本定理学案

高中数学 2.3.1 平面向量基本定理学案新人教A版必修4【学习目标】1知识与技能(1)了解平面向量基本定理及其意义,会利用向量基本定理解决简单问题;(2)培养学生分析、抽象、概括的推理能力。
2过程与方法(1)通过平面向量基本定理的得出过程,体会由特殊到一般的思维方法;(2)通过本节学习,体会用基底表示平面内任一向量的方法。
3情感.态度与价值观(1)通过本节学习,培养学生的理性思维,培养学生独立思考及勇于探求、敢于创新的精神、培养主动学习的意识;(2)通过平面向量基本定理的探求过程,培养学生观察能力、抽象概括能力、独立思考的能力,激发学生学习数学的兴趣。
【重点难点】重点:平面向量基本定理的应用难点:对平面向量基本定理的发现和形成过程,数学思想的渗透。
【学习内容】一【知识链接】1. 向量加法与减法有哪几种几何运算法则?2.怎样理解向量的数乘运算λa? (1)模:|λa|=|λ||a|;(2)方向:λ>0时λa 与a方向相同;λ<0时λa与a方向相反;λ=0时λa=03. 向量共线定理 :向量b 与非零向量a共线则:有且只有一个非零实数λ,使b =λa.二【新课导入】情景展示:在物理学中我们知道,力是一个向量,力的合成就是向量的加法运算.而且力是可以分解的,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,就会形成一个新的数学理论. 三、小组合作、自主探究 探究(一):平面向量的基本定理探究1:给定平面内任意两个不共线的非零向量1e 、2e ,请你作出向量b =31e +22e 、c =1e -22e .探究2:由探究1可知可以用平面内任意两个不共线的非零向量1e 、2e 来表示向量b ,c 那么平面内的任一向量是否都可以用形如λ11e +λ22e 的向量表示呢?【定理解读】1 、1e 、2e 必须是平面向量的基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ11e +λ22e .2、λ1,λ2是被a,1e ,2e 的数量 3、基底不唯一,关键是不共线;4、由定理可将任一向量a 在给出基底1e 、2e 的条件下进行分解;5、基底给定时,分解形式唯一.6、λ 1 =0时 ; λ2=0时 ;λ1=0、λ2=0时 。
平面向量基本定理教案

2.2.1平面向量基本定理教学目的:1.了解平面向量基本定理的证明.掌握平面向量基本定理及其应用;2.能够在解题中适当地选择基底,使其它向量能够用选取的基底表示. 教学重点:平面向量基本定理.教学难点:理解平面向量基本定理.教学过程:一、设置情境,引入新课:上节课我们学习了共线向量的基本定理,通过它们判定两个向量是否平行,而且共线向量可由该集合中的任一非零向量表示出来.这个非零向量叫基向量.那么平面上的任一向量是否也具有类似属性呢?如果是这样的话,对平面上任一向量的研究就可以化归为对基向量的研究了.二、新课:1.回顾:(1) 实数与向量的积: 实数λ与向量a r 的积是一个向量,记作λa r ,它的长度和方向规定如下: (1) |λa r | = |λ||a r |. (2) λ > 0时,λa r 的方向与a r 的方向相同;当λ < 0时,λa r 的方向与a r 的方向相反;特别地,当λ = 0或a r =0r 时,λa r =0r .(2) 共线向量的一个充要条件: 定理:向量b r 与非零向量a r 共线的充要条件是有且仅有一个实数λ,使得b r = λa r . 例1 已知向量1e u r 、2e u r ,求作向量- 2.51e u r + 32e u r .推广:已知1e u r 、2e u r 是同一平面内的两个不共线的向量,则对于给定的两个实数λ1、λ2,都可以在这个平面内作出唯一的一个向量a r 满足 1212.a e e λλ=+2.平面向量基本定理: 如果1e u r 、2e u r 是同一平面内的两个不共线向量,那么对这一平面内的任一向量a r ,有且只有一对实数λ1、λ2,使 a r = λ11e u r + λ22e u r . 例2 ABCD 的两条对角线相交于点M ,且AB uu u r =a r ,AD uuu r =b r ,用a r 、b r 表示MA uuu r 、MB uuu r 、MC uuu r 和MD uuu r ? 解:(略 )例3 如图,ABCD 中,E ,F 分别为BC ,DC 的中点,且AE uu u r =m u r ,AF uu u r =n r ,求AB uu u r ,AD uuu r .解:(略)例4 如图,OA uu r 、OB uu u r 不共线,AP uu u r = t AB uu u r (t ∈ R),用OA uu r 、OB uu u r 表示OP uu u r .解: (略)三、小结: 1.当平面内取定一组基底1e u r 、2e u r 后,任一向量a r 都被1e u r 、2e u r 唯一确定,其含义是存在唯一数对(λ1,λ2),使a r = λ11e u r + λ22e u r . 2.三点A 、B 、C 共线⇔AB uu u r = k AC uuu r ⇔PB uu r = λ1PA uu r + λ2PC uu u r (其中λ1,λ2 ∈ R 且λ1 + λ2 = 1).四、课后作业: 1.命题p :向量b r 与a r 共线;命题q :有且只有一个实数λ,使b r = λa r ;则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .不充分不必要条件2.如图,△ABC 中,点M 是BC 的中点,点N 在边AC 上,且AN = 2NC ,AM 与BN 相交于点P ,求AP :PM 的值.。
平面向量基本定理教学设计

《平面向量基本定理》教学设计一、教学内容分析本节内容是《普通高中课程标准实验教科书·数学4·必修(人教A版)》第二章2.3.1平面向量基本定理。
学生在学习平面向量实际背景及基本概念、平面向量的线性运算(向量的加法、减法、数乘向量、共线向量定理)之后的又一重点内容,它是引入向量坐标表示,将向量的几何运算转化为代数运算的基础,使向量的工具性得到初步的体现,具有承前启后的作用。
本节内容是第一课时。
二、教学方法与学情本节课为新授课。
根据班级的实际情况,学生思维较活跃,在教学中积极践行新课程理念,倡导合作学习;注重学生自主探究能力;在教学活动中始终以教师为主线、学生为主体,让学生经历合作交流、观察发现、归纳总结等一系列的学习活动。
教学方法是综合法,教学手段采用学案式(结合使用多媒体)。
三、三维目标1、知识与技能(1)了解平面向量基本定理及其意义,会用基底表示某一向量。
(2)培养学生作图、判断、求解的基本能力。
2、过程与方法(1)经历平面向量基本定理的探究过程,让学生体会由特殊到一般的思维方法;(2)通过本节学习,让学生体会用基底表示平面内一个向量的方法。
3、情感态度与价值观通过对平面向量基本定理的运用,培养学生乐于动手操作能力、观察判断能力,体会数形结合思想,增强向量的应用意识。
四、教学重点、难点1.重点:对平面向量基本定理的探究;2.难点:对平面向量基本定理的理解及其应用。
五、教学过程1.知识回顾(1)向量的加法运算法则:(2)向量共线定理:问题情境: 【中国航天,国人的骄傲】在物理中,速度是一个向量,速度的合成就是向量的加法运算.速度也可以分解,任何一个大小不为零的速度,都可以分解成两个不同方向的分速度之和.将这种速度的分解拓展到向量中来,就会形成一个新的数学理论.2.数形结合、探究规律给定平面内两个不共线的向量1e,2e,可表示该平面内任意向量a 吗?(师生共同讨论,分析任意向量a的各种情况)3.揭示内涵、理解定理平面向量基本定理:如果1e、2e是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1、λ2,使a=λ11e+λ22e.我们把不共线向量1e、2e叫做表示这一平面内所有向量的一组基底;(分析定理中的关键字词)4.例题练习、变式演练例1 已知向量1e ,2e ,求作向量2135.2e e +-变式思考:你还有其他作法吗? (利用三角形法则也可以)例 2 设1e ,2e 是两个不共线向量,21e e a -=,2132e e b +=,212e e c += ,请根据平面向量基本定理,以a ,b 为基底表示c .(示范操作,共同完成) 变式练习: 设1e ,2e 是两个不共线向量,,, ,请根据平面向量基本定理,(1) 以,为基底表示 (2)以,为基底表示(学生独立完成) 例3 如图,已知梯形ABCD ,AB //CD ,且AB = 2DC ,M ,N 分别是DC ,AB 的中点.在图中选择一组基底,将向量 用这组基底表示出来。
平面向量基本定理(教案)

平面向量基本定理(教案)教案章节一:向量的概念回顾1.1 向量的定义向量是有大小和方向的量,通常用箭头表示。
向量可以用坐标形式表示,例如在二维空间中,向量可以表示为(a, b)。
1.2 向量的加法向量的加法是指在同一平面内,将两个向量首尾相接,形成的第三个向量。
向量的加法满足交换律和结合律,即a + b = b + a,(a + b) + c = a + (b + c)。
教案章节二:平面向量的基本定理2.1 定理的定义平面向量的基本定理是指在平面内,任何两个不共线的向量可以作为平面的基底。
基底是线性无关的向量组,可以通过线性组合表示平面内的任意向量。
2.2 基底的性质基底是线性无关的,即不存在非零的线性组合使得向量组的和为零。
基底可以任意选择,但选择不同的基底会导致向量的坐标不同。
教案章节三:向量的线性组合3.1 线性组合的定义向量的线性组合是指将向量与实数相乘后相加的结果。
例如,a u + b v 表示将向量u 乘以实数a,向量v 乘以实数b,将两个结果相加。
3.2 线性组合的性质线性组合满足分配律,即(a u + b v) + c w = a (u + c w) + b v。
线性组合的系数可以是任意实数,包括正数、负数和零。
教案章节四:向量的坐标表示4.1 坐标系的建立坐标系是由两个或多个轴组成的,用于表示向量的位置和方向。
在二维空间中,通常使用x 轴和y 轴作为坐标轴。
4.2 向量的坐标表示向量可以用坐标形式表示,即(x, y),其中x 表示向量在x 轴上的投影,y 表示向量在y 轴上的投影。
向量的长度可以用勾股定理计算,即|u| = √(x^2 + y^2)。
教案章节五:向量的线性相关性5.1 线性相关的定义向量组线性相关是指存在一组不全为零的实数,使得向量组的和为零。
例如,向量组(u, v, w) 线性相关,当存在不全为零的实数a, b, c,使得a u +b v +c w = 0。
5.2 线性相关性的性质如果向量组线性相关,其中任意一个向量都可以表示为其他向量的线性组合。
(完整版)2017优质课《2.3.1平面向量基本定理》教案

《2.3.1平面向量基本定理》教案参赛号:70一、教材分析本节课是在学习了共线向量定理的前提下,进一步研究平面内任一向量的表示,为今后平面向量的坐标运算打下坚实的基础。
所以,本节在本章中起到承上启下的作用。
平面向量基本定理揭示了平面向量之间的基本关系,是向量解决问题的理论基础。
平面向量基本定理提供了一种重要的数学思想—转化思想。
二、教学目标知识与技能: 了解平面向量基本定理及其意义,学会利用平面向量基本定理解决问题,掌握基向量表示平面上的任一向量.过程与方法:通过学习平面向量基本定理,让学生体验数学的转化思想,培养学生发现问题的能力.情感态度与价值观:通过学习平面向量基本定理,培养学生敢于实践的创新精神,在解决问题中培养学生的应用意识。
教学重点:平面向量基本定理的探究;教学难点:如何有效实施对平面向量基本定理的探究过程.三、教学过程1、情景创设七个音符谱出千支乐曲,26个字母写就百态文章! 在多样的向量中,我们能否找到它的基本音符呢?问题1 给定一个非零向量a ,允许做线性运算,你能写出多少个向量?a a λ问题2 给定两个非零向量12 ,e e ,允许做线性运算,写出尽量多的向量? 1、12 //e e 通过线性运算会得到11221122 +e e e e λλλλ的形式,本质上它们表示的都是1e 的数乘。
2、12 e e ,不共线 通过线性运算会得到1122+e e λλ,它表示的是什么向量? 1e 2e不妨我们作出几个向量12+e e ,122+e e , 12-e e , 12-2e e 来看看。
只要给定1λ和2λ的值,我们就可以作出向量1122+e e λλ,本质上是1e 的数乘和2e 的数乘的合成。
随着1λ和2λ取值的变化,可以合成平面内无数多个向量。
问题3 那么我们能否这样认为:平面上的任何一个向量都可以由1e 和2e 来合成呢?我们在平面上任取一个向量a ,看看它能否由1e 和2e 来合成,也就是能否找到这样的1e 和2e ,使1122+a e e λλ=?这个问题可简述为:平面上有两个不共线的向量1e 和2e ,平面上的任意一个向量能否用这两个向量来表示?思考探究: 根据探寻的目标1122+a e e λλ=,结合上面向量合成的做法,显然a 就应该是合成后的平行四边形的对角线,而平行四边形两边应该是1e 和2e 所在的直线,因此,只要作出这个平行四边形,问题就迎刃而解了。
2.3.1 平面向量基本定理学案【人教版】高中数学必修

§2.3.1 平面向量基本定理一.教学目的:(1)了解平面向量基本定理;(2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法;二、讲解新课:1.创设情景,揭示课题.(1)给定平面内任意两个向量e 1,e 2.请同学作出向量3e 1+2e 2,e 1-2e 2. 引导学生分析向量e 1,e 2的可能位置关系,区分共线和不共线两种情况, 小结1。
:给定平面内任意两个向量e 1,e 2及实数λ1,λ2,则一定可以作出向量λ1e 1+λ2e 2。
(2)思考: 给定平面内任意两个向量e 1,e 2.平面内任意一个向量a ,是否可以将a 表示成λ1e 1+λ2e 2的形式?,既是否找到实数λ1,λ2,使a=λ1e 1+λ2e 2.2.教师引导学生交流讨论探究平面向量基本定理平面内任意两个向量e 1,e 2, a 是平面内任一向量,作图研究a 与e 1,e 2.之间的关系.(1) e 1,e 2.共线时.结论1 :不一定存在实数λ1,λ2,使a=λ1e 1+λ2e 2.(2) e 1,e 2.不共线时.如图,已知平面内任意两个向量e 1,e 2,a 是平面内任一向量,引导学生作图, 用e 1,e 2,表示a,小结2:任意向量a 都可以由这个平面内两个不共线的向量e 1,e 2,表示成λ1e 1+λ2e 2的形式.即a=λ1e 1+λ2e 2.操作验证:当e 1,e 2, a 确定后,这样的实数λ1,λ2是唯一确定的.3.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,使a =λ11e +λ22e .探究:(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2) 基底不惟一,关键是不共线;(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解;(4) 基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量4.向量的夹角和垂直 两个非零向量a,b,作→→=a OA ,→→=b OB ,则)0(,πθθ≤≤=∠AOB 叫做向量a,b 的夹角.当向量a,b 的夹角是 90时,称向量a,b 垂直,记作a ⊥b.当夹角为0°时,同向共线;当夹角为180°时,反向共线。
数学苏教版必修4学案:第2章 2.3 2.3.1 平面向量基本定理

向量的坐标表示2.3.1平面向量基本定理[对应学生用书P42]预习课本P74~76,思考并完成下列问题1.平面向量基本定理的内容是什么?2.平面向量基本定理与向量共线定理,在内容和表述形式上有什么区别和联系?3.如何定义平面向量的基底?[新知初探]1.平面向量基本定理如果e1,e2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.2.基底不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.[点睛]对平面向量基本定理的理解应注意以下三点:①e1,e2是同一平面内的两个不共线向量;②该平面内任意向量a都可以用e1,e2线性表示,且这种表示是惟一的;③基底不惟一,只要是同一平面内的两个不共线向量都可作为基底.3.正交分解一个平面向量用一组基底e1,e2表示成a=λ1e1+λ2e2的形式,我们称它为向量的分解.当e1,e2所在直线互相垂直时,这种分解也称为向量a的正交分解.[小试身手]1.在矩形ABCD 中,O 是对角线的交点,若BC =e 1,DC =e 2,则OC =________. ★答案★:12(e 1+e 2)2.已知ABCDEF 是正六边形,且AB =a ,AE =b ,则BC =________. 解析:AD =AE +ED =AE +AB =b +a , 又AD =2BC ,∴BC =12(a +b ).★答案★:12(a +b )3.若e 1,e 2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是________. ①e 1-e 2,e 2-e 1;②2e 1+e 2,e 1+2e 2;③2e 2-3e 1,6e 1-4e 2;④e 1+e 2,e 1-e 2. ★答案★:②④4.设e 1,e 2是两个不共线的向量,若向量a =2e 1-e 2与向量b =e 1+λe 2(λ∈R)共线,则λ=________.★答案★:-12对基底概念的理解[典例] 如果e 1,e 2是平面α内两个不共线的向量,那么下列说法中不正确的是________.①a =λe 1+μe 2(λ,μ∈R)可以表示平面α内的所有向量;②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则λ1μ2=λ2μ1; ④若实数λ,μ使得λe 1+μe 2=0,则λ=μ=0.[解析] 由平面向量基本定理可知,①③④是正确的.对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是惟一的.[★答案★] ②基底具备两个主要特征: (1)基底是两个不共线向量;(2)基底的选择是不惟一的.e 1,e 2是表示平面内所有向量的一组基底,则下列各组向量中,不能作为一组基底的序号是________.①e 1+e 2,e 1-e 2;②3e 1-2e 2,4e 2-6e 1;③e 1+2e 2,e 2+2e 1;④e 2,e 1+e 2;⑤2e 1-15e 2,e 1-110e 2.解析:由题意,知e 1,e 2不共线,易知②中,4e 2-6e 1=-2(3e 1-2e 2),即3e 1-2e 2与4e 2-6e 1共线,∴②不能作基底.⑤中,2e 1-15e 2=2⎝⎛⎭⎫e 1-110e 2, ∴2e 1-15e 2与e 1-110e 2共线不能作基底.★答案★:②⑤向量的分解[典例] 如图,已知▱ABCD 的对角线AC ,BD 交于O 点,设AB =l 1,AD =l 2,OA =l 3,OB =l 4.(1)试以l 1,l 2为基底表示AC ,BD ,DC ,BC ; (2)试以l 1,l 3为基底表示BC ,DA ; (3)试以l 3,l 4为基底表示AB ,BC .[解] (1)AC =l 1+l 2,BD =l 2-l 1,DC =l 1,BC =l 2. (2)BC =AC -AB =-2OA -AB =-l 1-2l 3,DA =CB =-BC =l 1+2l 3.(3)AB =l 4-l 3,BC =OC -OB =-OA -OB =-l 3-l 4.向量分解的方法(1)将两个不共线的向量作为基底,运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止;(2)通过列向量方程或方程组的形式,利用基底表示向量的惟一性求解. 如图,在▱ABCD 中,AB =a ,AD =b ,E ,F 分别是AB ,BC 的中点,G 点使DG =13DC ,试以a ,b 为基底表示向量AF 与EG .解:AF =AB +BF =AB +12BC=AB +12AD =a +12b .EG =EA +AD +DG =-12AB +AD +13DC=-12a +b +13a =-16a +b .平面向量基本定理的应用[若AB =λAM +μAN ,则λ+μ=________.[解析] [法一 基向量法] 由AB =λAM +μAN ,得AB =λ·12(AD +AC )+μ·12(AC +AB ),则⎝⎛⎭⎫μ2-1AB +λ2AD +⎝⎛⎭⎫λ2+μ2AC =0, 得⎝⎛⎭⎫μ2-1AB +λ2AD +⎝⎛⎭⎫λ2+μ2⎝⎛⎭⎫AD +12 AB =0, 得⎝⎛⎭⎫14λ+34μ-1AB +⎝⎛⎭⎫λ+μ2AD =0. 又因为AB ,AD 不共线,所以由平面向量基本定理得⎩⎨⎧14λ+34μ-1=0,λ+μ2=0,解得⎩⎨⎧λ=-45,μ=85.所以λ+μ=45.[法二 待定系数法]连接MN 并延长交AB 的延长线于点T ,由已知易得AB =45AT ,所以,45AT =AB =λAM +μAN ,即AT =54λAM +54μAN ,因为T ,M ,N 三点共线. 所以54λ+54μ=1.所以λ+μ=45.[★答案★] 45当直接利用基底表示向量比较困难时,可设出目标向量并建立其与基底之间满足的二元关系式,然后利用已知条件及相关结论,从不同方向和角度表示出目标向量(一般需建立两个不同的向量表达式),再根据待定系数法确定系数,建立方程或方程组,解方程或方程组即得.已知向量e 1,e 2是平面α内所有向量的一组基底,且a =e 1+e 2,b =3e 1-2e 2,c =2e 1+3e 2,若c =λa +μb (λ,μ∈R),试求λ,μ的值.解:将a =e 1+e 2与b =3e 1-2e 2代入c =λa +μb 得 c =λ(e 1+e 2)+μ(3e 1-2e 2)=(λ+3μ)e 1+(λ-2μ)e 2.因为c =2e 1+3e 2,且向量e 1,e 2是平面α内所有向量的一组基底,根据平面向量基本定理中的惟一性可得方程组⎩⎪⎨⎪⎧λ+3μ=2,λ-2μ=3,解得⎩⎨⎧λ=135,μ=-15.层级一 学业水平达标1.设e 1,e 2是平面的一组基底,且a =e 1+2e 2,b =-e 1+e 2,则e 1+e 2=________a +________b .解析:由方程组:⎩⎪⎨⎪⎧a =e 1+2e 2,b =-e 1+e 2,解得⎩⎨⎧e 1=13a -23b ,e 2=13a +13b ,所以e 1+e 2=⎝⎛⎭⎫13a -23b +⎝⎛⎭⎫13a +13b =23a +⎝⎛⎭⎫-13b . ★答案★:23 -132.设点O 是▱ABCD 两对角线的交点,下列的向量组中可作为这个平行四边形所在平面上表示其他所有向量的基底的是________.①AD 与AB ;②DA 与BC ;③CA 与DC ;④OD 与OB .解析:寻找不共线的向量组即可,在▱ABCD 中,AD 与AB 不共线,CA 与DC 不共线;而DA ∥BC ,OD ∥OB ,故①③可作为基底.★答案★:①③3.AD 与BE 分别为△ABC 的边BC ,AC 上的中线,且AD =a ,BE =b ,则BC =________.解析:设AD 与BE 交点为F ,则FD =13a ,BF =23b .所以BD =BF +FD =23b +13a ,所以BC =2BD =23a +43b .★答案★:23a +43b4.在▱ABCD 中,AB =a ,AD =b ,AM =4MC ,P 为AD 的中点,则MP =______. 解析:如图,MP =AP -AM =12AD -45AC =12AD -45(AB +BC )=12b -45(a +b )=-45a -310b . ★答案★:-45a -310b5.在平面直角坐标系中,O 为坐标原点,A ,B ,C 三点满足OC =23OA +13OB ,则|AC ||AB |=________. 解析:因为OC =23OA +13OB ,所以OC -OA =-13OA +13OB =13(OB -OA ),所以AC =13AB ,所以|AC ||AB |=13.★答案★:136.如图,在△ABC 中,AN =13NC ,P 是BN 上的一点,若AP =m AB +211AC ,则实数m 的值为________.解析:因为AP =AB +BP =AB +k BN =AB +k (AN -AB )=AB +k ⎝⎛⎭⎫14 AC -AB =(1-k )AB +k 4AC ,且AP =m AB +211AC ,所以1-k =m ,k 4=211,解得k =811,m =311.★答案★:3117.下面三种说法中,正确的是________.①一个平面内只有一对不共线向量可作为表示该平面所有向量的基底; ②一个平面内有无数多对不共线向量可作为该平面所有向量的基底; ③零向量不可作为基底中的向量.解析:同一平面内两个不共线的向量都可以作为基底. ★答案★:②③8.已知△ABC 中,点D 在BC 边上,且CD =2DB ,CD =r AB +s AC ,则r +s =________.解析:如图,因为CD =AD -AC ,DB =AB -AD .所以CD =AB -DB -AC =AB -12CD -AC .所以32CD =AB -AC ,所以CD =23AB -23AC .又CD =r AB +s AC ,所以r =23,s =-23,所以r +s =0.★答案★:09.已知▱ABCD 的两条对角线相交于点M ,设AB =a ,AD =b ,以a ,b 为基底表示MA ,MB ,MC 和MD .解:AC =AB +AD =a +b ,DB =AB -AD =a -b ,MA =-12AC =-12(a +b )=-12a -12b , MB =12DB =12(a -b )=12a -12b . MC =12AC =12a +12b ,MD =-12DB =-12a +12b .10.设e 1,e 2是不共线的非零向量,且a =e 1-2e 2,b =e 1+3e 2. (1)证明:a ,b 可以作为一组基底;(2)以a ,b 为基底,求向量c =3e 1-e 2的分解式; (3)若4e 1-3e 2=λa +μb ,求λ,μ的值.解:(1)证明:若a ,b 共线,则存在λ∈R ,使a =λb , 则e 1-2e 2=λ(e 1+3e 2).由e 1,e 2不共线,得⎩⎪⎨⎪⎧λ=1,3λ=-2⇒⎩⎪⎨⎪⎧λ=1,λ=-23.所以λ不存在,故a 与b 不共线,可以作为一组基底. (2)设c =ma +nb (m ,n ∈R),则3e 1-e 2=m (e 1-2e 2)+n (e 1+3e 2)=(m +n )e 1+(-2m +3n )e 2.所以⎩⎪⎨⎪⎧ m +n =3,-2m +3n =-1⇒⎩⎪⎨⎪⎧m =2,n =1.所以c =2a +b .(3)由4e 1-3e 2=λa +μb ,得4e 1-3e 2=λ(e 1-2e 2)+μ(e 1+3e 2)=(λ+μ)e 1+(-2λ+3μ)e 2.所以⎩⎪⎨⎪⎧λ+μ=4,-2λ+3μ=-3⇒⎩⎪⎨⎪⎧λ=3,μ=1.故所求λ,μ的值分别为3和1.层级二 应试能力达标1.设e 1与e 2是两个不共线向量,a =3e 1+4e 2,b =-2e 1+5e 2,若实数λ,μ满足λa +μb =5e 1-e 2,则λ,μ的值分别为_________________.解析:由题设λa +μb =(3λe 1+4λe 2)+(-2μe 1+5μe 2)=(3λ-2μ)e 1+(4λ+5μ)e 2.又λa +μb=5e 1-e 2.由平面向量基本定理,知⎩⎪⎨⎪⎧3λ-2μ=5,4λ+5μ=-1.解之,得λ=1,μ=-1.★答案★:1,-12.在△ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =13CA +λCB ,则λ=________.解析:∵AD =2DB ,∴CD =CA +AD =CA +23AB =CA +23(CB -CA )=13CA +23CB .又∵CD =13CA +λCB ,∴λ=23.★答案★:233.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为______.解析:∵a ,b 是一组基底,∴a 与b 不共线, ∵(3x -4y )a +(2x -3y )b =6a +3b ,∴⎩⎪⎨⎪⎧ 3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,∴x -y =3. ★答案★:34.已知非零向量OA ,OB 不共线,且2OP =x OA +y OB ,若PA =λAB (λ∈R),则x ,y 满足的关系是________.解析:由PA =λAB ,得OA -OP =λ(OB -OA ), 即OP =(1+λ)OA -λOB .又2OP =x OA +y OB ,∴⎩⎪⎨⎪⎧x =2+2λ,y =-2λ,消去λ得x +y =2. ★答案★:x +y -2=05.如图,在正方形ABCD 中,设AB =a ,AD =b ,BD =c ,则在以a ,b 为基底时,AC 可表示为______,在以a ,c 为基底时,AC 可表示为______.解析:以a ,c 为基底时,将BD 平移,使B 与A 重合,再由三角形法则或平行四边形法则即得.★答案★:a +b 2a +c6.如图,平面内有三个向量OA ,OB ,OC ,其中OA 与OB 的夹角为120°,OA 与OC 的夹角为30°,且|OA |=|OB |=1,|OC |=2 3.若OC =λOA +μOB (λ,μ∈R),则λ+μ的值为________.解析:以OC 为对角线,OA ,OB 方向为边作平行四边形ODCE ,由已知∠COD =30°,∠COE =∠OCD =90°.在Rt △OCD 中,因为|OC |=23,所以|OD |=|OC |cos 30°=4,在Rt △OCE 中,|OE |=|OC |·tan 30°=2,所以OD =4OA ,OE =2OB ,又OC =OD +OE=4OA +2OB ,故λ=4,μ=2,所以λ+μ=6.★答案★:67. 如图所示,在△ABC 中,点M 是BC 的中点,点N 在边AC 上,且AN =2NC ,AM 与BN 相交于点P ,求证:AP ∶PM =4∶1.证明:设AB =b ,AC =c , 则AM =12b +12c ,AN =23AC ,BN =BA +AN =23c -b .因为AP ∥AM ,BP ∥BN ,所以存在λ,μ∈R ,使得AP =λAM ,BP =μBN , 又因为AP +PB =AB ,所以λAM -μBN =AB , 所以由λ⎝⎛⎭⎫12b +12c -μ⎝⎛⎭⎫23c -b =b 得⎝⎛⎭⎫12λ+μb +⎝⎛⎭⎫12λ-23μc =b . 又因为b 与c 不共线.所以⎩⎨⎧12λ+μ=1,12λ-23μ=0.解得⎩⎨⎧λ=45,μ=35.故AP =45AM ,即AP ∶PM =4∶1.8.在△OAB 中,OC =14OA ,OD =12OB ,AD 与BC 交于点M ,设OA =a ,OB =b ,以a ,b 为基底表示OM .解:设OM =ma +nb (m ,n ∈R), 则AM =OM -OA =(m -1)a +nb ,AD =OD -OA =12b -a .因为A ,M ,D 三点共线,所以m -1-1=n12,即m +2n =1. 又CM =OM -OC =⎝⎛⎭⎫m -14a +nb ,CB =OB -OC =-14a +b ,因为C ,M ,B 三点共线,所以m -14-14=n 1, 即4m +n =1,由⎩⎪⎨⎪⎧ m +2n =1,4m +n =1,解得⎩⎨⎧ m =17,n =37,所以OM =17a +37b .。
平面向量基本定理学案

2.3.1平面向量基本定理2.3.2平面向量的正交分解及坐标表示学习目的:1.了解平面向量基本定理,了解基底的含义.2. 掌握两个向量夹角的定义以及两向量垂直的定义.3.理解平面向量的坐标的概念,会写出给定向量的坐标,会作出已知坐标表示的向量.重点:平面向量基本定理难点:两向量夹角的定义及定理的运用自学设计:一. 两向量的夹角与垂直1.夹角:已知两个 a 和b ,作OA =a ,OB =b ,则 =θ,叫做向量a 与b 的夹角.记作,a b (1)范围:向量a 与b 的夹角的范围是 .(2)当00θ=时a 与b .(3)当0180θ=时a 与b .2.垂直:如果向量a 与b 的夹角是 ,则称a 与b 垂直,记作 .在等边ABC ∆中, ,AB BC = .二. 平面向量基本定理1.定理:如果1e ,2e 是同一平面内的两个 向量,那么对于这一平面内的 向量a , 实数1,2λλ,使a = (称为平面向量的线性表示) .2.基底: 的向量1e ,2e 叫做表示这一平面内 向量的一组基底.由定义,平面向量的基底唯一吗?3.把一个向量分解成两个 的向量,叫做把向量正交分解.4.平面向量的坐标:在平面直角坐标系中,分别取与x 轴y 轴方向相同的两个 i ,j 作为基底,对于平面内的一个向量a ,由平面向量基本定理知,有且只有一对实数x,y,使得a = ,则把有序数对 叫做向量a 的坐标.课堂达标:(A 组)1.关于基底的说法正确的序号是(1)平面内不共线的任意两个向量都可作为一组基底.(2)基底中的向量可以是零向量.(3)平面内的基底一旦确定,该平面内的向量关于基底的线性分解形式也是唯一确定的.O θA B ba2.若i =(1,0), j =(0,1),且a =2i +j ,则a 的坐标为( )A.(2,0)B.(2,1)C.(1,0)D.(0,1)3.如图所示,D 是BC 边的中点,试用基底,AB AC AD 表示课堂达标:(B组)已知四边形OADB 是以向量OA =a ,OB =b 为邻边的平行四边形,C 为对角线的交点.又11,33BM BC CN CD == ,试用a ,b 表示,.OM ON。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 3.1 平面向量基本定理
教学目标:
(1)了解平面向量基本定理;
(2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量 解决实际问题的重要思想方法;
(3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 教学重点:平面向量基本定理.
教学难点:平面向量基本定理的理解与应用. 教学过程: 一、 复习引入:
1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa
(1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a
方向相反;λ=0时λa
=
2.运算定律
结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa
+λb 3. 向量共线定理 向量b 与非零向量a
共线的充要条件是:有且只有一个非零实数λ,使b =λa .
二、讲解新课:
平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a
,有且只有一对实数λ1,λ
2使
a
=λ11e +λ22e .
探究:
(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线;
(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解; (4) 基底给定时,分解形式惟一. λ1,λ2是被
a
,1e ,2e 唯一确定的数量
三、讲解范例:
例1 已知向量1e ,2e 求作向量-2.51e +32e .
例2 如图
ABCD 的两条对角线交于点M ,且=a
,
=b ,用a ,b
表示,,和
例3已知
ABCD 的两条对角线AC 与BD 交于E ,O
是任意一点,求证:+++=4
例4(1)如图,,不共线,=t (t ∈R)用,表示.
(2)设OA 、OB 不共线,点P 在O 、A 、B 所在的平面内,且
(1)()OP t OA tOB t R =-+∈.求证:A 、B 、P 三点共线.
例5 已知 a =2e 1-3e 2,b = 2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2,问是否存在这样的实数,d a b λμλμ=+、使与c 共线.
四、课堂练习:见教材 五、小结(略) 六、课后作业(略): 七、板书设计(略) 八、教学反思
2.3.1平面向量的基本定理
课前预习学案
一、预习目标:通过回顾复习向量的线性运算,提出新的疑惑.为新授内容做好铺垫. 二、预习内容 (一)复习回顾
1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa
(1)|λa |= ;(2)λ>0时λa 与a 方向 ;λ<0时λa 与a
方向 ;λ=0时λa
=
2.运算定律
结合律:λ(μa )= ;分配律:(λ+μ)a = , λ(a +b
)= .
3. 向量共线定理 向量b 与非零向量a
共线的充要条件是:有且只有一个非零实数λ,
使 .
(二)阅读教材,提出疑惑:
如何通过向量的线性运算来表示出平面内的任意向量?
课内探究学案
一、学习目标 1、知道平面向量基本定理;
2、理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步应用向量解决实际问题;
3、能够在具体问题中适当地选取基底,使其他向量都能够用基底来表示. 学习重难点:
1. 教学重点:平面向量基本定理
2. 教学难点:平面向量基本定理的理解与应用 二、学习过程 (一)定理探究:
平面向量基本定理:
探究:
(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的 ; (2) 基底不惟一,关键是 ;
(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解;
(4) 基底给定时,分解形式 . 即λ1,λ2是被a
,1e ,2e 唯一确定的数量 (二)例题讲解
例1 已知向量1e ,2e 求作向量-2.51e +32e .
例2、如图
ABCD 的两条对角线交于点M ,且AB =a ,AD =b ,用a ,b
表示MA ,
,MC 和
例3已知
ABCD 的两条对角线AC 与BD 交于E ,O 是任意一点,求证:
OA +OB +OC +OD =4OE
例4(1)如图,,不共线,=t (t ∈R)用,表示.
(2)设OA 、OB 不共线,点P 在O 、A 、B 所在的平面内,且(1)()OP t OA tOB t R =-+∈.求证:A 、B 、P 三点共线.
例5 已知 a =2e 1-3e 2,b = 2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2,问是否存在这样的实数,d a b λμλμ=+、使与c 共线.
(三)反思总结
课后练习与提高
1.设e 1、e 2是同一平面内的两个向量,则有( ) A.e 1、e 2一定平行 B .e 1、e 2的模相等
C.同一平面内的任一向量a都有a =λe1+μe2(λ、μ∈R)
D.若e1、e2不共线,则同一平面内的任一向量a都有a =λe1+u e2(λ、u∈R)
2.已知向量a = e1-2e2,b =2e1+e2,其中e1、e2不共线,则a+b与c =6e1-2e2的关系
A.不共线
B.共线
C.相等
D.无法确定
3.已知向量e1、e2不共线,实数x、y满足(3x-4y)e1+(2x-3y)e2=6e1+3e2,则x-y的值等于( )
A.3
B.-3
C.0
D.2
4.已知a、b不共线,且c =λ1a+λ2b(λ1,λ2∈R),若c与b共线,则λ1= .
5.已知λ1>0,λ2>0,e1、e2是一组基底,且a =λ1e1+λ2e2,则a与e1_____,a与e2_________(填共线或不共线).。