初中数学尺规作图专题训练

合集下载

初中数学尺规作图经典练习题

初中数学尺规作图经典练习题

班级 姓名
作图练习题
在几何里把限定用无刻度的直尺和圆规来画图,称为尺规作图。

1.画一条线段等于已知线段
2.画一个角等于已知角
A B
3.画一个角的平分线
4.画线段的垂直平分线
5、已知线段和,如下图,求作一线段,使它的长度等于+2.
6、如图,已知∠A 、∠B ,求作一个角,使它等于∠∠B.
7、如图,已知∠与M 、N 两点,求作:点P ,使点P 到∠的两边距离相等,
且到M 、N 的两点也距离相等。

O
B
A
B
A
李庄B
张庄A
8、张庄A、李庄B位于河沿L的同侧,现在河沿L上修一泵站C向张庄A、李庄B供水,问泵站修在河沿L的什么地方,所用水管最少?
1、己知三边求作三角形:己知一个三角形三条边分别为a,b,c求作这个三角形。

2、己知三角形的两条边与其夹角,求作三角形:
已知一个三角形的两条边分别为a,b,这两条边夹角为∠a,求作这个三角形
3. 如图,某住宅小区拟在休闲场地的三条道路上修建三个凉亭A、B、C且凉亭用两两连通。

如果凉亭A、B的位置已经选定,则凉亭C建在什么位置,才能使工程造价最低?请用尺规作出图形,保留作图痕迹。

4、如图,一个人从点P出发,到条形草地处让马吃草,然后到河流处让马喝水,最后回到点P ,他应该怎样走,行程才最短?。

初中数学中考复习尺规作图题专项练习及答案解析(专题试卷50道)

初中数学中考复习尺规作图题专项练习及答案解析(专题试卷50道)

初中数学中考复习作图题专项练习及答案解析(专题试卷50道)一、选择题1、数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.2、如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是A.B.C.D.3、如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()4、下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.5、任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形D.△EHF为等腰三角形6、用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形7、如图,在▱ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB、AD于点E、F;再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是()A. AG平分∠DABB. AD=DHC. DH=BCD. CH=DH8、如图,已知钝角三角形ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以点C为圆心,CA为半径画弧①;步骤2:以点B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC的延长线于点H.下列叙述正确的是:A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC·AH D.AB=AD二、填空题9、阅读下面材料:在数学课上,老师提出如下问题:所以PB和PC就是所求的切线.请回答:小涵的作图依据是.10、如图,在△ABC中,∠ACB=80°,∠ABC=60°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF 的长为半径画弧,两弧相交于点G;③作射线AG交BC于点D.则∠ADB的度数为°.11、如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径做弧,两弧相交于点P和Q.②作直线PQ交AB于点D,交BC于点E,连接AE.若CE=4,则AE= .12、如图,在△ABC中,AB>AC.按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N;作直线MN交AB于点D;连结CD.若AB=6,AC=4,则△ACD的周长为.三、计算题13、如图,已知线段a和h.求作:△ABC,使得AB=AC,BC=a,且BC边上的高AD=h.要求:尺规作图,不写作法,保留作图痕迹.14、如图所示,点C、D是∠AOB内部的两点.(1)作∠AOB的平分线OE;(2)在射线OE上,求作一点P,使PC=PD.(要求用尺规作图,保留作图痕迹)四、解答题15、如图,已知等腰直角△ABC,∠A=90°.(1)利用尺规作∠ABC的平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)若将(1)中的△ABD沿BD折叠,则点A正好落在BC边上的A1处,当AB=1时,求△A1DC的面积.16、(8分)如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹);(2)连结AP,若AC=4,BC=8时,试求点P到AB边的距离.17、已知△ABC,用直尺和圆规作△ABC的角平分线CD和高AE.(不写画法,保留作图痕迹)18、数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:(1)李老师用尺规作角平分线时,用到的三角形全等的判定方法是_________.(2)小聪的作法正确吗?请说明理由.(3)请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)19、如图,∠AOB=30°,OA表示草地边,OB表示河边,点P表示家且在∠AOB内.某人要从家里出发先到草地边给马喂草,然后到河边喂水,最后回到家里.(1)请用尺规在图上画出此人行走的最短路线图(保留作图痕迹,不写作法和理由).(2)若OP=30米,求此人行走的最短路线的长度.20、如图,在△ABC中,AB=AC=8cm,∠BAC=120°.(1)作△ABC的外接圆(只需作出图形,并保留作图痕迹);(2)求它的外接圆半径.21、某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.(1)请找出截面的圆心;(不写画法,保留作图痕迹.)(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.22、如图,已知△ABC,用直尺和圆规求作一直线AD,使直线过顶点A,且平分△ABC的面积(不需写作法,保留作图痕迹)23、高致病性禽流感是比SARS传染速度更快的传染病.为防止禽流感蔓延,政府规定:离疫点3km范围内为扑杀区;离疫点3km~5km范围内为免疫区,对扑杀区与免疫区内的村庄、道路实行全封闭管理.现有一条笔直的公路AB通过禽流感病区,如图,在扑杀区内公路CD长为4km.(1)请用直尺和圆规找出疫点O(不写作法,保留作图痕迹);(2)求这条公路在免疫区内有多少千米?24、作图题:如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).(1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B、C两点的对应点B′、C′的坐标.25、如图,⊙O为△ABC的外接圆,直线l与⊙O相切与点P,且l∥BC.(1)请仅用无刻度的直尺,在⊙O中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法);(2)请写出证明△ABC被所作弦分成的两部分面积相等的思路.26、如图,107国道OA和302国道OB在甲市相交于点O,在∠AOB的内部有工厂C和D,现要修建一个货站P,使P到OA,OB的距离相等,且使PC=PD,试确定出点P的位置.(不写作法,保留作图痕迹,写出结论)27、用尺规作图从△ABC(CB<CA)中裁出一个以AB为底边的等腰△ABD,并使得△ABD的面积尽可能大(保留作图痕迹,不要求写作法、证明)28、如图,已知△ABC,利用尺规完成下列作图(不写画法,保留作图痕迹).(1)作△ABC的外接圆;(2)若△ABC所在平面内有一点D,满足∠CAB=∠CDB,BC=BD,求作点D.29、如图,点A是半径为3的⊙O上的点,(1)尺规作图:作⊙O的内接正六边形ABCDEF;(2)求(1)中的长.30、已知,如图,直线AB与直线BC相交于点B,点D是直线BC上一点,直线DE∥AB,且点E到B,D两点的距离相等.(1)用尺规作图作出点E;(不写作法,保留作图痕迹)(2)连接BE,求证:BD平分∠ABE.31、如图,BC是⊙O的一个内接正五边形的一边,请用等分圆周的方法,在⊙A中用尺规作图作出一个⊙A的内接正五边形(请保留作图痕迹).32、已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.33、如图,已知△ABC,用直尺(没有刻度)和圆规在平面上求作一个点P,使P到∠B两边的距离相等,且PA=PB.(不要求写作法,但要保留作图痕迹)34、如图,在△ABC中,AB=AC=8cm,∠BAC=120°.(1)作△ABC的外接圆(只需作出图形,并保留作图痕迹);(2)求它的外接圆半径.35、如图,已知等腰直角△ABC,∠A=90°.(1)利用尺规作∠ABC的平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)若将(1)中的△ABD沿BD折叠,则点A正好落在BC边上的A1处,当AB=1时,求△A1DC的面积.36、如图,△ABC中,∠C=90°,小王同学想作一个圆经过A、C两点,并且该圆的圆心到AB、AC距离相等,请你利用尺规作图的办法帮助小王同学确定圆心D.(不写作法,保留作图痕迹).37、如图,将矩形ABCD沿对角线AC折叠,点B落在点E处,请用尺规作出点E.(不写画法,保留作图痕迹)38、如图,在等腰直角△ABC中,∠ACB=90°,AC=1.(1)作⊙O,使它过点A、B、C(要求:尺规作图,保留作图痕迹,不写作法).(2)在(1)所作的圆中,求出劣弧BC的长.39、如图,在△ABC中,∠C=90°,∠B=30°.(1)作∠CAB的平分线,交BC边于点D(用尺规作图,保留作图痕迹,不要求写作法和证明);(2)求S△ACD:S△ABC的值.40、如图,某地有两所大学和两条交叉的公路.图中点M,N表示大学,OA,OB表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计.(尺规作图,不写作法,保留作图痕迹)41、如图,AE∥BF,AC平分∠BAE,交BF于C.(1)尺规作图:过点B作AC的垂线,交AC于O,交AE于D,(保留作图痕迹,不写作法);(2)在(1)的图形中,找出两条相等的线段,并予以证明.42、▱ABCD中,点E在AD上,DE=CD,请仅用无刻度的直尺,按要求作图(保留作图痕迹,不写作法)(1)在图1中,画出∠C的角平分线;(2)在图2中,画出∠A的角平分线.43、如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)44、从△ABC(CB<CA)中裁出一个以AB为底边的等腰△ABD,并使得△ABD的面积尽可能大.(1)用尺规作图作出△ABD.(保留作图痕迹,不要求写作法、证明)(2)若AB=2m,∠CAB=30°,求裁出的△ABD的面积.45、如图,在中,.(1)利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)①作的垂直平分线,交于点,交于点;②以为圆心,为半径作圆,交的延长线于点.⑵在⑴所作的图形中,解答下列问题.①点与的位置关系是_____________;(直接写出答案)②若,,求的半径.46、在数轴上作出表示的点(保留作图痕迹,不写作法).47、△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.按要求作图:①画出△ABC关于原点O的中心对称图形△A1B1C1;②画出将△ABC绕点C顺时针旋转90°得到△A2B2C.48、如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么(保留作图痕迹,不写作法和证明)理由是:.49、如图,已知线段a和b,a>b,求作直角三角形ABC,使直角三角形的斜边AB=a,直角边AC=b.(用尺规作图,保留作图痕迹,不要求写作法)50、如图,已知⊙O,用尺规作⊙O的内接正四边形ABCD.(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)参考答案1、A.2、D3、D4、B5、B.6、B7、D8、A9、直径所对的圆周角是直角.10、100.11、8.12、10.13、见解析14、见解析15、(1)详见解析;(2).16、(1)、答案见解析;(2)、5.17、答案见解析18、(1)SSS;(2)、理由见解析;(3)、答案见解析19、(1)、答案见解析;(2)、30m.20、(1)、答案见解析;(2)、r=8cm 21、(1)见试题解析;(2)这个圆形截面的半径是10cm.22、答案见解析23、(1)作图详见解析;(2)(﹣4)千米.24、(1)图形详见解析;(2) B′(﹣6,2),C′(﹣4,﹣2).25、26、作图详见解析.27、28、(1)作图见解析(2)作图见解析29、(1)见试题解析;(2)2π.30~33、详见解析.34、(1)、答案见解析;(2)、r=8cm35、(1)、答案见解析;(2)、36、作图参见解析.37、作图参见解析.38、(1)作图参见解析;(2)π.39、(1)作图见解析(2)1:340、答案见解析41、(1)作图见解解析;(2)AB=AD=BC.42、作图参见解析.43、44、(1)如图;(2)m245、(1)作图见解析;(2)①点B在⊙O上;②5.46、47、见解析48、见解析49、见解析50、答案见解析.答案详细解析【解析】1、试题分析:A、根据作法无法判定PQ⊥l;B、以P为圆心大于P到直线l的距离为半径画弧,交直线l,于两点,再以两点为圆心,大于它们的长为半径画弧,得出其交点,进而作出判断;C、根据直径所对的圆周角等于90°作出判断;D、根据全等三角形的判定和性质即可作出判断.故选:A.考点:作图—基本作图.2、试题分析:由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.故选D.考点:作图—复杂作图3、试题分析:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选D.考点:基本作图4、试题分析:过点A作BC的垂线,垂足为D,故选B.考点:作图—基本作图.5、试题分析:根据线段垂直平分线的性质可得EG=EH=FH=GF,由此可得选项A正确,选项B错误,选项C、正确,选项D正确.故答案选B.考点:线段垂直平分线的性质.6、试题分析:根据作图的痕迹以及菱形的判定方法解答.解:由作图痕迹可知,四边形ABCD的边AD=BC=CD=AB,根据四边相等的四边形是菱形可得四边形ABCD是菱形.故选B.7、试题分析:由角平分线的作法,依题意可知AG平分∠DAB,A正确;∠DAH=∠BAH,又AB∥DC,所以∠BAH=∠ADH,所以,∠DAH=∠ADH,所以,AD=DH,又AD=BC,所以,DH =BC,B、C正确,故答案选D.考点:平行四边形的性质;平行线的性质.8、试题分析:由作法可得BH为线段AD的垂直平分线,故答案选A.考点:线段垂直平分线的性质.9、试题分析:∵OP是⊙A的直径,∴∠PBO=∠PCO=90°,∴OB⊥PB,OC⊥PC,∵OB、OC是⊙O的半径,∴PB、PC是⊙O的切线;则小涵的作图依据是:直径所对的圆周角是直角.故答案为:直径所对的圆周角是直角.【考点】切线的判定;作图—复杂作图.10、试题解析:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠ACB=80°,∠ABC=60°,∴∠CAB=40°,∴∠BAD=20°;在△ADC中,∠B=60°,∠CAD=20°,∴∠ADB=100°,考点:作图—基本作图.11、试题解析:由题意可得出:PQ是AB的垂直平分线,∴AE=BE,∵在△ABC中,∠C=90°,∠CAB=60°,∴∠CBA=30°,∴∠EAB=∠CAE=30°,∴CE=AE=4,∴AE=8.考点:1.作图—复杂作图;2.线段垂直平分线的性质;3.含30度角的直角三角形.12、试题分析:∵分别以点B和点C为圆心,以大于BC一半的长为半径画弧,两弧相交于点M和N,作直线MN.直线MN交AB于点D,连结CD,∴直线MN是线段BC的垂直平分线,∴BD=CD,∴BD+AD=CD+AD=AB,∵AB=6,AC=4,∴△ADC的周长=(CD+AD)+AC=AB+AC=6+4=10.故答案为:10.考点:线段垂直平分线的性质.13、解:如图所示.△ABC就是所求的三角形.14、试题分析:(1)根据赔付风险的画法画出图形即可.(2)画出作线段CD的垂直平分线MN,即可解决问题.解:(1)∠AOB的平分想如图所示,(2)作线段CD的垂直平分线MN与射线OE交于点P.点P就是所求的点.15、试题分析:(1)利用尺规作出∠ABC的平分线BD即可.(2)首先利用勾股定理求出BC,再求出A1C,根据△A1DC的面积=•A1C•A1D计算即可.试题解析:(1)∠ABC的平分线BD,交AC于点D,如图所示,(2)在RT△ABC中,∵∠A=90°,AC=BC=1,∴BC=,∵AB=A1B=AC=1,∴A1C=,∵∠C=45°,∠DA1C=90°,∴∠C=∠A1DC=45°∴△A1DC是等腰直角三角形,∴.考点:翻折变换(折叠问题);作图—基本作图.16、试题分析:(1)、做出线段AB的中垂线得出答案;(2)、设BP=x,则AP=x,CP=BC﹣PB=8﹣x,然后根据Rt△ACP的勾股定理得出答案.试题解析:(1)、如图,点P为所作;(2)、设BP=x,则AP=x,CP=BC﹣PB=8﹣x,在Rt△ACP中,∵PC2+AC2=AP2,∴(8﹣x)2+42=x2,解得x=5,即BP的长为5.考点:勾股定理17、试题分析:根据角平分线的作法以及过直线外一点向直线最垂线的作法得出即可.试题解析:如图所示:CD,AE即为所求.考点:作图—复杂作图.18、试题分析:(1)、本题都是作线段相等,则根据SSS来判定三角形全等;(2)、根据垂直得出∠OMP=∠ONP=90°,然后结合OP=OP,OM=ON得出直角三角形全等;(3)、根据三角形全等的性质得出角平分线.试题解析:(1)、SSS(2)、小聪的作法正确理由:∵PM⊥OM , PN⊥ON ∴∠OMP=∠ONP=90°在Rt△OMP和Rt△ONP中∵OP="OP" ,OM=ON∴Rt△OMP≌Rt△ONP(HL)∴∠MOP=∠NOP ∴OP平分∠AOB(3)、如图所示.步骤:①利用刻度尺在OA、OB上分别截取OG=OH. ②连结GH,利用刻度尺找出GH的中点Q.③作射线OQ.则OQ为∠AOB的平分线.考点:角平分线的做法.19、试题分析:(1)、利用轴对称最短路线求法得出P点关于OA,OB的对称点,进而得出行走路线;(2)、利用等边三角形的判定方法以及其性质得出此人行走的最短路线长为P′P″进而得出答案.试题解析:(1)、如图所示:此人行走的最短路线为:PC→CD→DP;(2)、连接OP′,OP″,由题意可得:OP′=OP″,∠P′OP″=60°,则△P′OP″是等边三角形,∵OP=30米,∴PC+CD+DP=P′P″=30(m),考点:(1)、作图—应用与设计作图;(2)、轴对称-最短路线问题.20、试题分析:(1)、分别作AB和AC的中垂线,他们的交点就是圆心;(1)、连接AO、BO,根据∠BAC的度数以及等腰三角形的性质得出△ABO为等边三角形,然后求出半径. 试题解析:(1)、如图所示:⊙O即为所求的△ABC的外接圆;(2)、连接AO,BO,∵AB=AC=8cm,∠BAC=120°,∴∠BAO=∠CAO=60°,∵AO=BO,∴△ABO是等边三角形,∴AO=AB=8cm,即它的外接圆半径为8cm.考点:(1)、三角形外接圆的作法;(2)、等边三角形的判定与性质21、试题分析:(1)根据尺规作图的步骤和方法做出图即可;(2)先作辅助线,利用垂径定理求出半径,再根据勾股定理计算.试题解析:(1)如图所示;(2)如图,OE⊥AB交AB于点D,则DE=4cm,AB=16cm,AD=8cm,设半径为Rcm,则OD=OE﹣DE=R﹣4,由勾股定理得,OA2=AD2+OD2,即R2=82+(R﹣4)2,解得R=10.故这个圆形截面的半径是10cm.【考点】作图—应用与设计作图;垂径定理的应用.22、试题分析:首先作出BC的垂直平分线,可确定BC的中点记作D,再根据三角形的中线平分三角形的面积画出直线AD即可.试题解析:如图所示:,直线AD即为所求.考点:作图—复杂作图.23、试题分析:(1)在内圆(或外圆)任意作出两条弦,分别作出者两条弦的垂直平分线,它们的交点就是疫点(即圆心O);(2)利用垂径定理求出AB、CD的长度,问题解决.试题解析:(1)作图如下:(2)如图:连接OA、OC,过点O作OE⊥AB于点E,∴CE=CD=2km,AE=AB,在Rt△OCE中,OE==km,在Rt△OAE中,AE==km,∴AB=2AE=km,因此AC+BD=AB﹣CD=﹣4(km).答:这条公路在免疫区内有(﹣4)千米.考点:作图—应用与设计作图.24、试题分析:(1)延长BO到B′,使OB′=2OB,则B′就是B的对应点,同样可以作出C的对称点,则对应的三角形即可得到;(2)根据(1)的作图即可得到B′、C′的坐标.试题解析:(1)△OB′C′是所求的三角形;(2)B′的坐标是(﹣6,2),C′的坐标是(﹣4,﹣2).考点:作图-位似变换.25、试题分析:(1)连结PO并延长交BC于E,过点A、E作弦AD即可;(2)由于直线l与⊙O相切于点P,根据切线的性质得OP⊥l,而l∥BC,则PE⊥BC,根据垂径定理得BE=CE,所以弦AE将△ABC分成面积相等的两部分.试题解析:(1)如图所示:(2)∵直线l与⊙O相切与点P,∴OP⊥l,∵l∥BC,∴PE⊥BC,∴BE=CE,∴弦AE将△ABC分成面积相等的两部分.【考点】作图—复杂作图;三角形的外接圆与外心.26、试题分析:作∠AOB的平分线与线段CD的垂直平分线,两线相交于点P,点P即为所求.试题解析:点P即为所求.考点:作图——应用与设计作图.27、试题分析:利用△ABD是以AB为底边的等腰三角形,则点D在AB的垂直平分线上,于是作AB的垂直平分线交AC于D,则△ABD满足条件.试题解析:如图,△ABD为所作.考点:作图﹣复杂作图.28、试题分析:(1)作出BD、BC的垂直平分线,两线的交点就是⊙O的圆心O的位置,然后以O为圆心AO长为半径画圆即可;(2)以B为圆心,BC长为半径化弧,交⊙O于点D,再连接BD,CD即可.试题解析:(1)如图所示:⊙O即为所求;(2)如图所示:点D即为所求.考点:1、作图—复杂作图;2、圆周角定理;3、三角形的外接圆与外心29、试题分析:(1)由正六边形ABCDEF的中心角为60°,可得△OAB是等边三角形,继而可得正六边形的边长等于半径,则可画出⊙O的内接正六边形ABCDEF;(2)由(1)可求得∠AOC=120°,继而求得(1)中的长.试题解析:(1)首先连接OA,然后以A为圆心,OA长为半径画弧,交⊙O于B,F,再分别以B,F为圆心,OA长为半径画弧,交⊙O于点E,C,在以C为圆心,OA长为半径画弧,交⊙O于点D,则正六边形ABCDEF即为所求;(2)∵正六边形ABCDEF是⊙O的内接正六边形∴∠AOC=120°,∵⊙O的半径为3,∴的长为:=2π.【考点】正多边形和圆;弧长的计算;作图—复杂作图.30、试题分析:(1)、直接利用作一角等于已知角的作法结合线段垂直平分线的作法得出符合题意的图形;(2)、直接利用平行线的性质以及结合线段垂直平分线的性质得出答案.试题解析:(1)、如图所示:点E即为所求;(2)、∵DE∥AB,∴∠ABD=∠BDE,又∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=∠EBD,即BD平分∠ABE.考点:(1)、作图—复杂作图;(2)、平行线的性质;(3)、线段垂直平分线的性质.31、试题分析:如图,①作∠EAF=∠BOA.②在⊙A上截取,则五边形EFGHL即为所求.试题解析:如图,①作∠EAF=∠BOA.②在⊙A上截取.五边形EFGHL即为所求.考点:1、作图—复杂作图;2、正多边形和圆32、试题分析:(1)①以B为圆心,任意长为半径画弧,交AB、BC于F、N,再以F、N为圆心,大于FN长为半径画弧,两弧交于点M,过B、M画射线,交AC于D,线段BD就是∠B的平分线;②分别以A、B为圆心,大于AB长为半径画弧,两弧交于X、Y,过X、Y画直线与AB交于点E,点E就是AB的中点;(2)首先根据角平分线的性质可得∠ABD的度数,进而得到∠ABD=∠A,根据等角对等边可得AD=BD,再加上条件AE=BE,ED=ED,即可利用SSS证明△ADE≌△BDE.试题解析:(1)作出∠B的平分线BD;作出线段AB垂直平分线交AB于点E,点E是线段AB的中点.(2)证明:∵∠ABD=×60°=30°,∠A=30°,∴∠ABD=∠A,∴AD=BD,在△ADE和△BDE中∴△ADE≌△BDE(SSS).考点:作图—复杂作图;全等三角形的判定.33、试题分析:分别作∠B的平分线BE和线段AB的垂直平分线MN,利用角平分线的性质以及线段垂直平分线的性质得出即可.试题解析:如图,点P即为所求点.考点:作图——基本作图;角平分线的性质.34、试题分析:(1)、分别作AB和AC的中垂线,他们的交点就是圆心;(1)、连接AO、BO,根据∠BAC的度数以及等腰三角形的性质得出△ABO为等边三角形,然后求出半径. 试题解析:(1)、如图所示:⊙O即为所求的△ABC的外接圆;(2)、连接AO,BO,∵AB=AC=8cm,∠BAC=120°,∴∠BAO=∠CAO=60°,∵AO=BO,∴△ABO是等边三角形,∴AO=AB=8cm,即它的外接圆半径为8cm.考点:(1)、三角形外接圆的作法;(2)、等边三角形的判定与性质35、试题分析:(1)、利用尺规作出∠ABC的平分线BD即可;(2)、首先利用勾股定理求出BC,再求出A1C,根据△A1DC的面积=•A1C•A1D计算即可.试题解析:(1)、∠ABC的平分线BD,交AC于点D,如图所示,(2)、在RT△ABC中,∵∠A=90°,AC=BC=1,∴BC=,∵AB=A1B=AC=1,∴A1C=-1,∵∠C=45°,∠DA1C=90°,∴∠C=∠A1DC=45°∴△A1DC 是等腰直角三角形,∴S=.考点:(1)、翻折变换(折叠问题);(2)、作图—基本作图.36、试题分析:根据角平分线的性质定理和线段垂直平分线的性质定理,先作∠BAC的平分线AE,再作AC的垂直平分线m交AE于点D,则点D满足条件.试题解析:如图,先作∠BAC的平分线AE,再作AC的垂直平分线m交AE于点D,点D为所作.考点:作图—复杂作图.37、试题分析:以点A为圆心以AB长为半径作弧,以C为圆心以BC长为半径作弧,两弧相交于点E.试题解析:以点A为圆心以AB长为半径作弧,以C为圆心以BC长为半径作弧,如图所示:两弧相交于点E.则点E即为所求.考点:1.翻折变换(折叠问题);2.矩形的性质.38、试题分析:(1)先找到圆心,作线段AB的垂直平分线交AB于O点,然后以O为圆心,OA为半径画圆即可;(2)先利用等腰直角三角形的性质求出AB的长,那么OB=OA=AB,又∠BOC=90°,将它们代入弧长公式计算即可.试题解析:(1)如图,作线段AB的垂直平分线交AB于O点,然后以O为圆心,OA为半径画圆,⊙O即为所作;(2)∵在等腰直角△ABC中,∠ACB=90°,AC=1,∴AB=AC=,∵线段AB的垂直平分线交AB于O点,∴∠BOC=90°,OB=OA=AB=,∴劣弧BC的长=π.考点:1.弧长的计算;2.作图—复杂作图.39、试题分析:(1)根据角平分线的基本作图画图即可;(2)根据角平分线的性质的到边之间的关系,然后根据三角形的面积公式计算即可.试题解析:(1)如图所示,AD为所求的角平分线;(2)∵∠C=90°,∠B=30°,∴∠CAB =60°,∵AD平分∠CAB,∴∠CAD ="∠DAB" =30°,∵∠ACD=90°,∴AD=2CD,∵∠B=30°,∴∠B=∠DAB,∴AD= BD,∴BD=2CD,∴BC=3CD,∵,,∴.考点:角平分线40、试题分析:作∠AOB的角平分线和线段MN的中垂线,两条直线的交点就是点P的位置.试题解析:如图所示:点P就是所求的点.考点:(1)、角平分线的作法;(2)、线段的中垂线的作法41、试题分析:(1)利用基本作图作BO⊥AC即可;(2)先利用平行线的性质得∠EAC=∠BCA,再根据角平分线的定义和等量代换得到∠BCA=∠BAC,则BA=BC,然后根据等腰三角形的判定方法由BD⊥AO,AO平分∠BAD得到AB=AD,所以AB=AD=BC.试题解析:(1)如图,BO为所作;(2)AB=AD=BC.证明如下:∵AE∥BF,∴∠EAC=∠BCA,∵AC平分∠BAE,∴∠EAC=∠BAC,∴∠BCA=∠BAC,∴BA=BC,∵BD⊥AO,AO平分∠BAD,∴AB=AD,∴AB=AD=BC.考点:作图—基本作图;作图题.42、试题分析:(1)连结CE,由DE=DC得到∠DEC=∠DCE,由AD∥BC得∠DEC=∠BCE,则∠DCE=∠BCE,即CE平分∠BCD;(2)连结AC、BD,它们相交于点O,延长EO交BC于F,则AF为所作.试题解析:(1)如图1,由DE=DC得到∠DEC=∠DCE,由AD∥BC得∠DEC=∠BCE,则∠DCE=∠BCE,即CE平分∠BCD.CE为所求作;(2)如图2,连结AC、BD,它们相交于点O,延长EO交BC于F,则AF为所作.因为三角形BOF和三角形DOE全等,导出BF=DE=AB=CD,从而得出∠BAF=∠BFA=∠FAD,则AF是所求作的角平分线.考点:1.基本作图;2.三角形全等的判定与性质;3.平行四边形的性质.43、试题分析:根据点P到∠AOB两边距离相等,到点C、D的距离也相等,点P既在∠AOB的角平分线上,又在CD垂直平分线上,即∠AOB的角平分线和CD垂直平分线的交点处即为点P.解:如图所示:作CD的垂直平分线,∠AOB的角平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.P和P1都是所求的点.点评:此题主要考查了线段的垂直平分线和角平分线的作法.这些基本作图要熟练掌握,注意保留作图痕迹.44、试题分析:(1)直接利用线段垂直平分线的性质作出AB的垂直平分线,交AC于点D,进而得出△ABD;(2)利用锐角三角形关系得出DE的长,进而利用三角形面积求法得出答案.试题解析:(1)如图所示:△ABD即为所求;(2)∵MN垂直平分AB,AB=2m,∠CAB=30°,∴AE=1m,则tan30°=,解得:DE=.故裁出的△ABD的面积为:×2×=(m2).考点:作图—复杂作图.45、试题分析:(1)先作AC的垂直平分线,然后作⊙O;(2)①通过证明OB=OA来判断点在⊙O上;②设⊙O的半径为r,在Rt△AOD中利用勾股定理得到r2=42+(r-2)2,然后解方程求出r 即可.试题解析:(1)如图所示;。

初中数学-尺规作图专项训练

初中数学-尺规作图专项训练

……○…………装…………○…○…________姓名:___________班______……○…………装…………○…○…注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.如图,已知线段a 、b(a >b),画一条线段AD ,使它等于2a-b ,正确的画法是( )A .B .C .D .2.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2x ,y+1),则y 关于x 的函数关系为( )A .y=xB .y=-2x-1C .y=2x-1D .y=1-2x3.给出下列关于三角形的条件:①已知三边;②已知两边及其夹角;③已知两角及其夹边;④已知两边及其中一边的对角.利用尺规作图,能作出唯一的三角形的条件是( ) A .①②③ B .①②④ C .②③④ D .①③④4.尺规的作图是指( ) A .用直尺规范作图 B .用刻度尺和圆规作图C .用没有刻度的直尺和圆规作图D .直尺和圆规是作图工具5.如图,用尺规作出∠OBF=∠AOB ,作图痕迹MN̂是( )A .以点B 为圆心,OD 为半径的圆……○……………装…………………订………线……学校:___________姓名:_班级:__________……○……………装…………………订………线…… 6.用直尺和圆规作一个角等于已知角,如图,能得出∠A'O'B'=∠AOB 的依据是( )A .(SAS)B .(SSS)C .(ASA)D .(AAS)7.如图,矩形ABCD 中,AD=3AB ,O 为AD 中点,AD̂是半圆.甲、乙两人想在AD ̂上取一点P ,使得△PBC 的面积等于矩形ABCD 的面积其作法如下:(甲) 延长BO 交AD̂于P 点,则P 即为所求; (乙) 以A 为圆心,AB 长为半径画弧,交AD̂于P 点,则P 即为所求. 对于甲、乙两人的作法,下列判断何者正确?( )A .两人皆正确B .两人皆错误C .甲正确,乙错误D .甲错误,乙正确8.在学习“用直尺和圆规作一个角等于已知角”时,教科书介绍如下:作法:(1)如图所示,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ; (2)画一条射线O'A',以点O'为圆心,OC 长为半径画弧,交O'A'于点C'; (3)以点C'为圆心,CD 长为半径画弧,与第2步中所画的弧相交于点D'; (4)过点D'画射线O'B',则∠A'O'B'=∠AOB对于“想一想”中的问题,下列回答正确的是( )A .根据“边边边”可知,△C'O'D'≌△COD ,所以∠A'O'B'=∠AOB B .根据“边角边”可知,△C'O'D'≌△COD ,所以∠A'O'B'=∠AOBC .根据“角边角”可知,△C'O'D'≌△COD ,所以∠A'O'B'=∠AOB D .根据“角角边”可知,△C'O'D'≌△COD ,所以∠A'O'B'=∠AOB9.用直尺和圆规作一个角等于已知角,如图,能得出的依据是( )A .边边边B .边角边C .角边角D .角角边…○…………外…………○………订…………○…___________班级:_____考号:__________…○…………内…………○………订…………○…10.用尺规作已知角的平分线的理论依据是( ) A .SAS B .AASC .SSSD .ASA第Ⅱ卷(非选择题)二、填空题11.如图,在△ABC 中,∠C=90°,∠CAB=60°,按以下步骤作图: ①分别以A ,B 为圆心,以大于12AB 的长为半径做弧,两弧相交于点P 和Q . ②作直线PQ 交AB 于点D ,交BC 于点E ,连接AE .若CE=4,则AE=______.12.在右图的网格中,每个小正方形的边长均为1cm .请你在网格中画出一个顶点都在格点上,且周长为12cm 的三角形______.13.画线段AB ;延长线段AB 到点C ,使BC=2AB ;反向延长AB 到点D ,使AD=AC ,则线段CD=______AB .14.已知∠a 和线段m ,n ,求作△ABC ,使BC=m ,AB=n ,∠ABC=∠α,作法的合理顺序为______(填序号1,2等即可).①在射线BD 上截取线段BA=n ;②作一条线段BC=m ;③以B 为顶点,以BC 为一边,作角∠DBC=∠α;④连接AC ,△ABC 就是所求作的三角形.15.如图,正方形网格的边长为1点P 是∠AOB 的边OB 上的一点. (1)过点P 画OB 的垂线,交OA 于点C ; (2)过点P 画OA 的垂线,垂足为H ;(3)点P 到OA 的距离为______,因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC 、PH 、OC 这三条线段大小关系是______.(用“<”号连接)16.已知:如图∠AOB ,OC 是∠AOB 的角平分线,按照要求完成如下操作,并回答问题: (1)在OC 上任取一点P ,分别画出点P 到OA 、OB 的距离PD 和PE ;…………外…………装…………订…………………线……学校:___________姓名:___________考号:_____…………内…………装…………订…………………线……17.如图,在Rt △ABC 中,∠ACB=90°.(1)用尺规在边BC 上求作一点P ,使PA=PB(不写作法,保留作图痕迹) (2)连接AP ,当∠B 为______度时,AP 平分∠CAB .18.如图,线段AB 、BC 、CA .(1)画线段AB 的中点D ,并连接CD ; (2)过点C 画AB 的垂线,垂足为E ; (3)过点E 画AC 的平行线,交BC 于F ; (4)画∠BAC 的平分线,交CD 于G ;(5)△ACD 的面积______△BCD 的面积(填“=”或“≠”)19.如图,方格图中每个小格的边长为1,仅用直尺过点C 画线段CD ,使CD ∥AB ,D 是格点,过C 作AB 的垂线CH ,垂足为H .连结BC 、AD .(1)试猜想:线段BC 与线段AD 的关系为______; (2)请计算:四边形ABCD 的面积为______;(3)若线段AB 的长为m ,则线段CH 长度为______.(用含m 的代数式表示)20.如图,在△ABC 中,AC=BC ,∠B=70°,分别以点A 、C 为圆心,大于12AC 的长为半径作弧,两弧相交于点M 、N ,作直线MN ,分别交AC 、BC 于点D 、E ,连结AE ,则∠AED 的度数是______°.………外…………………装……………订………线……学校:___________姓名:___:___________考号:………内…………………装……………订………线……三、解答题(1)在图(1)中用直尺和圆规把三角形分成两个全等的三角形; (2)在图(2)中把三角形分成三个全等的三角形(只须画出示意图);在图(3)中把三角形分成四个全等的三角形(只须画出示意图);(3)在图(4)中,P 、Q 分别是AB 、AC 上的点,BQ 、CP 交于点O ,∠BOC=120°,试说明△APC ≌△BQC .22.(0分)作图题:学过用尺规作线段与角后,就可以用尺规画出一个与已知三角形一模一样的三角形来.比如给定一个△ABC ,可以这样来画:先作一条与AB 相等的线段A'B',然后作∠B'A'C'=∠BAC ,再作线段A'C'=AC ,最后连结B'C',这样△A'B'C'就和已知的△ABC 一模一样了.请你根据上面的作法画一个与给定的三角形一模一样的三角形来.(请保留作图痕迹)23.(0分)如图,已知用尺规将三等分一个任意角是不可能的,但对于一些特殊角则可以利用作等边三角形的方法三等分,请用直尺和圆规把平角CDE 和∠AOB=45°这两个角三等分(尺规作图,要求保留作图痕迹,不必写出作法).24.(0分)已知:点A .求作:(1)⊙O ,使它经过点A ;(2)直角三角形ABC ,使它内接于⊙O ,并且∠B=90度.(说明:要求写出作法,只要求作出符合条件的一个圆和一个三角形.)…………外………○…………装………○…………订………○…………线……学___________姓名:_______班级:___________考号:________…………内………○…………装………○…………订………○…………线……25.(0分)如果一个点能与另外两个点能构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD 中,点C 与A ,B 两点可构成直角三角形ABC ,则称点C 为A ,B 两点的勾股点.同样,点D 也是A ,B 两点的勾股点.(1)如图1,矩形ABCD 中,AB=2,BC=1,请在边CD 上作出A ,B 两点的勾股点(点C 和点D 除外)(要求:尺规作图,保留作图痕迹,不要求写作法);(2)矩形ABCD 中,AB=3,BC=1,直接写出边CD 上A ,B 两点的勾股点的个数;(3)如图2,矩形ABCD 中,AB=12,BC=4,DP=4,DM=8,AN=5.过点P 作直线l 平行于BC ,点H 为M ,N 两点的勾股点,且点H 在直线l 上.求PH 的长.26.(0分)如图,请你在下列各图中,过点P 画出射线AB 或线段AB 的垂线.27.(0分)已知线段a 、b(如图),用直尺和圆规画线段c ,使c=2a-b .(保留作图痕迹,写出画法)28.(0分)作出你喜欢的一个圆内接正多边形,(尺规作图,保留作图痕迹,并直接写出该正多边形的边长,假设圆的半径为r)边长用含r 代数式表示.29.(0分)作图题(要求用直尺和圆规作图,写出作法,保留作图痕迹,不要求写出证明过程) 已知:圆(如图)求作:一条线段,使它把已知圆分成面积相等的两部分. 作法:………外……………装…………○…………○…………学校:___________姓名:_________考号:___________………内……………装…………○…………○…………30.(0分)如图(1),凸四边形ABCD ,如果点P 满足∠APD=∠APB=α,且∠BPC=∠CPD=β,则称点P 为四边形ABCD 的一个半等角点.(1)在图(2)正方形ABCD 内画一个半等角点P ,且满足α≠β;(2)在图(3)四边形ABCD 中画出一个半等角点P ,保留画图痕迹(不需写出画法).31.(0分)文文和彬彬在完成作业,“如图在△ABC 中,AB=AC=10,BC=8.画出中线AD 并求中线AD 的长.”时她们对各自所作的中线AD 描述如图: 文文:“过点A 作BC 的垂线AD ,垂足为D ,AD 就是△ABC 的中线”; 彬彬:“作△ABC 的角平分线AD ,AD 就是△ABC 的中线”.那么: (1)上述作法你认为是两位同学的作法谁的较好? (2)请你根据中线作法帮她求出AD 的长?32.(0分)如图,已知E 是平行四边形ABCD 的边AB 上的点,连接DE . (1)在∠ABC 的内部,作射线BM 交线段CD 于点F ,使∠CBF=∠ADE ; (要求:用尺规作图,保留作图痕迹,不写作法和证明) (2)在(1)的条件下,求证:△ADE ≌△CBF .33.(0分)如图,在直角坐标平面中,O 为原点,点A 的坐标为(20,0),点B 在第一象限内,BO=10,sin ∠BOA=35.(1)在图中,求作△ABO 的外接圆(尺规作图,不写作法但需保留作图痕迹); (2)求点B 的坐标与cos ∠BAO 的值;……○………………○……装………………订○………线……学_____姓名:___级:________________……○………………○……装………………订○………线……34.(0分)如图,作线段d ,使得d=a+b+c .35.(0分)如图:在Rt △ABC 中,∠C=90°,BC=6,∠A=30°,边AB 的垂直平分线和AC 相交于点M ,和AB 相交于点N .(1)作出直线MN(要求用尺规作图,不写作法,保留作图痕迹); (2)求线段MN 的长.36.(0分)已知平行四边形ABCD ,AB=3,AD=5.(1)先用尺规作出∠ABC 的角平分线交边AD 于E ,再用尺规在边BC 上找出点F ,使得BF=EF . (2)若在平行四边形ABCD 做随机投一枚小针的实验,则落在△BEF 内的概率是多少?37.(0分)如图,在△ABC 中,AB=AC ,AD ⊥BC ,AE ∥BC .(1)作∠ADC 的平分线DF ,与AE 交于点F ;(用尺规作图,保留作图痕迹,不写作法) (2)在(1)的条件下,若AD=2,求DF 的长.38.(0分)如图,OA 是⊙O 的半径,OA=1.(1)求作:半径OA 的垂直平分线,与⊙O 交于点B 、C ;(保留作图痕迹,不写作法和证明) (2)求劣弧BC 的长.(结果保留π)………○……外…………○……○……订………………线…………_______班级______考号:__………○……内…………○……○……订………………线…………39.(0分)根据下列要求画图(不写画法,保留作图痕迹): (1)已知线段a 、b ,求作线段AB ,使AB=2a-b .(2)已知∠α、∠β,求作∠AOB ,使∠AOB=∠α-∠β.40.(0分) 已知△ABC 中,∠A=25°,∠B=40°.(1)求作:⊙O ,使得⊙O 经过A 、C 两点,且圆心O 落在AB 边上.(要求尺规作图,保留作图痕迹,不必写作法)(2)求证:BC 是(1)中所作⊙O 的切线.41.(0分)已知:∠α和线段m 、n .求作:△ABC ,使∠A=∠α,AB=m ,BC=n .(用尺规作图,不写作法,保留作图痕迹.)42.(0分)阅读下列材料:正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫格点三角形.数学老师给小明同学出了一道题目:在图1正方形网格(每个小正方形边长为1)中画出格点△ABC ,使AB=AC=√5,BC=√2;小明同学的做法是:由勾股定理,得AB=AC=√22+12=√5,BC=√12+12=√2,于是画出线段AB 、AC 、BC ,从而画出格点△ABC . (1)请你参考小明同学的做法,在图2正方形网格(每个小正方形边长为1)中画出格点△A'B'C'(A'点位置如图所示),使A'B'=A'C'=5,B'C'=√10.(直接画出图形,不写过程);(2)观察△ABC 与△A'B'C'的形状,猜想∠BAC 与∠B'A'C'有怎样的数量关系,并证明你的猜想.43.(0分)已知平面内两点A 、B ,请你用直尺和圆规求作一个圆,使它经过A 、B 两点.(不写作法,保留作图痕迹)……外……○…………装……○……订…………○…线………学校:________:___________班级______考号:________……内……○…………装……○……订…………○…线………44.(0分)如图,已知∠CAB 及边AC 上一点D ,在图中求作∠ADE ,使得∠ADE 与∠CAB 是内错角,且∠ADE=∠CAB .(要求:尺规作图,不写作法,保留作图痕迹)45.(0分)如图,在△ABC 中. (1)画出△ABC 中AB 边上的高CD (2)画出△ABC 中AB 边上的中线CE ;(3)试判断△ACE 和△BCE 面积的大小关系.46.(0分)如图,一块直角三角形纸片,将三角形ABC 沿直线AD 折叠,使AC 落在斜边AB 上,点C 与点E 重合,用直尺圆规作出点E 和直线AD .(要求:尺规作图,保留作图痕迹,不必写作法和证明)47.(0分)图中画出∠A ,∠B 的平分线交于点O .再画出点O 到AB 的垂线段OE ,点O 到BC 的垂线段OF ,(用圆规和三角尺作图,要求保留作图痕迹)48.(0分)已知一个三角形的两边分别为线段a 、b ,并且边a 上的中线为线段c ,求作此三角形.(要求:用尺规作图,写出已知、求作,保留作图痕迹,不写作法,要写结论)已知:求作: 结论:49.(0分)如图所示,已知:∠α、线段a ,求作等腰三角形△ABC ,使底边BC=a ,顶角∠A=∠α.(要求写出作法,并保留作图痕迹)…………线………○…__ …………线………○… 50.(0分)如图,四边形ABCD 中,AD=BC ,AB=CD ,E ,F 分别是AB ,CD 上的点,且∠DAF=∠BCE , (1)求证:AE=CF ;(2)若将此题中的条件改为:“E ,F 分别是AB ,CD 延长线上的点”,其余条件不变,此时,∠ABC=60°,∠BEC=40°,作∠ABC 的平分线BN 交AF 于M ,交AD 于N ,求∠AMN 的度数(要求:画示意图,不写画法,写推理过程)参考答案1.解:如图所示所以选:C2.解:依题意可知出:P点在第二象限的角平分线上∵点P的坐标为(2x,y+1)∴2x=-(y+1)∴y=-2x-1所以选:B3.解:①是边边边(SSS)②是两边夹一角(SAS)③两角夹一边(ASA)都成立依据三角形全等的判定,都可以确定唯一的三角形而④则不能所以选A4.解:依据尺规作图的定义可知:尺规作图是指用没有刻度的直尺和圆规作图所以选C5.解:作∠OBF=∠AOB的作法,由图可知①以点O为圆心,以任意长为半径画圆,分别交射线OA、OB分别为点C,D②以点B为圆心,以OC为半径画圆,分别交射线BO、MB分别为点E,F③以点E为圆心,以CD为半径画圆,交EF̂于点N,连接BN即可得出∠OBF,则∠OBF=∠AOB 所以选D6.解:作图的步骤①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D②任意作一点O',作射线O'A',以O'为圆心,OC长为半径画弧,交O'A'于点C'③以C'为圆心,CD长为半径画弧,交前弧于点D'④过点D'作射线O'B'所以∠A'O'B'就是与∠AOB相等的角作图完毕在△OCD与△O'C'D'{O′C′=OCO′D′=ODC′D′=CD∴△OCD≌△O'C'D'(SSS)∴∠A'O'B'=∠AOB显然运用的判定方法是SSS所以选:B7.解:要使得△PBC的面积等于矩形ABCD的面积需P甲H=P乙K=2AB故两人皆错误所以选:B8.解:由作法易得OD=O'D',OC=O'C',CD=C'D',依据SSS 可判定△COD ≌△C'O'D'.故选:A .9.解:作图的步骤①以O 为圆心,任意长为半径画弧,分别交OA 、OB 于点C 、D②作射线O'B',以O'为圆心,OC 长为半径画弧,交O'B'于点C'③以C'为圆心,CD 长为半径画弧,交前弧于点D'④过点D'作射线O'A'所以∠A'O'B'就是与∠AOB 相等的角在△O'C'D'与△OCD 中{O ′C ′=OCO ′D ′=OD C ′D ′=CD∴△O'C'D'≌△OCD(SSS)∴∠A'O'B'=∠AOB显然运用的判定方法是边边边所以选A10.解:连接NC ,MC在△ONC 和△OMC 中∵{ON =OMNC =MC OC =OC∴△ONC ≌△OMC(SSS)∴∠AOC=∠BOC所以选:C11.解:依题意可知出:PQ 是AB 的垂直平分线∴AE=BE∵在△ABC 中,∠C=90°,∠CAB=60°∴∠CBA=30°∴∠EAB=∠CAE=30°∴CE=12AE =4∴AE=8所以答案是:812.解:13.(1)画线段AB(2)延长线段AB到点C,使BC=2AB(3)反向延长AB到点D,使AD=AC由图可知,BC=2AB,AD=AC=3AB,故CD=6AB14.解:作三角形,使三角形的一角等于已知角,两边等于已知边,作图的顺序应该是2,3,1,415.解:(1)(2)如图(3)点P到OA的距离为PH长,为1在△PHC中,PH<PC,在△OPC中,PC<OC∴PH<PC<OC所以答案是:1;PH<PC<OC16.解:(1)(2)(3)测量得到:PE=PD得到的结论是:角平分线上一点到角的两边的距离相等17.解:(1)如图(2)如图∵PA=PB ∴∠PAB=∠B如果AP是角平分线,则∠PAB=∠PAC∴∠PAB=∠PAC=∠B∵∠ACB=90°∴∠PAB=∠PAC=∠B=30°∴∠B=30°时,AP平分∠CAB所以答案是:3018.解:(1)、(2)、(3)、(4),如下图所示(5)=理由:两三角形同高等底,故面积相等19.解:(1)∵AB=CD=√12+22=√5∴AB∥CD且AB=CD所以答案是:AB∥CD且AB=CD(2)S▱ABCD =3×5-12×1×2-12×1×4-12×1×2-12×1×4=15-1-2-1-2=9所以答案是:9(3)∵AB=√5,S▱ABCD=9∴AB•CH=9,即CH=√5=9√55所以答案是:9√5520.解:∵由作图可知,MN是线段AC的垂直平分线∴CE=AE∴∠C=∠CAE∵AC=BC,∠B=70°∴∠C=40°∴∠AED=50°所以答案是:5021.解:(1)(2)如图所示(3)∵△ABC是等边三角形∴AC=BC,∠A=∠ACB=60°∵∠BOC=120°∴∠QBC+∠PCB=60°∵∠PCB+∠ACP=60°∴∠QBC=∠ACP在△ACP和△BCQ中{∠A=∠BCA AC=BC∠ACP=∠CBQ∴△ACP≌△BCQ(ASA)22.解:如图所示:△A'B'C'即为所求23.解:如图所示,射线DM、DN为平角CDE的三等分线如图所示,射线OP、OQ为∠AOB=45°三等分线24.解:25.解:(1)尺规作图正确(以线段AB为直径的圆与线段CD的交点,或线段CD的中点) (2))∵矩形ABCD中,AB=3,BC=1时∴以线段AB为直径的圆与线段CD的交点有两个,加上C、D两点,总共四个点4个(3)如图,∵矩形ABCD中,AB=12,BC=4,DP=4,DM=8,AN=5过点P作直线l平行于BC,点H为M,N两点的勾股点,且点H在直线l上∴ME=4,NE=3∴MN=5PM=4,PH=2时,HM=2√5构成勾股数同理可得或PH=2或PH'=3PH″=13426.解:如图:27.解作出线段2a得2分,全部作出得2分,画法得2分.(其中必须指出所求作的线段)28.解答:三角形的边长为√3r;正方形的边长为√2r29.解(1)从圆上任意找两条弦(2)分别作这两条弦的垂直平分线(3)垂直平分线的交点就是圆心(4)过圆心画一条直径此直径就是所求的直线30.解(1)所画的点P在AC上且不是AC的中点和AC的端点(如图(2))(2)画点B关于AC的对称点B',延长DB'交AC于点P,点P为所求(不写文字说明不扣分)(说明:画出的点P大约是四边形ABCD的半等角点,而无对称的画图痕迹,给1分)31.解:(1)文文的作法较好(或彬彬的较好)依据三线合一的定理(2)在△ABC中,AB=AC,AD⊥BC ∴AD是△ABC的中线BD=CD=12BC=12×8=4在Rt△ABD中,AB=10,BD=4,AD2+BD2=AB2∴AD=√AB2−BD2=√102−42=2√2132.(1)解:作图基本正确即可评3分(2)证明:∵四边形ABCD是平行四边形∴∠A=∠C,AD=BC…5分∵∠ADE=∠CBF…6分∴△ADE≌△CBF(ASA)33.解:(1)如图所示(2)如图,作BH⊥OA,垂足为H在Rt△OHB中,∵BO=10,sin∠BOA=35∴BH=6∴OH=8∴点B的坐标为(8,6)∵OA=20,OH=8∴AH=12在Rt△AHB中∵BH=6∴AB=√62+122=6√5∴cos∠BAO=AHBA =2√55(3)①当BO=AO时∵AO=20∴OH=10∴点B沿x轴正半轴方向平移2个单位②当AO=AB'时∵AO=20∴AB=20过B'作B'N⊥x轴∵点B的坐标为(8,6)∴B'N=6∴AN=√202−62=2√91∴点B沿x轴正半轴方向平移2√91+20−8=2√91+12个单位③当AO=OB'时∵AO=20∴OB″=20过B″作B″P⊥x轴∵点B的坐标为(8,6)∴B″P=6∴OP=√202−62=2√91∴点B沿x轴正半轴方向平移(2√91−8)个单位34.解:如图线段AD就是所求35.解:(1)如图所示:MN即为所求(2)在Rt△ABC中,∠A=30°,BC=6∴AB=12∵MN垂直平分AB∴AN=12AB=6在Rt△AMN中,∠A=30°,AN=6∴tan30°=MNAN =MN6∴MN=2√336.解:(1)作图如下所示(2):∵BE平分∠ABC∴∠ABE=∠FBE∵四边形ABCD是平行四边形∴AD∥BC∴∠EBF=∠AEB∴∠ABE=∠AEB∴AB=AE∵AO ⊥BE∴BO=EO在△ABO 和△FBO 中{∠ABO =∠FBOBO =BO∠AOB =∠BOF∴△ABO ≌△FBO(ASA)∴AO=FO∵AF ⊥BE ,BO=EO ,AO=FO∴四边形ABFE 为菱形∴△BEF 的面积是菱形ABFE 的面积的12 ∵菱形ABFE 的面积是平行四边形ABCD 面积的35∴△BEF 的面积是平行四边形ABCD 面积的310 故落在△BEF 内的概率是31037.解:(1)如图所示,DF 就是所求作;(2)∵AD ⊥BC ,AE ∥BC∴∠DAF=90°又∵DF 平分∠ADC∴∠ADF=45°∴AD=AF ,DF=√AD 2+AF 2=√22+22=2√238.解:(1)如图所示(2)连接BO 、AB 、AC 、OC∵BC 是OA 的垂直平分线∴BO=AB ,CO=AC∵BO=AO=CO=1∴△BAO 和△CAO 都是等边三角形∴∠BOA=60°,∠COA=60°∴∠BOC=120°BC ̂=nπR 180=120π•1180=23π39.解:(1)如图线段AB就是所求(2)∠AOB就是所求40.解:(1)作图如图1(2)证明:如图2,连接OC ∵OA=OC,∠A=25°∴∠BOC=50°又∵∠B=40°∴∠BOC+∠B=90°∴∠OCB=90°∴OC⊥BC∴BC是⊙O的切线41.解:如图所示的△ABC就是所要求作的图形.42.解(1)正确画出△A'B'C'(画出其中一种情形即可)(6分)(2)猜想:∠BAC=∠B'A'C'(8分)证明:∵ABA′B′=ACA′C′=√55,BCB′C′=√2√10=√55∴ABA′B′=ACA′C′=BCB′C′,(10分)∴△ABC∽△A'B'C'∴∠BAC=∠B'A'C'(13分)43.解:如图44.解:答题图如下图45.解:(1)作图正确(2分)(2)作图正确(4分)(3)△ACE和△BCE面积相等.(5分)46.解:如图所示,直线AD和点E为所求47.解:如图,AO是所求的∠A的平分线,BO是所求的∠B的平分线OE、OF是所求的垂线段48.解:已知:线段a、b、c;(1分)求作:△ABC,使AC=b,BC=a,D是BC的中点,且AD=c;(2分) (或:求作△ABC使AC=b,BC=a,BC边上的中线AD=c)结论:如图,△ABC即为所求.(6分)49.解:作法:①作线段BC=a,BM、CN交于点A②分别以B、C为顶点作∠MBC=∠NCB=180−α2△ABC就是所要求作的三角形如图50.解:(1)∵AD=BC,AB=CD,∴四边形ABCD是平行四边形∴∠D=∠B∵∠DAF=∠BCE∴△ADF≌△CBE∴BE=DF∴AE=CF∠ABC=30°(2)∵∠ABM=∠CBM=12又∵AD∥BC∴∠MND=∠CBM=30°∵∠ABC=∠E+∠BCE∴∠BCE=∠ABC-∠E=60°-40°=20°∴∠FAD=∠BCE=20°又∵∠MND=∠FAD+∠AMN∴∠AMN=∠MND-∠FAD=30°-20°=10°。

尺规作图练习题初三

尺规作图练习题初三

尺规作图练习题初三尺规作图是几何学中的一种重要方法,它通过使用尺子和圆规来完成各种图形的构造。

对于初三学生来说,掌握尺规作图技巧是必不可少的。

本文将给出几个尺规作图的练习题,帮助初三学生锻炼尺规作图的能力。

练习一:等腰三角形的构造要求:构造一个等腰三角形ABC,已知底边BC和顶角A。

解答:1. 画出底边BC,任取一点A作为顶点。

2. 以B为圆心,BC为半径作一个弧交底边BC于点D。

3. 以C为圆心,CD为半径作一个弧交底边BC于点E。

4. 连接AE,得到等腰三角形ABC。

练习二:正方形的构造要求:构造一个正方形ABCD,已知边长AB。

解答:1. 以A为圆心,AB为半径作一个弧交边AB于点E。

2. 以E为圆心,EA为半径作一个弧交边AE于点F。

3. 连接BF,得到正方形ABCD。

练习三:等边三角形的构造要求:构造一个等边三角形ABC,已知边长AB。

解答:1. 以A为圆心,AB为半径作一个弧。

2. 以B为圆心,AB为半径作一个弧。

3. 这两个弧交于一点C,连接AC和BC,得到等边三角形ABC。

练习四:垂直平分线的构造要求:构造一个垂直平分线,已知线段AB。

解答:1. 以A为圆心,任取不等于AB的半径作一个弧交AB于点C。

2. 以B为圆心,作相同半径的弧交AB于点D。

3. 以C和D为圆心,作相同半径的弧,这两个弧交于一点E。

4. 连接AE和BE,得到线段AB的垂直平分线。

练习五:平行线的构造要求:构造一条与给定线段AB平行的线段CD。

解答:1. 以A为圆心,任取一定半径作一个弧。

2. 以B为圆心,作相同半径的弧,与前一个弧交于一点C。

3. 以C为圆心,再次作相同半径的弧,与前一个弧交于一点D。

4. 连接CD,得到平行于线段AB的线段CD。

通过以上几个练习题,初三学生可以进行尺规作图的练习,提高自己的几何构造能力。

尺规作图需要仔细观察和灵活运用尺规,希望同学们能够多加练习,熟练掌握这一技巧。

让我们一起享受几何的乐趣吧!。

2022版初中数学尺规作图题:题型专练

2022版初中数学尺规作图题:题型专练

2022版初中数学尺规作图题:题型专练一、填空题1.(2021·北京西城·二模)如下是小华设计的“作AOB∠的角平分线”的尺规作图过程,请帮助小华完成尺规作图并填空(保留作图痕迹).二、解答题2.(2021·北京·中考真题)《淮南子・天文训》中记载了一种确定东西方向的方法,大意是:日出时,在地面上点A处立一根杆,在地面上沿着杆的影子的方向取一点B,使,B A两点间的距离为10步(步是古代的一种长度单位),在点B处立一根杆;日落时,在地面上沿着点B处的杆的影子的方向取一点C,使,C B两点间的距离为10步,在点C处立一根杆.取CA的中点D,那么直线DB表示的方向为东西方向.A B C的位置如图所示.使用直尺和圆规,在图中作CA的中点(1)上述方法中,杆在地面上的影子所在直线及点,,D(保留作图痕迹);(2)在如图中,确定了直线DB表示的方向为东西方向.根据南北方向与东西方向互相垂直,可以判断直线CA表示的方向为南北方向,完成如下证明.证明:在ABC中,BA=______________,D是CA的中点,CA DB∴⊥(______________)(填推理的依据).∵直线DB表示的方向为东西方向,∴直线CA表示的方向为南北方向.3.(2020·北京·中考真题)已知:如图,ABC为锐角三角形,AB=AC,CD∥AB.求作:线段BP,使得点P在直线CD上,且∠ABP=12BAC ∠.作法:①以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;②连接BP.线段BP就是所求作线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹)(2)完成下面的证明.证明:∵CD∥AB,∴∠ABP= .∵AB=AC,∴点B在⊙A上.又∵∠BPC=12∠BAC()(填推理依据)∴∠ABP=12∠BAC4.(2021·北京朝阳·一模)已知:如图,ABC 中,,AB AC AB BC =>.求作:线段BD ,使得点D 在线段AC 上,且12CBD BAC ∠=∠. 作法:①以点A 为圆心,AB 长为半径画圆;②以点C 为圆心,BC 长为半径画弧,交A 于点P (不与点B 重合);③连接BP 交AC 于点D .线段BD 就是所求作的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接PC .AB AC =,∴点C 在A 上. 点P 在A 上,12CPB BAC ∴∠=∠(_________)(填推理的依据). BC PC =,CBD ∴∠=_________.12CBD BAC ∴∠=∠. 5.(2021·北京东城·一模)尺规作图:如图,已知线段a ,线段b 及其中点.求作:菱形ABCD ,使其两条对角线的长分别等于线段a ,b 的长.作法:①作直线m ,在m 上任意截取线段AC a =;②作线段AC 的垂直平分线EF 交线段AC 于点O ;③以点O 为圆心,线段b 的长的一半为半径画圆,交直线EF 于点B ,D ;④分别连接AB ,BC ,CD ,DA ;则四边形ABCD 就是所求作的葵形.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹)(2)完成下面的证明.证明:,OA OC OB OD ==,∴四边形ABCD 是_______________.AC BD ⊥,∴四边形ABCD 是菱形(____________________________)(填推理的依据).6.(2021·北京大兴·一模)已知:如图Rt ABC △中,90ACB ∠=︒.求作:点P ,使得点P 在AC 上,且点P 到AB 的距离等于PC .作法:①以点B 为圆心,以任意长为半径作弧,分别交射线,BA BC 于点,D E ;②分别以点,D E 为圆心,以大于12DE 的长为半径作弧,两弧在ABC ∠内部交于点F ; ③作射线BF 交AC 于点P .则点P 即为所求.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面证明.证明:连接,DF FE .在BDF 和BEF 中,,.DB EB DF EF BF BF =⎧⎪=⎨⎪=⎩BDF BEF ∴≌.ABF CBF ∴∠=∠(_________________)(填推理的依据).90ACB ∠=︒,点P 在AC 上,PC BC ∴⊥.作PQ AB ⊥于点Q ,点P 在BF 上,PC ∴=__________(______________________)(填推理的依据).7.(2021·北京西城·一模)阅读材料并解决问题: 已知:如图,AOB ∠及内部一点P .求作:经过点P 的线段EF ,使得点E ,F 分别在射线OA ,OB 上,且OE OF =.作法:如图.①以点O 为圆心,以任意长为半径作弧,分别交射线OA ,OB 于点M ,N ;②连接NP ,作线段NP 的垂直平分线,得到线段NP 的中点C ;③连接MC 并在它的延长线上截取CD MC =;④作射线DP ,分别交射线OB ,OA 于点F ,E .线段EF 就是所求作的线段.(2)完成下面的证明.证明:连接MN .由②得,线段CN _____CP (填“>”,“=”或“<”).在MCN △和DCP 中,_______,_______,_______,⎧⎪⎨⎪⎩∴MCN DCP ≌∴NMC PDC ∠=∠.∴//MN EF (______)(填推理的依据).又由①得,线段OM ON =.可得OE OF =.8.(2021·北京石景山·一模)下面是小景设计的“过直线外一点作这条直线的垂线”的尺规作图过程. 己知:如图1,直线l 和l 外一点A ,求作:直线AE ,使得AE l ⊥于点E .作法:①在直线l 上取一点B ,连接AB (如图2);②作线段AB 的垂直平分线CD ,交AB 于点O ;③以O 为圆心,OB 长为半径作圆,交直线l 于点E ;④作直线AE .所以直线AE 即为所求作的直线.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:CD 为线段AB 的垂直平分线,=OA ∴_______2∴=.AB OB∴是O的直径,ABAEB∴∠=︒(_________)(填推理的依据).90∴⊥.AE l9.(2021·北京通州·一模)下面是小于同学设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P,PQ l.求作:直线PQ,使得//小于同学的作法:如下,(1)在直线l的下方取一点O;(2)以点O为圆心,OP长为半径画圆,O交直线l于点C,D(点C在左侧),连接CP;(3)以点D为圆心,CP长为半径画圆,交O于点Q,N(点Q与点P位于直线l同侧);(4)作直线PQ;所以直线PQ即为所求.请你依据小于同学设计的尺规作图过程,完成下列问题.(1)使用直尺和圆规,完成作图;(保留作图痕迹)(2)完成下面的证明:证明:连接DP=∵CP DQ∴CP DQ=(___________________)(填推理的依据).∠=∠(____________________)(填推理的依据).∴PDC DPQPQ l(______________)(填推理的依据).∴//10.(2021·北京丰台·一模)已知:在ABC 中,AB =AC ,AD 是边BC 上的中线.求作:∠BPC ,使∠BPC =∠BAC .作法:①作线段AB 的垂直平分线MN ,与直线AD 交于点O ;②以点O 为圆心,OA 长为半径作O ;③在BAC 上取一点P (不与点A 重合),连接BP ,CP .BPC ∠就是所求作的角.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接,OB OC .∵MN 是线段AB 的垂直平分线,∴OA =_______.∵,AB AC AD =是边BC 上的中线,∴AD BC ⊥.∴OB OC =.∴O 为ABC 的外接圆.∵点P 在O 上,∴BPC BAC ∠=∠(________________________)(填推理的依据).11.(2021·北京海淀·二模)已知:MAN ∠,B 为射线AN 上一点.求作:ABC ,使得点C 在射线AM 上,且12ABC CAB ∠=∠.作法:①以点A 为圆心,AB 长为半径画弧,交射线AM 于点D ,交射线AN 的反向延长线于点E ; ②以点E 为圆心,BD 长为半径画弧,交DE 于点F ;③连接FB ,交射线AM 于点C . ABC 就是所求作的三角形.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明:证明:连接BD ,EF ,AF ,∵点B ,E ,F 在A 上,12EBF EAF ∴∠=∠(__________)(填写推理的依据). ∵在A 中,BD EF =,DAB ∴∠=___________.12ABC CAB ∴∠=∠. 12.(2021·北京平谷·一模)已知:如图,(045)MAN αα︒︒∠=<<求作:ABC ∆,使得2ABC BAC ∠=∠,作法:①在射线AN 上取点O ,以点O 为圆心,OA 长为半径画圆,交射线AM 于点C ; ②连接CO③以点C 为圆心,CO 长为半径画弧,交射线AN 于点B ;连接CB线段ABC ∆就是所求作(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:∵点C 、A 在O 上.∴2COB CAB ∠=∠( )(填推理依据).∵CB CO =∴CBA ∠= .∴=2CBA CAB ∠∠13.(2021·北京丰台·二模)下面是小融设计的“过直线外一点作圆与这条直线相切”的尺规作图过程. 已知:直线l 及直线l 外一点P (如图1).求作:⊙P ,使它与直线l 相切.作法:如图2,①在直线l 上任取两点A ,B ;②分别以点A ,点B 为圆心,AP ,BP 的长为半径画弧,两弧交于点Q ;③作直线PQ ,交直线l 于点C ;④以点P 为圆心,PC 的长为半径画⊙P .所以⊙P 即为所求.根据小融设计的尺规作图过程,(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接AP ,AQ ,BP ,BQ .∵AP = ,BP = ,∴点A ,点B 在线段PQ 的垂直平分线上.∴直线AB 是线段PQ 的垂直平分线.∵PQ ⊥l ,PC 是⊙P 的半径,∴⊙P 与直线l 相切( )(填推理的依据).14.(2021·北京房山·二模)已知:射线AB求作:ACD △,使得点C 在射线AB 上,90D ∠=︒,30A ∠=︒.作法:如图,①在射线AB 上取一点O ,以O 为圆心,OA 长为半径作圆,与射线AB 相交于点C ;②以C 为圆心,OC 为半径作弧,在射线AB 上方交⊙O 于点D ;③连接AD ,CD .则ACD △即为所求的三角形.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接OD .∵ AB 为⊙O 的直径,∴ADC ∠=__________︒.∵OD OC CD ==,∴OCD 等边三角形.∴60DOC ∠=︒.∵点A ,D 都在⊙O 上,∴DAC ∠=12DOC ∠.( )(填推理的依据) ∴30DAC ∠=︒.ACD △即为所求的三角形.15.(2020·北京西城·一模)先阅读下列材料,再解答问题.尺规作图已知:△ABC ,D 是边AB 上一点,如图1,求作:四边形DBCF ,使得四边形DBCF 是平行四边形.小明的做法如下:请你参考小明的做法,再设计一一种尺规作图的方法(与小明的方法不同),使得画出的四边形DBCF是平行四边形,并证明.16.(2021·北京昌平·二模)下面是小明同学设计的“作一个角等于已知角的2倍”的尺规作图过程.已知:∠AOB求作:∠ADC,使∠ADC=2∠AOB作法:如图,①在射线OB上任取一点C;②作线段OC的垂直平分线,交OA于点D,交OB于点E,连接DC.所以∠ADC即为所求的角根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹)(2)完成下面证明(说明:括号里填写作图依据)证明:∵DE是线段OC的垂直平分线,∴OD=________(____________).∴∠AOB=_______(_________).∵∠ADC=∠AOB+∠DCO,∴∠ADC=2∠AOB.17.(2020·北京海淀·二模)下面是小王同学“过直线外一点作该直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.PQ l.求作:直线PQ,使得//作法:如图,①在直线l 外取一点A ,作射线AP 与直线l 交于点B ,②以A 为圆心,AB 为半径画弧与直线l 交于点C ,连接AC ,③以A 为圆心,AP 为半径画弧与线段AC 交于点Q ,则直线PQ 即为所求.根据小王设计的尺规作图过程,,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB AC =,∴A ABC CB =∠∠,(______________________)(填推理的依据).∵AP =__________,∴APQ AQP ∠=∠.∵180,180ABC ACB A APQ AQP A ∠+∠+∠=︒∠+∠+∠=︒,∴APQ ABC ∠=∠.∴//PQ BC (____________________)(填推理的依据).即//PQ l .18.(2019·北京海淀·一模)下面是小明设计的“过直线外一点作已知直线的平行线”的尺规作图过程.已知:直线l 及直线l 外一点P.PQ l.求作:直线PQ,使//作法:如图,①在直线l上取一点O,以点O为圆心,OP长为半径画半圆,交直线l于,A B两点;②连接PA,以B为圆心,AP长为半径画弧,交半圆于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小明设计的尺规作图过程:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明PB QB,证明:连接,=,∵PA QB∴PA=__________.∠=∠(______________)(填推理的依据).∴PBA QPBPQ l(_____________)(填推理的依据).∴//2022版初中数学尺规作图题:题型专练参考答案1.见解析;①90;②直径所对的圆周角是直角;③EQ【分析】根据直径所对的圆周角是直角,和同弧所对的圆周角相等即可得出结论【详解】解:补全的图形如图1所示.①∵OQ是直径∴∠OPQ=90°故答案为:90;②故答案为:直径所对的圆周角是直角;③∵CE⊥PQ∴由垂径定理得:PE EQ.故答案为:EQ【点睛】本题考查圆周角定理的推论,垂径定理,熟练掌握圆周角定理及推论是关键2.(1)图见详解;(2)BC,等腰三角形的三线合一【分析】(1)分别以点A、C为圆心,大于AC长的一半为半径画弧,交于两点,然后连接这两点,与AC的交点即为所求点D;(2)由题意及等腰三角形的性质可直接进行作答.【详解】解:(1)如图所示:(2)证明:在ABC 中,BA BC =,D 是CA 的中点,CA DB ∴⊥(等腰三角形的三线合一)(填推理的依据).∵直线DB 表示的方向为东西方向,∴直线CA 表示的方向为南北方向;故答案为BC ,等腰三角形的三线合一.【点睛】本题主要考查垂直平分线的尺规作图及等腰三角形的性质,熟练掌握垂直平分线的尺规作图及等腰三角形的性质是解题的关键.3.(1)见解析;(2)∠BPC ,在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半【分析】(1)按照作法的提示,逐步作图即可;(2)利用平行线的性质证明:,ABP BPC ∠=∠ 再利用圆的性质得到:∠BPC=12∠BAC ,从而可得答案.【详解】解:(1)依据作图提示作图如下:(2)证明:∵CD∥AB,∠.∴∠ABP= BPC∵AB=AC,∴点B在⊙A上.∠BAC(在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半.)(填推理依据)又∵∠BPC=12∠BAC∴∠ABP=12故答案为:∠BPC;在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半.【点睛】本题考查的是作图中复杂作图,同时考查了平行线的性质,圆的基本性质:在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半.掌握以上知识是解题的关键.4.(1)见解析;(2)一条弧所对的圆周角等于它所对的圆心角的一半,CPB∠【分析】(1)根据题目提供的作法作图即可;(2)根据圆周角定理证明即可.【详解】解:(1)补全图形,如下图.(2)证明:连接PC .AB AC =,∴点C 在A 上. 点P 在A 上,12CPB BAC ∴∠=∠(一条弧所对的圆周角等于它所对的圆心角的一半). BC PC =,CBD ∴∠=CPB ∠.12CBD BAC ∴∠=∠. 故答案为:一条弧所对的圆周角等于它所对的圆心角的一半.CPB ∠.【点睛】此题主要考查了圆的有关作图,熟练掌握圆财迷角定理是解答此题的关键.5.(1)作图见解析;(2)平行四边形;对角线互相垂直的平行四边形为菱形【分析】(1)根据题干中提示的步骤,逐步作图即可;(2)根据“对角线互相垂直的平行四边形是菱形”进行证明即可.【详解】(1)按照步骤,作图如图所示:(2)证明:,OA OC OB OD ==,∴四边形ABCD 是平行四边形.AC BD ,∴四边形ABCD 是菱形(对角线互相垂直的平行四边形是菱形).故答案为:平行四边形;对角线互相垂直的平行四边形是菱形.【点睛】本题考查尺规作图-作菱形,以及理论证明,掌握基本作图的方法,以及菱形的判定定理是解题关键. 6.(1)图见解析;(2)全等三角形的对应角相等,PQ ,角平分线上的点到角两边的距离相等【分析】(1)按照题目中的已知作法作图即可(2)先根据SSS 得出≌BDF BEF ,根据全等三角形的对应边相等得出ABF CBF ∠=∠,再根据角平分线的性质即可得出答案【详解】(1)如图所示:(2)证明:连接,DF FE .在BDF 和BEF 中DB EB DF EF BF BF =⎧⎪=⎨⎪=⎩BDF BEF ∴≌.ABF CBF ∴∠=∠(全等三角形的对应角相等)(填推理的依据).90ACB ∠=︒,点P 在AC 上,PC BC ∴⊥.作PQ AB ⊥于点Q ,点P 在BF 上,PC ∴=PQ (角平分线上的点到角两边的距离相等)(填推理的依据).【点睛】本题考查作图-复杂作图、角平分线的性质定理、全等三角形的判定与性质等知识,解题的关键是熟练掌握基本作图,灵活运用所学知识解决问题,属于中考常考题型.7.(1)见解析;(2)=;CN CP MCN DCP CM CD =∠=∠=,,;内错角相等,两直线平行【分析】(1)根据题目的提示作出图形即可;(2)连接MN ,证明△MCN ≌△DCP ,利用内错角相等,两直线平行即可证明MN //EF ,从而证明OE =OF .【详解】解:(1)补全的图形如图1所示.(2)证明:连接MN .由②得,线段CN =CP (填“>”,“=”或“<”).在△MCN 和△DCP 中,CN CP MCN DCP CM CD =⎧⎪∠=∠⎨⎪=⎩,∴△MCN ≌△DCP ,∴∠NMC =∠PDC .∴MN //EF (内错角相等,两直线平行).又由①得,线段OM =ON .可得OE =OF .故答案为:=,CN =CP ,∠MCN =∠DCP ,CM =CD .内错角相等,两直线平行.【点睛】本题考查了作图-复杂作图、线段垂直平分线的性质、全等三角形的判定与性质、等腰三角形的判定与性质,解决本题的关键是灵活运用所学知识解决问题.8.(1)作图见解析;(2)OB,直径所对的圆周角是90°.【分析】(1)根据题述语句画出图形即可;(2)根据直径所对的圆周角是90°即可证明.【详解】(1)作图如下:(2)证明:CD为线段AB的垂直平分线,∴OB,=OA∴=.AB OB2∴是O的直径,AB∴∠=︒(____直径所对的圆周角是90°)(填推理的依据).90AEB∴⊥.AE l故答案为:OB,直径所对的圆周角是90°.【点睛】本题考查圆周角定理,作垂直平分线.理解直径所对的圆周角是90°是解题关键.9.(1)见解析;(2)在同圆中,等弦所对的弧相等;在同圆中,等弧所对的圆周角相等;内错角相等,两直线平行【分析】(1)根据要求作图即可;(2)根据圆的有关性质和平行线的判定求解即可.【详解】解:(1)(2)证明:连接DP=∵CP DQ∴CP DQ=(在同圆中,等弦所对的弧相等)(填推理的依据).∠=∠(在同圆中,等弧所对的圆周角相等)(填推理的依据).∴PDC DPQPQ l(内错角相等,两直线平行)(填推理的依据),∴//故答案为:在同圆中,等弦所对的弧相等;在同圆中,等弧所对的圆周角相等;内错角相等,两直线平行.【点睛】本题主要考查作图-复杂作图,解题的关键是掌握圆的有关性质和平行线的判定.10.(1)见解析;(2)OB,同弧所对的圆周角相等【分析】(1)根据要求作出图形即可.(2)先证明⊙O为△ABC的外接圆,再根据同弧所对的圆周角相等即可得出结论.【详解】解:(1)如图,∠BPC即为所求作.证明:连接OB,OC.∵MN是线段AB的垂直平分线,∴OA=OB.∵AB=AC,AD是边BC上的中线,∴AD⊥BC.∴OB=OC.∴⊙O为△ABC的外接圆.∵点P在⊙O上,∴∠BPC=∠BAC(同弧所对的圆周角相等).故答案为:OB,同弧所对的圆周角相等.【点睛】本题考查了作图-复杂作图、线段的垂直平分线的性质、三角形的外心等知识,解题的关键是熟练掌握三角形外心的性质,属于中考常考题型.11.(1)见解析;(2)一条弧所对的圆周角等于它所对的圆心角的一半;EAF【分析】(1)根据题干描述即可直接作图.(2)根据圆周角定理和同弧或等弧所对圆心角相等即可填空.【详解】解:(1)如图即为所求.(2)根据圆周角定理即可填写“一条弧所对的圆周角等于它所对的圆心角的一半”;由同弧或等弧所对圆心角相等即可填写“EAF ∠”.故答案为:一条弧所对的圆周角等于它所对的圆心角的一半,EAF ∠.【点睛】本题为作图-复杂作图.掌握圆周角定理和同弧或等弧所对圆心角相等是解答本题的关键.12.(1)见解析;(2)一条弧弧所对圆周角是它所对的圆心角的一半,COB ∠【分析】(1)按步骤画图即可.(2)先用圆周角定理得出2COB CAB ∠=∠,再利用等腰三角形进行角的等量代换,即可【详解】解:(1)(2)一条弧所对圆周角是它所对的圆心角的一半,COB ∠【点睛】本题考查尺规作图、圆周角定理.灵活的进行角的转换是关键.13.(1)见解析;(2)AQ ;BQ ;经过半径的外端并且垂直于这条半径的直线是圆的切线【分析】(1)按照题目要求作图即可;(2)根据垂直平分线的性质和切线的判定填写即可.【详解】(1)如图所示,;(2)证明:连接AP,AQ,BP,BQ.∵AP=AQ,BP=BQ,∴点A,点B在线段PQ的垂直平分线上.∴直线AB是线段PQ的垂直平分线.∵PQ⊥l,PC是⊙P的半径,∴⊙P与直线l相切(经过半径的外端并且垂直于这条半径的直线是圆的切线).故答案为:AQ;BQ;经过半径的外端并且垂直于这条半径的直线是圆的切线.【点睛】本题考查了尺规作图,垂直平分线的判定和性质,圆的性质,切线的判定,掌握知识点并且灵活运用是解题关键.14.(1)见解析;(2)90;一条弧所对的圆周角等于它所对圆心角的一半【分析】(1)以点C为圆心,OC长为半径画弧线,交圆于一点即为点D,连接AD,补全图形即可;(2)证明:连接OD .由AB 为⊙O 的直径,得到ADC ∠=90︒.证明OCD 等边三角形,得到DAC ∠=12DOC ∠,由此得到ACD △即为所求的三角形.【详解】解:(1)补全的图形如图所示:(2)证明:连接OD .∵ AB 为⊙O 的直径,∴ADC ∠=90︒.∵OD OC CD ==,∴OCD 等边三角形.∴60DOC ∠=︒.∵点A ,D 都在⊙O 上,∴DAC ∠=12DOC ∠.(一条弧所对的圆周角等于它所对圆心角的一半)(填推理的依据)∴30DAC ∠=︒.ACD △即为所求的三角形.故答案为:90;一条弧所对的圆周角等于它所对圆心角的一半..【点睛】此题考查尺规作图,等边三角形的判定及性质,圆周角等于同弧所对圆心角的一半,直径所对的圆周角是直角,熟记各定理是解题的关键.15.见解析【分析】利用平行四边形的判定方法作图证明即可.【详解】解:(1)设计方案先画一个符合题意的草图,再根据两组对边分别相等的四边形是平行四边形.(2)设计作图步骤完成作图作法:如图:①以点C为圆心,BC长为半径画弧;②以点D为圆心,BC长为半径画弧,;③两弧交于点F,四边形DBCF即为所求.(3)推理论证证明:∵CF=BD,DF=BC∴四边形DBCF是平行四边形.【点睛】本题考查了尺规作图、平行四边形的判定等知识点,灵活应用平行四边形的判定方法是解答本题的关键.;等边对等角16.(1)见解析;(2)CD;线段中垂线上的点到线段两个端点的距离相等;DOC【分析】(1)根据几何语言画出对应的几何图形;(2)先根据线段垂直平分线的性质得到OD =CD ,则根据等腰三角形的性质得到∠AOB =DOC ∠.然后根据三角形外角性质得到∠ADC =2∠AOB .【详解】解:(1)补全的图形如图所示.(2)证明:∵DE 是线段OC 的垂直平分线,∴OD =CD (线段中垂线上的点到线段两个端点的距离相等).∴∠AOB =DOC ∠(等边对等角).∵∠ADC =∠AOB +∠DCO ,∴∠ADC =2∠AOB .故答案为:CD ;线段中垂线上的点到线段两个端点的距离相等;;DOC ∠;等边对等角.【点睛】本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.17.(1)见解析(2)等边对等角.AQ .同位角相等,两直线平行.【分析】(1)根据题目提供的作法作图即可;(2)利用等边对等角可得A ABC CB =∠∠和APQ AQP ∠=∠,再根据三角形内角和定理可得APQ ABC ∠=∠,进而得出结论.【详解】(1)补全图形如图所示:(2)证明:∵AB AC =,∴A ABC CB =∠∠,(____等边对等角___)(填推理的依据).∵AP =___AQ ___,∴APQ AQP ∠=∠.∵180,180ABC ACB A APQ AQP A ∠+∠+∠=︒∠+∠+∠=︒,∴APQ ABC ∠=∠.∴//PQ BC (____同位角相等,两直线平行____)(填推理的依据).即//PQ l .【点睛】此题主要考查了平行线的判断和等腰三角形的性质,熟练掌握平行线的判定定理和等腰三角形的性质是解题的关键. 18.(1)补全的图形如图所示见解析;(2)QB ,等弧所对的圆周角相等内错角相等,两直线平行.【分析】()1根据要求作图即可;()2根据圆的有关性质和平行线的判定求解可得.【详解】解:()1如图所示:()2证明:连接PB 、QB .PA QB =,PA QB∴=.∴∠=∠等弧所对圆周角相等).(PBA QPB∴内错角相等,两直线平行).//(PQ l故答案为QB,等弧所对圆周角相等,内错角相等,两直线平行.【点睛】本题主要考查作图-复杂作图,解题的关键是掌握圆的有关性质和平行线的判定.。

初中数学尺规作图综合测试卷

初中数学尺规作图综合测试卷

初中数学尺规作图综合测试卷初中数学尺规作图综合测试卷一、单选题(共6道,每道16分)1.尺规作图就是()A.用直尺按一定的规律作图B.用直尺和圆规作图C.用三角尺和圆规作图D.用没有刻度的直尺和圆规作图2.下列作图属于尺规作图的是()A.用量角器画出∠AOB的平分线OCB.已知∠α,作∠AOB,使∠AOB=2∠αC.用刻度尺画线段AB=3cmD.用三角板过点P 作线段AB的垂线3.下列作图语句,正确的是()A.作线段AB,使a=ABB.延长线段AB到C,使AC=BCC.作∠AOB,使∠AOB=∠αD.以O为圆心作弧4.如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,弧FG是()A.以点C为圆心,OD的长为半径的弧B.以点C 为圆心,DM的长为半径的弧C.以点E为圆心,OD的长为半径的弧D.以点E 为圆心,DM的长为半径的弧5.如图,A,B,C三个村庄联合打井,为使井到三个村庄的距离相等,下列确定水井的位置的说法中正确的是()A.连接AB,AC,BC,作线段AB的垂直平分线MN,作∠ABC的角平分线BD交直线MN于点P,点P即为水井的位置B.连接AB,AC,作线段AB的垂直平分线MN,作线段AC的垂直平分线EF交直线MN于点P,点P即为水井的位置C.连接AB,AC,BC,作∠ABC的角平分线BD,作∠BAC的角平分线AE交BD于点P,点P即为水井的位置D.作直线AB、BC,过点A作BC的垂线MN,过点C作AB的垂线EF交MN于点P,点P即为水井的位置6.在△ABC中,∠ABC与∠ACB的平分线交于点D,过点D作EF∥BC交AB于E,交AC于F,则EF与BE+CF的数量关系为()A.EF>BE+CFB.EF<BE+CFC.EF=2(BE+CF)D.EF=BE+CF。

中考数学专题尺规作图

中考数学专题尺规作图

《尺规作图》专题训练基本作图,要求保留作图痕迹,不要求写作法1.作一条线段等于已知线段已知:线段a,求作:线段AB ,使AB=a 。

2.作一全角等于已知角已知:∠MPN求作:∠ABC,使∠ABC=∠MPN 。

3。

作角的平分线已知:∠MPN求作:∠MPN 的角平分线PO4、作线段的垂直平分线已知:线段AB求作:线段AB 的垂直平分线MN.5、过定点作已知直线的垂线:6、(1)点在直线上;(2)点在直线外6、已知三边作三角形已知:线段a 、b 、c求作:△ABC ,使AB=a 、BC=b 、AC=c 。

c b a7、已知两边及其夹角作三角形已知:线段a、b、∠α求作:△ABC,使AB=a、BC=b、∠B=∠α.8、已知两角及其夹边作三角形已知:线段a、∠α、∠β求作:△ABC,使∠A=∠α、∠B=∠β、AB=a。

9、已知底边及底边上的高作等腰三角形已知:线段a、h求作:△ABC,使AB=AC,BC=a、BC边上的高AD=h.10、已知底边上的高和顶角作等腰三角形已知:线段h、∠α求作:△ABC,使AB=AC,∠A=∠α,高AD=h。

11、已知底边及腰长作等腰三角形已知:线段a、b求作:△ABC ,使AB=AC=a ,BC=b.12、已知一直角边及斜边作直角三角形已知:线段a 、c求作:Rt △ABC ,使∠C=90°、AB=c 、BC=a作三角形的外接圆已知:△ABC求作:△ABC 的外接圆⊙O作三角形的内切圆已知:△ABC求作:△ABC 的内切圆⊙O如图,1O7国道OA 和320国道OB 在我市相交于O 点,在∠AOB 的内部有工厂C 和D ,现要修建一个货站P ,使P 到OA 、OB 的距离相等,且使PC =PD ,用尺规作出货站P 的位置。

16、如图,直线AB ⊥CD ,垂足为P ,∠ACP=45°,利用尺规在图中作一段劣弧,使得它在A 、C 两AA B C B C点分别与直线AB和CD相切。

中考数学 尺规作图专题练习(含答案)

中考数学 尺规作图专题练习(含答案)

2020中考数学尺规作图专题练习(含答案)A级 基础题1.下列各条件中,不能作出唯一三角形的条件是( )A.已知两边和夹角B.已知两边和其中一条边所对的角C.已知两角和夹边D.已知两角和其中一角的对边2.如图X6-3-1,在△ABC中,分别以点A和点B为圆心,大于12AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB =7,则△ABC的周长为( )图X6-3-1A.7 B.14C.17 D.203.如图X6-3-2,点C在∠AOB的OB边上,用尺规作出了CN∥OA,在作图痕迹中,是( )图X6-3-2A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧4.下列关于作图的语句,正确的是( )A.画直线AB=10厘米B.画射线OB=10厘米C.已知A,B,C三点,过这三点画一条直线D.过直线AB外一点画一条直线和直线AB平行5.已知线段AB和CD,如图X6-3-3,求作一线段,使它的长度等于AB+2CD.图X6-3-36.试把如图X6-3-4所示的角四等分(不写作法).图X6-3-47.已知等腰△ABC的顶角∠A=36°(如图X6-3-5).(1)作底角∠ABC的平分线BD,交AC于点D(用尺规作图,不写作法,但保留作图痕迹,然后用墨水笔加墨);(2)通过计算,说明△ABD和△BDC都是等腰三角形.图X6-3-58.某市计划在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A,B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A,B,C 的位置如图X6-3-6,请在原图上利用尺规作图作出音乐喷泉M的位置(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图).图X6-3-69.如图X6-3-7已知:线段a,c,∠α.求作:△ABC,使BC=a,AB=c,∠ABC=∠α.图X6-3-710.如图X6-3-8,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于12EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.(1)若∠ACD=114°,求∠MAB的度数;(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN.图X6-3-811.如图X6-3-9,已知△ABC,画它的内切圆⊙O.图X6-3-9作法:(1)分别作____________,两平分线交于点O;(2)过点O作____的垂线段,交BC于点D;(3)以点__为圆心,以____的长为半径,画圆,那么,所画的⊙O就是△ABC的______.12.如图X6-3-10,已知线段a和h.求作:△ABC,使得AB=AC,BC=a,且BC边上的高AD=h.要求:尺规作图,不写作法,保留作图痕迹.图X6-3-10B级 中等题13.如图X6-3-11,画一个等腰△ABC,使得底边BC=a,它的高AD=h.图X6-3-1114.为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P,使P到该镇所属A村、B村、C村的村委会所在地的距离都相等(A,B,C不在同一直线上,地理位置如图X6-3-12),请你用尺规作图的方法确定点P的位置.要求:写出已知,求作,不写作法,保留作图痕迹.解:已知:求作:图X6-3-12C级 拔尖题15.如图X6-3-13,已知△ABC,且∠ACB=90°.(1)请用直尺和圆规按要求作图(保留作图痕迹,不写作法和证明):①以点A为圆心,BC边的长为半径作⊙A;②以点B为顶点,在AB边的下方作∠ABD=∠BAC.(2)请判断直线BD与⊙A的位置关系(不必证明).图X6-3-1316.如图X6-3-14,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A,B,C.(1)请完成如下操作:①以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连接AD,CD;(2)请在(1)的基础上,完成下列问题:①写出点的坐标:C__________,D__________;②⊙D的半径=____________(结果保留根号);③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面面积为________(结果保留π);④若E(7,0),试判断直线EC与⊙D的位置关系,并说明你的理由.图X6-3-14选做题17.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:作法:如图X6-3-15(1),①在OA和OB上分别截取OD,OE,使OD=OE.②分别以D,E为圆心,以大于12DE的长为半径作弧,两弧在∠AOB内交于点C.③作射线OC,则OC就是∠AOB的平分线.小聪的作法步骤:如图X6-3-15(2),①利用三角板上的刻度,在OA和OB上分别截取OM,ON,使OM=ON.②分别过M,N作OM,ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:(1)李老师用尺规作角平分线时,用到的三角形全等的判定方法是______;(2)小聪的作法正确吗?请说明理由;(3)请你帮小颖设计用刻度尺作角平分线的方法(要求:作出图形,写出作图步骤,不予证明).(1) (2)图X6-3-15参考答案1.B 2.C 3.D 4.D 5.略6.略 提示:首先把∠O二等分,再把得到的两部分分别再二等分即可.图D737.解:(1)如图D73,BD即为所求.(2)∵∠A=36°,∴∠ABC=∠C=(180°-36°)÷2=72°.∵BD平分∠ABC,∴∠ABD=∠DBC=72°÷2=36°.∴∠CDB=180°-36°-72°=72°.∵∠A=∠ABD=36°,∠C=∠CDB=72°,∴AD=DB,BD=BC.∴△ABD和△BDC都是等腰三角形.8.解:如图D74.图D749.解:如图D75,①以α的顶点为圆心,任意长为半径画弧,交α的两边分别为A′,C′;②以相同长度为半径,B为圆心画弧,交BC于点F,以F为圆心,C′A′为半径画弧,交AB于点E;③在BF上取点C,使CB=a,以B为圆心,c为半径画圆交BE的延长线于点A,连接AC,则△ABC即为所求的三角形.图D7510.(1)解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=114°,∴∠CAB=66°.由作法知,AM是∠CAB的平分线,∴∠AMB=12∠CAB=33°.(2)证明:∵AM平分∠CAB,∴∠CAM=∠MAB.∵AB∥CD,∴∠MAB=∠CMA.∴∠CAM=∠CMA.又∵CN⊥AM,∴∠ANC=∠MNC.在△ACN和△MCN中,∵∠ANC=∠MNC,∠CAM=∠CMN, CN=CN,∴△ACN≌△MCN.11.解:(1)∠A,∠B的平分线(2)BC (3)O OD 内切圆12.解:如图D76.图D7613.略14.解:已知:A,B,C三点不在同一直线上.求作:一点P,使PA=PB=PC(或经过A,B,C三点的外接圆圆心P).正确作出任意两条线段的垂直平分线,并标出交点P,如图D77.图D77 图D7815.解:(1)如图D78.(2)直线BD与⊙A相切.∵∠ABD=∠BAC,∴AC∥BD.∵∠ACB=90°,⊙A的半径等于BC,∴点A到直线BD的距离等于BC.∴直线BD与⊙A相切.16.解:(1)如图D79:图D79(2)①(6,2) (2,0) ②2 5 ③54π ④相切.理由:∵CD =2 5,CE =5,DE =5, ∴CD 2+CE 2=25=DE 2.∴∠DCE =90°,即CE ⊥CD .∴直线CE 与⊙D 相切.17.解:(1)李老师用尺规作角平分线时,用到的三角形全等的判定方法是SSS.故答案为SSS.(2)小聪的作法正确.理由:∵PM ⊥OM ,PN ⊥ON , ∴∠OMP =∠ONP =90°.图D80在Rt △OMP 和Rt △ONP 中, ∵ OP =OP ,OM =ON , ∴Rt △OMP ≌Rt △ONP (HL). ∴∠MOP =∠NOP . ∴OP 平分∠AOB . (3)如图D80,步骤:①利用刻度尺在OA ,OB 上分别截取OG =OH . ②连接GH ,利用刻度尺作出GH 的中点Q . ③作射线OQ .则OQ 为∠AOB 的平分线.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学尺规作图专题训练
一、选择题
1.已知的三边长分别为4、4、6,在所在平面内画一条直线,将△ABC △ABC △ABC
分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )条.
A. 3
B. 4
C. 5
D. 6
2.如图,在中,,,,以点C 为圆心,CB 长为半径作弧,
△ABC BC =4交AB 于点D ;再分别以点B 和点D 为圆心,大于的长为半径作弧,两弧相交于
12BD 点E ,作射线CE 交AB 于点F ,则AF 的长为( )
A. 5
B. 6
C. 7
D. 8
3.已知,作图.∠AOB 步骤1:在OB 上任取一点M ,以点M 为圆心,MO 长为半径画半圆,分别交OA 、OB 于点P 、Q ;
步骤2:过点M 作PQ 的垂线交于点C ;^P
Q 步骤3:画射线OC .
则下列判断:;;;平分,其中正确①P C =C Q ②MC ∥OA ③OP =PQ ④OC ∠AOB 的个数为( )
A. 1
B. 2
C. 3
D. 44.如图,中,,为的外角,观察图中尺规作图的痕迹,则下列
△ABC AB >AC ∠CAD △ABC 结论错误的是( )
A. ∠DAE =∠B
B. ∠EAC =∠C
C. AE ∥BC
D. ∠DAE =∠EAC
5.尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是( )
A. B.
C. D.
6.如图,已知线段AB ,分别以A 、B 为圆心,大于为半径作弧,连接弧的交点得到直
12AB 线l ,在直线l 上取一点C ,使得,延长AC 至M ,求的度数为( )∠BCM
A. B. C. D.
7.如图,在中,分别以点A 和点C 为圆心,大于长为半径画弧,两弧相交于点
△ABC 12AC M ,N ,作直线MN 分别交BC ,AC 于点D ,若,的周长为13cm ,则E .AE =3cm △ABD △的周长为( )
ABC
A. 16cm
B. 19cm
C. 22cm
D. 25cm
8.如图,在正方形ABCD 中,连接AC ,以点A 为圆心,适当长为半径画弧,交AB 、AC 于
点M ,N ,分别以M ,N 为圆心,大于MN 长的一半为半径画弧,两弧交于点H ,连结AH 并延长交BC 于点E ,再分别以A 、E 为圆心,以大于AE 长的一半为半径画弧,两弧交于点P ,Q ,作直线PQ ,分别交CD ,AC ,AB 于点F ,G ,L ,交CB 的延长线于点K ,连接GE ,下列结论:
,,,:②GE ∥AB ③tan ∠CGF =KB LB ④S △CGE S △CAB :其中正确的是( )=1 4.
A. B. C. D. ①②③
②③④①③④①②④
9.如图,在中,,按下列步骤作图:以点B 为圆心,适当长为半径画
Rt △ABC ①弧,与AB ,BC 分别交于点D ,E ;分别以D ,E 为圆心,大于的长为半径画弧,两
②12DE 弧交于点P ;作射线BP 交AC 于点F ;过点F 作于点下列结论正③④FG ⊥AB G .
确的是( )
A. B. C. D. CF =FG AF =AG AF =CF AG =FG
10.如图,在中,尺规作图如下:分别以点E ,点F 为圆心,大于的长为半径作
△AEF 12EF 弧,两弧相交于G ,H 两点,作直线GH ,交EF 于点O ,连接AO ,则下列结论正确的是
( )
A. AO 平分∠EAF
B. AO 垂直平分EF
C. GH 垂直平分EF
D. GH 平分AF 二、填空题
11.如图是利用直尺和三角板过已知直线l 外一点P 作直线l 的平行线的方法,其理由
是______.
12.如图,在矩形ABCD 中,按以下步骤作图:分别以点A 和C 为圆心,以大于的
①12AC 长为半径作弧,两弧相交于点M 和N ;作直线MN 交CD 于点若,②E .DE =2CE ,则矩形的对角线AC 的长为______.=3
13.如图,点A ,B ,C 均在的正方形网格格点上,过A ,B ,C 三点的外接圆除经过A ,B ,C
6×6三点外还能经过的格点数为______.
14.如图,在▱ABCD 中,,,以点B 的圆心,以任意长为半径作弧,分别交
AB =3BC =5BA 、BC 于点P 、Q ,再分别以P 、Q 为圆心,以大于的长为半径作弧,两弧在12PQ ∠内交于点M ,连接BM 并延长交AD 于点E ,则DE 的长为__________ ABC .
15.如图,在平行四边形ABCD 中,按以下步骤作图:以A 为圆心,任意长为半径作弧,
①分别交AB ,AD 于点M ,N ;分别以M ,N 为圆心,以大于的长为半径作弧,两弧②12MN 相交于点P ;作AP 射线,交边CD 于点Q ,若,,则平行四边形③DQ =2QC BC =3ABCD 周长为______.
16.图1是“作已知直角三角形的外接圆”的尺规作图过程
已知:,
,求作的外接圆.
Rt △ABC Rt △ABC 作法:如图2.
分别以点A 和点B 为圆心,大于的长为半径作弧,两弧相交于P ,Q 两点;
(1)12AB 作直线PQ ,交AB 于点O ;
(2)以O 为圆心,OA 为半径作即为所求作的圆.
(3)⊙O .⊙O 请回答:该尺规作图的依据是______.
17.如图,在中,用直尺和圆规作AB 、AC 的垂直平分线,分别交AB 、AC 于点
△ABC D 、E ,连接若,则______cm .
DE .BC =10cm DE =
18.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于
点N ,再分别以点M ,N 为圆心,大于的长为半径画弧,两弧在第二象限内交于点12MN P ,则a 与b 的数量关系是______.(a ,b )
19.如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.
的长等于______;
(1)AB 在的内部有一点P ,满足:::2:3,请在如图所(2)△ABC S △PAB S △PBC S △PCA =1示的网格中,用无刻度的直尺,画出点P ,并简要说明点P 的位置是如何找到的不要(求证明______.)
20.如图,直线,直线AB 分别与MN ,PQ 相交于点A ,小宇同学利用尺规按以下
MN ∥PQ B .步骤作图:以点A 为圆心,以任意长为半径作弧交AN 于点C ,交AB 于点D ;①②分别以C ,D 为圆心,以大于长为半径作弧,两弧在内交于点E ;作射线12CD ∠NAB ③AE
交PQ 于点若,,则线段AF 的长为______.F .AB =2
三、解答题
21.如图,BD 是菱形ABCD 的对角线,,
请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;不要求写作法,(1)(保留作图痕迹 想要答案可加QQ 群:737345223
)在条件下,连接BF ,求的度数.
(2)(1)∠DBF
22.如图,为锐角的外接圆,半径为5.
⊙O △ABC 用尺规作图作出的平分线,并标出它与劣弧的交点保留作图痕迹,不写
(1)∠BAC ⏜BC E (作法;
)若中的点E 到弦BC 的距离为3,求弦CE 的长.
(2)(1)
23.已知:如图,,射线BC 上一点求作:等腰,使线段BD 为等腰∠ABC D .△PBD △PBD
的底边,点P 在内部,且点P 到两边的距离相等.
∠ABC ∠ABC
△ABC AD⊥BC D.∠ABC
24.如图,中,,,垂足为求作的平分线,分别交AD,AC
AP=AQ.()于P,Q两点;并证明要求:尺规作图,保留作图痕迹,不写作法
25.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.
已知:直线l及直线l外一点P.
PQ∥l
求作:直线PQ,使得.
作法:如图,

在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;
②C()
在直线l上取一点不与点A重合,作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;
③PQ.
作直线所以直线PQ就是所求作的直线.
根据小东设计的尺规作图过程,
(1)()
使用直尺和圆规,补全图形;保留作图痕迹
(2)
完成下面的证明.
∵AB=CB=
证明:______,______,
∴PQ∥l()()
______填推理的依据.
6×6().
26.如图,在的网格中,每个小正方形的边长为1,点A在格点小正方形的顶点上
试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.。

相关文档
最新文档