地表沉降试验检测报告
路基沉降观测实施细则

新建玉林至铁山港铁路路基沉降观测细则(DK0+000- DK131+434.12)施工单位:中铁二十局集团有限公司二○一○年十一月路基沉降观测实施细则一、总则根据玉铁施工图纸要求,需进行路基沉降观测及边桩位移观测。
现结合《铁路工程测量规范》和玉铁施工图纸,及沉降观测经验现制定以下细则。
二、沉降变形测量点的布置要求1、沉降变形测量点分为基准点、工作基点和观测点三类,其布设按下列要求:(1)基准点:基准点为全线BM点,以及按四等水准进行加密的导线点。
(2)工作基点:要求沿线路方向每200-500米一个,若路基段太短至少埋设三个工作基点。
工作基点尽量选在线路两侧,且地质坚硬不易沉降的地方。
(3)观测点:观测点由沉降板、监测桩、位移边桩及多点位移计等组成。
2、基准点和工作基点由于自然条件的变化,人为破坏等原因,不可避免的个别点位发生变化。
为了验证监测网基准点和工作基点的稳定性,应对其进行定期检测。
本次技术方案设计要求基准点及BM点12个月复测一次,工作基点每6个月复测一次。
3、观测点的布设(1)地表沉降观测:松软土地基地段沿线纵向每40米左右设置一个沉降板观测断面,且每个工点不小于2个观测断面,路桥过渡段在距桥台或涵洞边缘两侧3m 的位置各设一个沉降观测断面,每个沉降观测断面在地面埋设地面沉降板或单点沉降计。
(2)路基面沉降观测:在路基面中心及左右两侧路基处设路基面沉降观测桩,观测桩采用C15混凝土桩,纵向间距不大于100米,并保证每个工点至少有一个观测断面。
三、元器件的埋设沉降板的埋设,在路基填到0.6米后挖出1×1米的坑,在坑的底层垫一层0.1米的中粗砂进行找平,再将沉降板水平安放在坑中,最后用人工将土回填。
在施工过程中其沉降板一米范围内不能用压路机等大型机械碾压,必须用人工夯实。
沉降监测桩在路肩填筑完成后,再进行挖坑埋设,坑大小同桩径,埋设时将监测桩露出路肩面2-3厘米。
用混凝土进行浇注完成。
基坑水平位移与沉降监测方案

基坑水平位移与沉降监测方案1.概况1.1 工程概况这个项目是一项大型的建筑工程,旨在建造一座现代化的大楼。
该建筑将包括商业和住宅用途,是当地城市发展的一个重要组成部分。
1.2 基坑概况该项目需要进行基坑开挖,以便为建筑物的地基做好准备工作。
基坑的深度将达到20米左右,需要进行支护工作以确保工人的安全。
1.3 工程地质概况该项目的地质条件复杂,地下水位较高,土质较软,需要采取特殊的施工方法来确保基坑的稳定性和安全性。
此外,还需要进行地质勘探和监测工作,以确保施工过程中不会对周围环境造成不良影响。
1.4 环境概况该项目位于城市中心,周围有许多居民和商业企业,需要采取特殊的措施来减少施工对周围环境的影响。
此外,还需要进行噪音、粉尘和污水处理等工作,以确保施工过程中不会对周围环境造成不良影响。
2.基坑支护及施工方案为确保基坑的稳定性和安全性,我们采取了多种支护措施,包括钢支撑、混凝土墙和土钉墙等。
此外,我们还采用了先进的施工技术,如挖孔桩、土钉墙和钻孔灌注桩等,以确保基坑的稳定性和安全性。
我们还将采取噪音、粉尘和污水处理等措施,以确保施工过程中不会对周围环境造成不良影响。
3、监测目的、范围、依据、原则及监测内容3.1 监测目的:本次监测的目的是为了解决公司在生产过程中存在的环境污染问题,以及对环境影响的评估。
3.2 监测范围:本次监测的范围包括公司生产厂区及周边区域,主要监测点包括废水排放口、废气排放口、噪声等。
3.3 监测依据:本次监测的依据主要包括国家环境保护法规、公司环境保护标准以及国家环境监测标准等。
3.4 编制原则:本次监测的编制原则主要包括科学性、规范性、客观性、可比性等原则。
同时,为了保证监测结果的准确性,我们将采用多种监测方法,包括现场监测、实验室分析等。
以上是本次监测的目的、范围、依据、原则及监测内容的简要介绍。
我们将严格按照以上要求进行监测,确保监测结果的准确性和可靠性。
3.5 监测内容64、基坑监测项目和监测方法要求汇总表75、监测方法5.1 水平位移观测:水平位移观测是指对基坑周边建筑物、道路等进行水平位移监测。
2024年土力学试验总结范文

2024年土力学试验总结范文一、试验目的本次试验的目的是通过对土体的力学性质进行测试和分析,了解土体的力学行为,为土木工程设计和施工提供科学依据。
二、试验方法本次试验采用了以下试验方法:1. 压缩试验:通过对土体的压缩行为进行测量和分析,了解土体的压缩性质和剪切性质。
2. 剪切试验:通过对土体的剪切行为进行测量和分析,了解土体的剪切强度和剪切变形特性。
3. 等速排水剪切试验:通过对土体的剪切行为进行测量和分析,了解土体在等速排水条件下的变形和剪切强度。
4. 动力三轴试验:通过对土体在动力作用下的变形和破坏行为进行测量和分析,了解土体的动力特性和破坏机理。
三、试验结果及分析根据试验所得数据和分析结果,我们可以得出以下结论:1. 土壤的压缩性质与含水率有关:随着土壤含水率的增加,土壤的压缩性质逐渐增强,压缩模量也逐渐增大。
2. 剪切强度与土壤颗粒间的摩擦力有关:土壤的剪切强度与土壤颗粒间的摩擦力有着密切关系,摩擦角越大,土壤的剪切强度越高。
3. 等速排水剪切试验中土壤的变形主要发生在边坡上部:在等速排水剪切试验中,土壤的变形主要发生在边坡上部,这是由于边坡上部土壤的应力较大,而边坡下部土壤的应力较小所导致。
4. 动力三轴试验中土壤的破坏主要是由震动力引起的:在动力三轴试验中,土壤的破坏主要是由震动力引起的,震动力会使土壤颗粒之间的摩擦力减小,从而导致土壤的剪切强度降低。
四、试验总结本次试验通过对土壤的压缩、剪切和动力三轴试验,全面了解了土壤的力学性质和变形行为。
通过试验结果的分析,我们可以得出以下结论:1. 土壤的力学性质和变形行为受多种因素的影响,包括含水率、颗粒间的摩擦力和应力大小等。
2. 对土壤的力学性质进行科学的测量和分析,能够为土木工程设计和施工提供科学依据,从而保证工程的稳定性和安全性。
3. 了解土壤的力学性质和变形行为,对于合理选择土壤类型、确定工程土质参数和设计土木结构具有重要意义。
路堤及路堑沉降监测说明

路堤沉降监测说明一、路堤沉降监测剖面布置说明(一)监测类型路堤在填筑期间和填筑完成后进行路基沉降变形(含地基和本体)连续监测。
通过对路基沉降变形进行系统的观测与分析评估,在路堤填筑过程中,指导控制填土速率.根据本线特点,主要对软土和松软土路堤、高路堤(填高大于12m)、陡坡路堤、桥路过渡段进行相关监测:(1)路基面沉降监测(A型)每个监测断面共2个监测点。
分别于路基两侧路肩各设一个监测桩,路基成形后设置。
(2)基底沉降监测(B型)每个监测断面共1个监测点。
路堤填筑前,于路基中心路堤基底地面预埋1个沉降板进行监测。
(3)坡脚位移监测(C型)每个监测断面共4个监测点.分别于线路两侧坡脚外约2.0m、10m处设边桩。
(4)填土沉降监测(D型)每个监测断面设1个监测点,埋设单点沉降计,埋设深度至路堤基底,单点沉降计的顶面至基床底层底面.单点沉降计采用直径14mm的不诱钢测杆。
(5)边坡平台位移监测(E型)在每个监测断面的各级边坡平台上埋设位移监测桩。
(6)桥路过渡段沉降差监测(F型)桥路过渡段除正常监测外,当填高≥5。
0m且地层为岩溶、采空区发育区段或桥台基础为摩擦桩时,增设2个电力水平尺进行纵向沉降差监测;电力水平尺一般布置在桥台与路基结构物分界处两侧的线路中心线上,每侧各一个,相距2m。
(二) 监测剖面布置1、软土和松软土路堤采用A型+B型+C型联合监测。
A型+B型监测剖面间距100~200m, C型监测剖面间距50m.2、高路提。
采用A型+B型+D型联合监测。
A型监测剖面间距100~200m;当基底压缩层厚度≥5m时,增设B型监测剖面,剖面间距100m;当路基本体填料为非AB组填料时,增设D型监测剖面,剖面间距100m。
3、陡坡路堤采用A型+C型+E型联合监测。
联合监测剖面间距100~200m4、过渡段仅对填方地段桥路过渡段进行监测,采用A型+B型+F型联合监测。
A型+B 型监测剖面每个过渡段设一处;当填高≥5.0m且地层为岩溶、采空区发育区段或桥台基础为摩擦桩时,增设F型监测剖面。
基坑变形检测报告

基坑变形检测报告1. 引言本报告旨在对基坑变形进行检测分析,为工程施工提供可靠的数据支持。
基坑变形是指土壤在基坑开挖或施工过程中发生的变形现象,对工程的稳定性和安全性具有重要影响。
通过本次检测,我们将对基坑变形进行全面评估,并提出相应的建议。
2. 检测目标本次基坑变形检测的目标为:•确定基坑变形的类型和程度;•分析基坑变形的原因;•判定基坑变形对工程的影响;•提出相应的控制和修复措施。
3. 检测方法基坑变形检测通常采用以下方法:3.1 地下水位监测地下水位监测可以通过安装水位计等设备实时监测基坑周边地下水位的变化。
地下水位的上升或下降可能导致基坑变形,因此及时监测和控制地下水位是至关重要的。
3.2 地下水位压力监测地下水位压力监测是通过设置孔隙水压力计等设备监测地下水位压力的变化。
地下水位压力的变化可以对基坑变形进行预测和评估,从而采取相应的措施。
3.3 周边建筑物变形监测通过安装变形监测仪器,如测斜仪、水准仪等,监测周边建筑物的变形情况。
基坑变形可能引起周边建筑物的沉降或倾斜,因此及时监测周边建筑物的变形能够提前发现问题并采取措施。
3.4 基坑边坡变形监测利用边坡位移监测仪器,如测斜仪、全站仪等,对基坑边坡的变形进行实时监测。
基坑边坡的变形可能导致坡体滑动或坍塌,因此对边坡变形进行及时监测是必要的。
4. 检测结果分析根据以上检测方法,我们对基坑变形进行了全面的监测和分析。
根据数据和观察结果,我们得出以下结论:•基坑周边地下水位呈上升趋势,可能导致基坑变形;•地下水位压力表明地下水位压力较大,对基坑稳定性造成潜在威胁;•周边建筑物出现微小的沉降和倾斜,可能与基坑变形有关;•基坑边坡存在局部滑动和变形现象。
5. 影响分析基于对检测结果的分析,我们对基坑变形对工程的影响进行了评估,并提出以下结论:•基坑变形可能导致周边建筑物的沉降和倾斜,影响其结构安全;•基坑边坡的滑动和变形可能引发土方坍塌,对工程施工安全构成威胁;•地下水位的上升和压力的增大可能导致基坑的不稳定,进而影响整个工程的稳定性。
福建省某围垦工程沉降观测作业指导书

沉降观测作业指导书1.工程概况xx省xx围垦工程位于xx市xx县xx内,面向东海,堤线朝向开敞式海域,距城关6km,海堤全长5433m,堤顶宽 3.8m,最大堤高10.6m,海堤围垦面积3.41万亩。
南北岸各设1座水闸,北岸松山水闸总净宽50m,南岸南岐山水闸总净宽35米,均为纳排兼用水闸。
本海堤工程先期已作过一些建设,完成了部分海堤段基础处理和海堤填筑工作,后因故停工,已施工部分经过多年的沉陷和潮水冲击,已出现了不同程度的沉陷和损毁,特别是北岸堤段,原来抛设的断面大都不成形,闭气体位置被两侧滚入的抛石填埋,部分基础土工布和两侧倒虑土工布暴露表面,已失去效力。
本次海堤的建设是在原来建设的基础上重建,需要先对原填筑闭气土体滚入的石渣和海堤失效部位进行清理,再填筑加高,完成整条海堤的施工。
2.工程地质根据地质勘察结果,堤基土壤从上到下可分为五层:第一层(Ⅰ-1)位于海滩涂面下0~1.6m,土质为淤泥,黑灰色、灰色,饱和流动状态,强度低;第二层(Ⅰ-2)位于海滩涂面下0.6~6.0m,土质为淤泥,淤质粘土,灰色、深灰色,上部含少许贝壳、碎片,饱和塑;第三层(Ⅰ-3)位于海滩涂面下6~18m,土质为淤泥,淤质粘土,灰、深灰色,上部含少许贝壳,饱和塑,静力触探比贯入阻力Ps和十字板强度随深度逐渐加大;第四层(Ⅱ)位于海滩涂面下18~45m,土质为粘土,粉质粘土,含粉细沙粘土,部分含有沙夹层和透镜体,密实度大,强度高;第五层(Ⅲ)位于海滩涂面下40~45m,土质为沙砾卵石层。
从该地质情况来看,表层6m以内淤泥层受加载引起沉降、位移的变化量比较大,须在施工中注意沉降观测,掌握基本的数据来指导施工。
3.工程沉降观测本工程地基情况复杂,为了给施工提供可靠的科学依据,须以现场沉降观测分析结果对地基变形、固结情况进行动态掌握,以控制和指导工程施工,主要内容为地表沉降观测。
3.1沉降观测内容和布置详细沉降观测断面布置及项目布置见表3.1,具体见沉降观测断面布置图(以下简称布置图)。
基坑监测施工方案

基坑监测施工方案基坑监测施工方案一、施工概况基坑作为建筑物的基础部分,其稳定性和安全性是施工过程中必须要重视的问题。
本项目基坑监测施工方案是为了确保基坑施工过程中的安全和稳定性。
二、监测方法本方案将采用从施工前到施工后的全程监测,包括地表变形监测、支撑结构变形监测、土体应力监测等。
1.地表变形监测在基坑周边设置地表变形监测点,采用高精度全站仪定期进行观测。
观测数据将用于分析地表沉降情况,确保地表变形在允许范围内。
2.支撑结构变形监测对支撑结构进行倾斜仪定期监测,观测点设置在各个支撑点。
通过观测数据的变化情况,判断支撑结构的变形情况,及时采取相应的措施,防止支撑结构的失稳。
3.土体应力监测在基坑周边设置土体应力监测点,采用应变计和压力计进行观测。
通过观测数据的变化情况,判断土体的应力变化,及时采取相应的措施,防止土体的坍塌。
三、监测频率根据现场实际情况和监测要求,本方案将设置不同监测频率。
1.地表变形监测在基坑施工前后各进行一次地表变形监测,检测地表的沉降情况。
2.支撑结构变形监测每天进行一次支撑结构的倾斜仪观测,通过观测数据的变化情况,判断支撑结构的变形情况。
3.土体应力监测每天进行一次土体应力监测,通过观测数据的变化情况,判断土体的应力变化情况。
四、监测报告每次监测结束后,将会制作监测报告,包括实测数据和分析结果。
1.地表变形监测报告将实测的地表变形数据整理成报告,包括沉降情况的分析和处理意见。
2.支撑结构变形监测报告将实测的支撑结构倾斜数据整理成报告,包括变形情况的分析和处理建议。
3.土体应力监测报告将实测的土体应力数据整理成报告,包括应力变化情况的分析和处理措施。
五、安全管理为了保障施工现场的安全,本方案将采取以下安全管理措施:1.施工现场设立警示牌,提示施工人员注意基坑安全。
2.施工期间设置安全防护网,避免物体坠落。
3.加强人员培训,提高施工人员的安全意识和技能。
4.定期检查和维护施工设备,确保施工过程中的安全和稳定。
深层水平位移观测检测报告

深层水平位移观测检测报告xx-20xx-00xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx公司二〇一三年x月声明第页共页深层水平位移试验检测报告iii目录第1章工程概况 (1)第2章检测目的 (1)第3章检测依据 (1)第4章检测设备 (2)4.1主要仪器设备 (2)4.2主要仪器设备 (2)第5章检测等级 (2)第6章仪器工作原理及方法 (3)6.1仪器工作原理 (3)6.2仪器使用方法 (4)第7章检测数据处理 (5)第8章检测结论及建议 (11)第1章工程概况受xxxxxxxxxxxxxxx的委托,xxxxxxxxxx承担了深层水平位移参数的检测任务。
由于深层水平位移属于长期观测项目,在征得xxxx的情况下,采用现场模拟的方式进行。
2013年9月5日选择公司xxxx旁一处空地来模拟滑坡体的深层水平位移,该滑坡体命名为A 滑坡体,在A滑坡进行深层水平位移检测。
第2章检测目的1、使试验检测人员了解地表沉降的测试过程。
2、通过地表沉降观测参数检测,评定公司检测人员是否具备检测深层水平位移的数的检测能力。
第3章检测依据1、《工程测量规范》(GB 50026-2007);2、《建筑变形测量规范》(JGJ 8-2007);3、《大坝观测仪器测斜仪》(SL 362-2006)。
第4章检测设备4.1主要仪器设备本次观测采用的仪器设备见表4.1,表4.1 检测主要仪器、设备表4.2主要仪器设备桥梁检测时气温:xxxxxxxxxx,天气:晴。
在整个外业工作期间,检测设备均在检定有效期内,运行正常。
第5章检测等级由于本次模拟的A滑坡体模拟为普通滑坡体,根据《工程测量规范》(GB50026-2007)第10.1.3之规定,本项目为四等变形监测等级进行观测。
四等变形监测的等级划分及精度指标和其适用范围见表5.1。
表5.1 四级变形测量的级别、精度指标及其适用范围第6章 仪器工作原理及方法6.1仪器工作原理滑动式测斜仪及其导轮是沿着测斜导管的导槽沉降或提升。