对数与对数运算学案三
对数及对数函数教案8篇

写教案能帮助教师更好地安排课堂教学时间,教案要结合实际的教学进度和学生的学习能力,才能更好地帮助学生提高学习效果,下面是范文社小编为您分享的对数及对数函数教案8篇,感谢您的参阅。
对数及对数函数教案篇1【学习目标】一、过程目标1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。
2通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。
3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。
二、识技能目标1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。
2掌握对数函数的性质,并能初步应用对数的性质解决简单问题。
三、情感目标1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的.学习兴趣。
2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。
教学重点难点:1对数函数的定义、图象和性质。
2对数函数性质的初步应用。
教学工具:多媒体学前准备】对照指数函数试研究对数函数的定义、图象和性质。
对数及对数函数教案篇2对数函数及其性质教学设计1.教学方法建构主义学习观,强调以学生为中心,学生在教师指导下对知识的主动建构。
它既强调学习者的认知主体作用,又不忽视教师的指导作用。
高中一年级的学生正值身心发展的过渡时期,思维活跃,具有一定的独立性,喜欢新鲜事物,敢于大胆发表自己的见解,不过思维还不是很成熟.在目标分析的基础上,根据建构主义学习观,及学生的认知特点,我拟采用“探究式”教学方法。
将一节课的核心内容通过四个活动的形式引导学生对知识进行主动建构。
其理论依据为建构主义学习理论。
它很好地体现了“学生为主体,教师为主导,问题为主线,思维为主攻”的“四为主”的教学思想。
2.学法指导新课程强调“以学生发展为核心”,强调培养学生的自主探索能力与合作学习能力。
对数与对数运算教案三课时

2.2.1 对数与对数运算(三课时)教学目标:1.理解并记忆对数的定义,对数与指数的互化,对数恒等式及对数的性质.2.理解并掌握对数运算法则的内容及推导过程. 3.熟练运用对数的性质和对数运算法则解题. 4.对数的初步应用.教学重点:对数定义、对数的性质和运算法则教学难点:对数定义中涉及较多的难以记忆的名称,以及运算法则的推导第一课时 对数的概念教学过程:(一)、自学引导让学生自学课本62、63页,并完成以下练习① 一般地,若(0,1)xa N a a =>≠且,那么数x 叫做以a 为底N 的______ 记作log a x N =,a 叫做对数的_____,N 叫做______.称xa N =为_______,称log a x N =为________.②<=>N ax=________________________________.③指数式化为对数式:114433==0010141==41010000=(二)、教师精讲(1)(说一说)对数的文化意义对数发明是17世纪数学史上的重大事件,为什么呢?大家一起来看一下 投影:恩格斯说,对数的发明与解析几何的创立、微积分的建立是17世 纪数学史上的3大成就。
伽利略说,给我空间、时间及对数,我可以创造一个宇宙。
布里格斯(常用对数表的发明者)说,对数的发明,延长了天文学家的寿命。
对数的发明让天文学家欣喜若狂,这是为什么? 我们将会发现,对数可以将乘除法变为加减法,把天文数字变为较小的数,简化数的运算。
这些都非常有趣。
那么,什么是对数?对数真的有用吗?对数如何发现?我们带着这些问题,一起来探究对数。
(对数的导入)为了研究对数,我们先来研究下面这个问题: (P62思考)根据上一节的例8我们能从13 1.01x y =⨯中,算出任意一个年头x 的人口总数,那么哪一年的人口达到18亿,20亿,30亿?(停顿让学生思考) 即:1820301.01, 1.01, 1.01,131313x x x ===在个式子中,x 分别等于多少?(2)(讲一讲)对数概念在这三个式子中,都是已知(停顿)底数和幂,求指数x 。
学案3:4.2.1 对数运算

4.2.1 对数运算【自主预习】1.对数的定义及相关概念 (1)对数的概念在表达式a b =N (a >0且a ≠1,N ∈(0,+∞))中,当a 与N 确定之后,只有唯一的b 能满足这个式子,此时,幂指数b 称为 的对数,记作b = ,其中a 称为对数的 ,N 称为对数的 . (2)对数恒等式= .(3)常用对数:以 为底的对数称为常用对数,并把log 10N 记为 .(4)自然对数:在科学技术中常使用以无理数e =2.718 28…为底数的对数,以 为底的对数称为自然对数,并把log e N 记为 . 思考:如何准确理解指数式与对数式的关系?2.对数的性质【基础自测】1.把对数式x =lg 2化为指数式为( ) A .10x =2 B .x 10=2 C .x 2=10D .2x =102.若log 8x =-23,则x 的值为( )A.14B .4C .2D.123.=________.4.若log 3(log 2x )=0,则x 12=________.【合作探究】【例1】(1)对数式lg(2x -1)中实数x 的取值范围是________。
(2)对数式log (x -2)(x +2)中实数x 的取值范围是______.[思路探究] 根据对数式中底数大于0且不等于1,真数大于0求解. 【规律方法】根据对数的概念,对数式的底数大于0且不等于1,真数大于0,列出不等式(组),可求得对数式中字母的取值范围. 【跟踪训练】1.对数式log (2x -3)(x -1)中实数x 的取值范围是________.【例2】 (1)将下列指数式与对数式互化: ①log 216=4;②log 3x =6;③43=64;④3-2=19; ⑤lg 1 000=3.(2)设a =log 310,b =log 37,求3a-b的值.[思路探究] (1)根据a x =N ⇔log a N =x (a >0且a ≠1,N >0)求解;(2)由于a ,b 是对数,所以可考虑用指数式表示出a ,b ,再把它们代入式子中.【规律方法】1.指数式与对数式互化的方法技巧(1)指数式化为对数式:将指数式的幂作为真数,指数作为对数,底数不变,写出对数式.(2)对数式化为指数式:将对数式的真数作为幂,对数作为指数,底数不变,写出指数式.2.互化时应注意的问题(1)利用对数式与指数式间的互化公式互化时,要注意字母的位置改变.(2)对数式的书写要规范:底数a要写在符号“log”的右下角,真数正常表示.【跟踪训练】2.(1)将下列各等式化为相应的对数式或指数式.①10-3=11 000;②ln 2=x.(2)已知a>0且a≠1,log a2=m,log a3=n,求a2m+n的值.[探究问题]1.是不是所有的实数都有对数?2.根据对数的定义及对数与指数的关系,你能求出log a1,log a a分别等于什么吗?3.你能推出对数恒等式=N(a>0且a≠1,N >0)吗?【例3】(1)设f(x)是定义在R上的奇函数,当x<0时,f(x)=x-e-x,则f(ln 6)=() A.-ln 6+6B.ln 6-6C.ln 6+6 D.-ln 6-6(2)有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x,则x=100;④若e=ln x,则x=e2.其中正确的是()A.①③B.②④C.①②D.③④[思路探究](1)根据奇偶性先将f(ln 6)化为-f(-ln 6)再代入求解.(2)根据对数的性质逐一判断即可.【规律方法】1.利用对数性质求解的两类问题的解题方法(1)求多重对数式的值的解题方法是由内到外,如求log a(log b c)的值,先求log b c的值,再求log a(log b c)的值.(2)已知多重对数式的值,求变量值,应从外到内求,逐步脱去“log”后再求解.2.对数恒等式a log a N=N的应用(1)能直接应用对数恒等式的直接应用即可.(2)不能直接应用对数恒等式的情况按以下步骤求解.【跟踪训练】【课堂小结】1.本节课的重点是掌握对数的概念及性质、对数恒等式,难点是对数性质及对数恒等式的应用.2.本节课要重点掌握的规律方法 (1)掌握指数式与对数式的互化关系. (2)对数性质的应用. (3)对数恒等式的应用.3.本节课的易错点是弄错对数恒等式的适用条件.【当堂达标】1.思考辨析(1)根据对数的定义,因为(-2)4=16,所以log (-2)16=4.( ) (2)对数式log 32与log 23的意义一样.( ) (3)因为1a =1,所以log 11=a .( ) (4)log (-2)(-2)=1.( ) 2.若3x =2,则x 等于( ) A .log 23 B .log 32 C .32D .233.计算=________.4.求下列各式中的x . (1)log 2x =-23;(2)log 5(log 2x )=0.【参考答案】【自主预习】1.(1)以a 为底N log a N底数真数(2) N (3) 10 lg_N (4) eln_N思考:[提示] (1)指数式和对数式的关系如图所示:(2)指数式和对数式各部分的名称:式子名称abN指数式 a b =N底数 指数 幂对数式 log a N =b 底数 对数 真数2.负数和零 0 011【基础自测】1.A [根据指数式与对数式的互化可知x =lg 2化为指数式为10x =2.] 2.A [∵log 8x =-23,∴x =8-23=2-2=14,故选A.]3.3 [由对数恒等式得,=3.]4.2 [∵log 3(log 2x )=0,∴log 2x =30=1,∴x =2,即x 12= 2.]【合作探究】类型一对数的概念【例1】 (1)⎝⎛⎭⎫12,+∞ (2)(2,3)∪(3,+∞) [(1)由题意可知对数式lg(2x -1)中的真数大于0,即2x -1>0,解得x >12,所以x 的取值范围是⎝⎛⎭⎫12,+∞.(2)由题意可得⎩⎪⎨⎪⎧x +2>0,x -2>0,x -2≠1,解得x >2,且x ≠3,所以实数x 的取值范围是(2,3)∪(3,+∞).]【跟踪训练】1.⎝⎛⎭⎫32,2∪(2,+∞) [由题意可得⎩⎪⎨⎪⎧x -1>0,2x -3>0,2x -3≠1,解得x >32,且x ≠2,所以实数x 的取值范围是⎝⎛⎭⎫32,2∪(2,+∞).]【例2】[解] (1)①因为log 216=4,所以24=16. ②因为log3x =6,所以(3)6=x .③因为43=64,所以log 464=3. ④因为3-2=19,所以log 319=-2.⑤因为lg 1 000=3,所以103=1 000.(2)因为a =log 310,b =log 37,所以3a =10,3b =7. 则3a -b=3a 3b =107. 【跟踪训练】2.[解] (1)①因为10-3=11 000,所以lg 11 000=-3. ②因为ln 2=x ,所以e x =2.(2)根据条件log a 3=n 及对数的定义可得a n =3, 由log a 2=m 及对数的定义可得a m =2, 所以a 2m +n =a 2m ·a n =(a m )2·a n =22×3=12.[探究问题]1.[提示] 负数和0没有对数.2.[提示] 因为a 0=1,所以log a 1=0;因为a 1=a ,所以log a a =1. 3.[提示] 因为a x =N ,所以x =log a N ,代入a x =N 可得a log a N =N . 【例3】(1)C (2)C [(1)因为f (x )是定义在R 上的奇函数, 所以f (ln 6)=-f (-ln 6)=-(-ln 6-e ln 6)=-(-ln 6-6)=ln 6+6.(2)因为lg 10=1,所以lg(lg 10)=0,故①正确; 因为ln e =1,所以ln(ln e)=0,故②正确; 由10=lg x ,得1010=x ,故x ≠100,故③错误; 由e =ln x ,得e e =x ,故x ≠e 2,所以④错误.] 【跟踪训练】 3.4.【当堂达标】1.(1)× (2)× (3)× (4)× [(1)×.因为对数的底数a 应满足a >0且a ≠1,所以(1)错; (2)×.log 32表示以3为底2的对数,log 23表示以2为底3的对数,所以(2)错; (3)×.因为对数的底数a 应满足a >0且a ≠1,所以(3)错;(4)×.因为对数的底数a 应满足a >0且a ≠1,真数应大于0,所以(4)错.] 2.B [由指数式化为对数式可知x =log 32.] 3.20=22·2log 25=4×5=20.]4.[解] (1)x =2-23=⎝⎛⎭⎫1223. (2)log 2x =1,x =2.。
(学案)2.2.1 对数与对数运算(3)——对数的换底公式

只要有信心,又愿意投入时间,学好数学并不难!
1
§ 2.2.1 对数与对数运算(3)——对数的换底公式
学习目标:加深理解对数的概念和运算性质,了解对数的换底公式并能运用换底公式对数式进行化简和计算。
学习过程:
一、复习(写写对数的概念和运算性质与公式等)
二、探索新知
问题2:
问题3:请用换底公式证明
巩固练习:课本第68页练习4
三、典型例题
例1、计算
问题1:你能否根据对数的定义推导 log log log c a c b
b a
=log log ? a b b c ⋅= log log ?
a b b a ⋅=log log
(01m n a a n
b b m
a b =>、且均不为
)
57348457log 9(1):log 4log 8log log 16,.
1log .log 3m m ⋅⋅=已知求
的值
例2 、已知3436a b ==,求21a b
+的值。
变式:若a ,b ,c 都是正数,且346a b c ==,求证:1112c a b -=
例3、已知lg 2,lg3a b ==试用a ,b 表示5log 48
提升:(王后雄第99页10)设2log 3x =,求332222x x
x x ----的值;。
教学设计3:3.2.1 对数及其运算

3.2.1对数及其运算一、教学内容解析本节课是人教B版第三章第二节对数与对数函数中第一小节对数及其运算的第一课时。
对数对学生来说是一个全新的概念,学习起来略显困难,不过在此之前,学生已学习了指数和指数函数的有关知识,这为过渡到本节的学习起着铺垫的作用;本章后面的对数函数对于学生来说是一个全新的函数模型,而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广。
本节内容的学习主要是为让学生理解对数的概念,为学习对数函数作好准备。
同时,通过对数概念的学习,对培养学生对立统一,相互联系、相互转化,数形结合的思想,培养学生的逻辑思维能力都具有重要的意义。
二、教学目标设置通过对本节课教材的分析,考虑到学生已有的认知结构和心理特征,依据新课标制定出如下三个方面的教学目标:1、知识与技能目标:理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质。
2、过程与方法目标:通过实例使学生认识对数的模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化。
小组交流对对数的理解和认识,培养学生合作学习的能力,使学生经历认知逐渐深入的过程。
3、情感态度与价值观:积极引导学生主动参与学习的过程,激发他们研究数学问题的兴趣,形成主动学习的态度,培养学生自主探究以及合作交流的能力。
三、学生学情分析我校在营口市学生层次较好,我所授课的班级是我校的实验班,学生数学能力很强,思维较活跃。
我校的教学模式为小组合作交流学习模式,学生已经养成了小组合作学习的习惯。
即学生通过预习,结合学案,自主学习、探究的模式。
前面学生已经学习了指数和指数函数的有关知识。
在对教材和教学目标及学情分析后,我确定出本节课的教学重点是:重点:对数的概念,对数式与指数式的相互转化。
难点:对数概念的理解,对数性质的理解。
四、教学策略分析为了最大程度发挥学生的主观能动性,实践人本教育,我校采用“主动、合作、交流”学习方法学习,把学生分成四人小组,分工合作,进行讨论探究逐渐培养学生“会观察”、 “会分析”、“会论证” 、“会合作”的能力。
高中数学对数与对数运算教案

学习必备欢迎下载《对数与对数运算》教案XX 大学数学与统计学院XXX一、教学目标1、知识目标:理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的相互转换;理解对数的运算性质,形成知识技能;2、能力目标:通过实例让学生认识对数的模型,让学生有能力去解决今后有关于对数的问题,同时让学生学会观察和动手,通过做练习,使学生感受到理论与实践的统一,锻炼学生的动手能力;3、分析目标:通过让学生分组进行探究活动,在探究中分析各种思维的技巧,掌握对数运算的重要性质。
二、教学理念为了调动学生学习的积极性,使学生化被动为主动,从学习中体会快乐。
本节课我引导学生从实例出发,引发学生的思考,从中认识对数的模型,体会对数的必要性。
在教学重难点上,我步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率。
让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。
三、教法学法分析1、教法分析新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。
本着这一原则,在教学过程中我主要采用以下教法:实例引入法、开放式探究法、启发式引导法。
2、学法分析“授人以鱼,不如授人以渔” ,最有价值的知识是关于方法的知识。
学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。
在学法选择上,我主要采用:观察发现法、小组讨论法、归纳总结法。
四、教材分析本节讲对数的概念和运算性质主要是为后面学习对数函数做准备。
这在解决一些日常生活问题及科研中起着十分重要的作用。
同时,通过对数概念的学习,对培养学生对立统一、相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义。
五、教学重点与难点重点:(1)对数的定义;(2)指数式与对数式的相互转化及其条件。
难点:(1)对数概念的理解;(2)对数运算性质的理解;(3)换底公式的应用。
对数运算学案

2.2.1对数与对数运算(一)(一)教学目标①理解对数的概念,了解对数与指数的关系; ②掌握对数式与指数式的关系 .(二)教学重点、难点;对数式与指数式的互化 (三)教学过程(课本P 57例8)13 1.01x y =⨯中,哪一年的人口数要达到18亿、20亿、30亿……,该如何解决? 即:1820301.01, 1.01, 1.01,131313x x x ===在个式子中,x 分别等于多少? 象上面的式子,已知_____________,求_______,这就是我们这节课所要学习的对数(引出对数的概念).一.对数概念:_________________________________________________________________________________________________________________________________________例:24416,2log 16==则,读作2是以4为底,16的对数.1242=,则41log 22=,读作12是以4为底2的对数 二. 对数式与指数式的互化(1)底数的限制a >0,且a ≠1; N >0(2)log xa aN N x =⇔= 例:若log (x —1)(2x —1),则x 的取值范围为___log a N 可看作一记说明:对数式号,表示底为a (a >0,且a ≠1),幂为程xaN =(a >0,N 的指数,也表示方以看作一种运算,即且a ≠1)的解. 也可已知底为a (a >0,且a ≠1)幂为N ,求此,对数式log aN幂指数的运算. 因又可看幂运算的逆运算. 三. 对数的性质:(1)负数和零没有对数 (2)l og a 1=__ , l og a a =___(3) 恒等式:log a N a= ___, l og aa n = ___应用:log a N =b ⇔a b=N (a >0,a ≠1,N >0)四. 两类对数① 以10为底的对数称为常用对数,10log N 常记为lg N .②以无理数e =2.71828…为底的对数称为自然对数,log e N 常记为ln N . 五.例题分析例1 将下列指数式化为对数式,对数式化为指数式: (1)54=625; (2)2-6=641; (3)(31)m =5.73; (4)log 2116=-4; (5)lg0.01=-2; (6)ln10=2.303.例2:求下列各式中x 的值 (1)642log 3x =- (2)log 86x =(3)lg100x =(4)2ln e x -=例3 求下列各式中的x .(1)0)22(log 22=--+x x x ;(2) log 2(log 5x)=1;(3)0)(log log 52=x ; (4)21log 5424log 3log 54-+练习:课本P 64 1、2、3、4.课堂小结: 1.对数的定义及其记法; 2.对数式和指数式的关系;3.自然对数和常用对数的概念.2.2.1对数与对数运算(二)(第一课时)(一)教学目标:掌握对数的运算性质,能较熟练地运用对数的运算性质解决有关对数式的化简、求值问题. (二)教学重点、难点1.掌握对数的运算性质.2.应用对数运算性质求值、化简.(三)教学过程一、复习回顾,引入新课上一节课我们学习了对数的概念、指数式与对数式的互化,我们知道,对数和指数都是一种运算,而且对数运算是指数运算的逆运算,指数有它自己的一套运算性质.从指数与对数的关系以及指数运算性质,能得出相应的对数运算性质吗?这就是本节课所要探究的知识.二、讲解新课(一)对数的运算性质的探究问题:指数幂运算有哪些性质?a m·a n=_, a m÷a n=__,(a m)n=_,m n a=_.根据对数的定义可得:log a N=b a b=N(a>0,a≠1,N>0),那么,对数运算也有相应的运算性质吗?如果有,它们的运算性质会与指数幂的运算性质之间有什么联系呢?探究(1):由于a m·a n=a m+n(a>0,且a≠1),__________________________________________________________探究(2):由a m÷a n=a m-n和(a m)n=a mn,得出对数运算的其他性质.______________________________________探究(3):∵(a m)n=a mn,设M=a m,∴M n=a mn.______________________(二)对数的运算性质:a>0,a≠1,M>0,N>0l og a(MN)=____________M=_____________log aNlog a M n=_________(1)三个性质可归纳为:(1)积的对数等于各因式对数的和;(2)商的对数等于被除数的对数减除数的对数;(3)幂的对数等于指数乘以底数的对数.分析:这几条运算性质会对我们进行对数运算带来以下方便:利用以上性质,可以使两正数的积、商的对数运算问题转化为两正数各自的对数的和、差运算,大大的方便了对数式的化简、求值.(2)概念理解底数a>0,且a≠1,真数M>0,N>0;只有所得结果中对数和所给出的数的对数都存在时,等式才能成立.性质推广性质(1)可以推广到n 个正数的情形,即log a (M 1M 2M 3…M n )=log a M 1+log a M 2+log a M 3+…+log a M n (其中a >0,且a ≠1,M 1、M 2、M 3…M n >0). 知识拓展:当a >0,a ≠1,M >0时,还有log m a M n =mnlog a M . (三)运算性质的应用 例1(课本P 65例3)、 用log a x ,log a y ,log a z 表示下列各式:(1)log a zxy;(2)log a32zy x .例2(P 65例4)、求下列各式的值:(1)log 2(47×25);(2)lg 5100.例3、 已知lg2≈0.3010,lg3≈0.4771,求下列各式的值:(结果保留4位有效数字)(1)lg12;(2)lg 1627.例4、 计算: (1)lg14-2lg37+lg7-lg18;(2)9lg 243lg ;(3)21lg 10lg 38lg 27lg ∙-+.(4)2log 2log 4log 7101.0317103-+(5)lg 25 + 32lg8 + lg5 ×lg20+ l 2g2例5解方程(1)lg(x 2+11x+8)-lg(x+1)=1.(2)l 2g (x+10)-3lg(x+10) -4=0.(四)课堂小结:1.对数的运算性质. 2.对数运算法则的综合运用,应掌握变形技巧:(1)各部分变形要化到最简形式,同时注意分子、分母的联系;(2)要避免错用对数运算性质.2.2.1对数与对数运算(三)(第二课时)(一)教学目标:1.掌握换底公式,会用换底公式将一般的对数化为常用对数或自然对数,并能进行一些简单的化简和证明; 2.能将一些生活实际问题转化为对数问题并加以解答. (二)教学重点:1.换底公式及其应用;2.对数的应用问题. 教学难点:换底公式的灵活应用. (三)教学过程一、复习与引入: 对数和指数比较:引入新课:我们学习了对数运算法则,可以看到对数的运算法则仅适用于对数的底数相同的情形,若在解题过程中,遇到对数的底数不相同时怎么办?例如:求log23×log34的值从对数的定义可以知道,任何不等于1的正数都可以作为对数的底.数学史上,人们经过大量的努力,制作了常用对数、自然对数表,只要通过查表就能求出任意正数的常用对数或自然对数.这样,如果能将其他底的对数转换为以10或e 为底的对数,就能方便地求出任意不为1的正数为底的对数.二、讲解新课(一)探求换底公式,明确换底公式的意义和作用 根据对数的定义推导出下面的换底公式log a N =aNc c log log (a >0,且a ≠1;c >0,且c ≠1;N >0).推导:___________________________________________________________________________一般地,log a N =aNc c log log (a >0,且a ≠1;c >0,且c ≠1;N >0),这个公式称为换底公式.log a b ·log b a =___, log a b ·log b c =____换底公式作用:是把一个对数式的底数改变,可将不同底问题化为同底问题,为使用运算法则创设条件,如换底公式可以解决如下问题:例如 1. n a b m log =mnlog a b (a 、b >0且均不为1). log23×log34=2.求我国人口达到18亿的年份,就是计算x =log 1.011318的值,利用换底公式与对数的运算性质, (查表得:1139.113lg ,2553.118lg ≈≈)x =__________________________. __________________________. (二)换底公式的应用例1. 求值.(1)log 89·log 2732; (2)(log 25+log 4125)·5lo g 2l o g 33.例2. 计算: log 34·log 48·log 8m =log 416,求m 的值.方法:在利用换底公式进行化简求值时,一般情况是根据题中所给的对数式的具体特点选择恰当的底数进行换底,如果所给的对数式中的底数和真数互不相同,我们可以选择以10为底数进行换底. 知识拓展:(1)不同底的对数要尽量化为同底的对数来计算;(2)在第(3)小题的计算过程中,用到了性质log m a M n =m nlog a M 及换底公式log a N =a N b b log log .(三)对数的应用问题:用已学过的对数知识解决实际问题例3. 20世纪30年代,里克特(C.F .Richter )制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大.这就是我们常说的里氏震级M ,其计算公式为M =lg A -lg A 0,其中,A 是被测地震的最大振幅,A 0是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差).(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001,计算这次地震的震级(精确到0.1); (2)5级地震给人的震感已比较明显,计算7.6级地震的最大振幅是5级地震的最大振幅的多少倍(精确到1).分析:可以看到,虽然7.6级地震和5级地震仅相差2.6级,但7.6级地震的最大振幅却是5级地震最大振幅的398倍.所以,7.6级地震的破坏性远远大于5级地震的破坏性.例4.科学研究表明,宇宙射线在大气中能够产生放射性碳14.碳14的衰变极有规律,其精确性可以称为自然界的“标准时钟”.动植物在生长过程中衰变的碳14,可以通过与大气的相互作用得到补充,所以活着的动植物每克组织中的碳14含量保持不变.死亡后的动植物,停止了与外界环境的相互作用,机体中原有的碳14按确定的规律衰减,我们已经知道其“半衰期”为5730年.湖南长沙马王堆汉墓女尸出土时碳14的残余量约占原始含量的76.7%,试推算马王堆古墓的年代.三、课堂小结1.换底公式及其应用条件(注意字母的范围).2.解决实际问题的一般步骤:。
学案3:4.3.2 对数的运算

4.3.2 对数的运算1.对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么: (1)log a (MN )= . (2)log a MN = .(3)log a M n = (n ∈R ). 名师点拨对数的这三条运算性质,都要注意只有当式子中所有的对数都有意义时,等式才成立.例如,log 2[(-3)·(-5)]=log 2(-3)+log 2(-5)是错误的. 2.换底公式log a b = (a >0,且a ≠1;c >0,且c ≠1;b >0). 名师点拨牢记换底公式的三个常用推论(1)推论一:log a c ·log c a =1.此公式表示真数与底数互换,所得的对数值与原对数值互为倒数. (2)推论二:log a b ·log b c ·log c a =1.(3)推论三:log amb n =nm log a b .此公式表示底数变为原来的m 次方,真数变为原来的n 次方,所得的对数值等于原来对数值的nm倍.自我检测1.判断正误(正确的打“√”,错误的打“×”) (1)积、商的对数可以化为对数的和、差.( ) (2)log a (xy )=log a x ·log a y .( ) (3)log 2(-5)2=2log 2(-5).( )2.已知a >0且a ≠1,则log a 2+log a 12=( )A .0B .12C .1D .23.计算log 510-log 52等于( ) A .log 58 B .lg 5 C .1D .24.(1)lg 10=__________;(2)已知ln a =0.2,则ln ea =__________.5.log 35·log 56·log 69=________. 讲练互动探究点1 对数运算性质的应用 例1 计算下列各式: (1)log 5325; (2)log 2(32×42);(3)log 535-2log 573+log 57-log 595;(4)lg 25+23lg 8+lg 5·lg 20+(lg 2)2.规律方法对数式化简与求值的基本原则和方法(1)基本原则对数式的化简求值一般是正用或逆用公式,对真数进行处理,选哪种策略化简,取决于问题的实际情况,一般本着便于真数化简的原则进行. (2)两种常用的方法①“收”,将同底的两对数的和(差)收成积(商)的对数;②“拆”,将积(商)的对数拆成同底的两对数的和(差). 跟踪训练 计算下列各式的值: (1)lg 5100; (2)log 345-log 35; (3)(lg 5)2+2lg 2-(lg 2)2; (4)lg 3+25lg 9+35lg 27-lg 3lg 81-lg 27.探究点2 换底公式的应用 例2 计算:(1)log 29·log 34;(2)log 52×log 79log 513×log 734.反思反馈利用换底公式求值的思想与注意点跟踪训练1.log 916·log 881的值为( ) A .18B .118C .83D .382.1log 1419+1log 1513=________. 3.计算:(log 2125+log 425+log 85)·(log 52+log 254+log 1258).探究点3 对数运算中的综合问题例3 已知log 189=a ,18b =5,求log 3645(用a ,b 表示). 互动探究1.(变问法)若本例条件不变,如何求log 1845(用a ,b 表示)?2.(变条件)若将本例条件“log 189=a ,18b =5”改为“log 94=a ,9b =5”,则又如何求解呢? 规律方法解对数综合应用问题的3种方法(1)统一化:所求为对数式,条件转为对数式. (2)选底数:针对具体问题,选择恰当的底数.(3)会结合:学会换底公式与对数运算法则结合使用. 跟踪训练1.已知log 142=a ,用a 表示log 27.2.已知2x =3y =a ,若1x +1y=2,求a 的值.达标反馈1.log 242+log 243+log 244=( ) A .1 B .2 C .24D.122.若a >0,a ≠1,x >y >0,n ∈N *,则下列各式: (1)(log a x )n =n log a x ; (2)(log a x )n =log a x n ; (3)log a x =-log a 1x ;(4)nlog a x =1n log a x ;(5)log a x n =log a n x .其中正确的有( ) A .2个 B .3个 C .4个D .5个 3.计算log 219·log 3125·log 514=( )A .8B .6C .-8D .-6 4.已知a 2=1681(a >0),则log 23a =________.5.计算下列各式的值. (1)3log 72-log 79+2log 7⎝⎛⎭⎫322; (2)lg 2+lg 5-lg 8lg 50-lg 40.巩固提升 A 基础达标1.化简12log 612-2log 62的结果为( )A .62B .122C .log 63D .122.若lg x -lg y =t ,则lg ⎝⎛⎭⎫x 23-lg ⎝⎛⎭⎫y 23=( ) A .3t B .32tC .tD .t 23.设log 34·log 48·log 8m =log 416,则m 的值为( ) A .12B .9C .18D .27 4.如果lg x =lg a +3lg b -5lg c ,那么( ) A .x =ab 3c 5B .x =3ab5cC .x =a +3b -5cD .x =a +b 3-c 3 5.已知2x =3,log 483=y ,则x +2y 等于( )A .3B .8C .4D .log 48 6.log 48-log 193=________.7.已知m >0,且10x =lg(10m )+lg 1m ,则x =________.8.若lg x +lg y =2lg(x -2y ),则xy =__________.9.用lg x ,lg y ,lg z 表示下列各式: (1)lg(xyz );(2)lg xy 2z ;(3)lg xy 3z .10.计算下列各式的值: (1)log 3(813);(2)2lg (lg a 100)2+lg (lg a );(3)log 6112-2log 63+13log 627.B 能力提升11.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN 最接近的是( )(参考数据:lg 3≈0.48)A .1033B .1053C .1073D .109312.设a =log 2m ,b =log 5m ,且1a +1b =1,则m =________.13.计算下列各式的值:(1)log 535+2log 122-log 5150-log 514.(2)[(1-log 63)2+log 62·log 618]÷log 64.14.若a ,b 是方程2(lg x )2-lg x 4+1=0的两个实根,求lg(ab )·(log a b +log b a )的值.C 拓展探究15.已知2y ·log y 4-2y -1=0,log x 5x ·log 5x =-1,试问是否存在一个正数P ,使得P =1x -y ?参考答案新知初探1.(1)log a M +log a N (2)log a M -log a N (3)n log a M 2.log c b log c a自我检测1.【答案】(1)√ (2)× (3)×2.【答案】A4.【答案】(1)12 (2)0.85.【答案】2【解析】log 35·log 56·log 69=lg 5lg 3·lg 6lg 5·lg 9lg 6=lg 9lg 3=2lg 3lg 3=2. 讲练互动探究点1 对数运算性质的应用 例1 解:(1)原式=13log 525=13log 552=23.(2)原式=log 232+log 242=5+4=9.(3)原式=log 5(5×7)-2(log 57-log 53)+log 57-log 595=log 55+log 57-2log 57+2log 53+log 57-2log 53+log 55=2log 55=2.(4)原式=2lg 5+2lg 2+(1-lg 2)(1+lg 2)+(lg 2)2=2(lg 5+lg 2)+1-(lg 2)2+(lg 2)2=2+1=3.跟踪训练 解:(1)原式=lg 10015=15lg 100=15×2=25.(2)原式=log 3455=log 39=log 332=2.(3)原式=(lg 5+lg 2)(lg 5-lg 2)+2lg 2=lg 10(lg 5-lg 2)+2lg 2=lg 5-lg 2+2lg 2=lg 5+lg 2=1.(4)原式=lg 3+45lg 3+910lg 3-12lg 34lg 3-3lg 3=⎝⎛⎭⎫1+45+910-12lg 3(4-3)lg 3=115.探究点2 换底公式的应用 例2 解:(1)由换底公式可得, log 29·log 34=lg 9lg 2·lg 4lg 3=2lg 3lg 2·2lg 2lg 3=4.(2)原式=log 52log 513×log 79log 734=log 132×log 349=lg 2lg 13×lg 9lg 413=12lg 2-lg 3×2lg 323lg 2=-32.跟踪训练【解析】原式=log 3224·log 2334=2log 32·43log 23=83.2.【答案】log 310【解析】1log 1419+1log 1513=lg 14lg 19+lg 15lg13=-2lg 2-2lg 3+-lg 5-lg 3=lg 2lg 3+lg 5lg 3=1lg 3=log 310.3.解:法一:原式=⎝⎛⎭⎫log 253+log 225log 24+log 25log 28(log 52+log 54log 525+log 58log 5125) =⎝⎛⎭⎫3log 25+2log 252log 22+log 253log 22(log 52+2log 522log 55+3log 523log 55) =⎝⎛⎭⎫3+1+13log 25·(3log 52)=13log 25·log 22log 25=13. 法二:原式=⎝⎛⎭⎫lg 125lg 2+lg 25lg 4+lg 5lg 8(lg 2lg 5+lg 4lg 25+lg 8lg 125) =⎝⎛⎭⎫3lg 5lg 2+2lg 52lg 2+lg 53lg 2(lg 2lg 5+2lg 22lg 5+3lg 23lg 5) =⎝⎛⎭⎫13lg 53lg 2⎝⎛⎭⎫3lg 2lg 5=13.探究点3 对数运算中的综合问题 例3 解:因为18b =5,所以b =log 185. 所以log 3645=log 1845log 1836=log 18(5×9)log 18(2×18)=log 185+log 189log 182+log 1818=a +b 1+log 182 =a +b 1+log 18189=a +b 2-log 189=a +b 2-a.互动探究1.解:因为18b =5,所以log 185=b ,所以log 1845=log 189+log 185=a +b . 2.解:因为9b =5,所以log 95=b . 所以log 36 45=log 945log 936=log 9(5×9)log 9(4×9)=log 95+log 99log 94+log 99=b +1a +1. 跟踪训练1.解:因为log 142=a ,所以log 214=1a .所以1+log 27=1a .所以log 27=1a-1.由对数换底公式,得log 27=log 27log 22=log 272. 所以log 27=2log 27=2⎝⎛⎭⎫1a -1=2(1-a )a. 2.解:因为2x =3y =a ,所以x =log 2a ,y =log 3a ,所以1x +1y =1log 2a +1log 3a=log a 2+log a 3=log a 6=2,所以a 2=6,解得a =± 6.又因为a >0,所以a = 6.达标反馈1.l 【答案】A【解析】log 242+log 243+log 244=log 24(2×3×4)=log 2424=1.2.【答案】A【解析】根据对数的运算性质log a M n =n log a M (M >0,a >0,且a ≠1)知(3)与(5)正确.3.【答案】C【解析】log 219·log 3125·log 514=log 23-2·log 35-2·log 52-2=-8log 23·log 35·log 52=-8. 4.【答案】2【解析】由a 2=1681(a >0)得a =49, 所以log 2349=log 23⎝⎛⎭⎫232=2. 5.解:(1)原式=log 723-log 79+log 7⎝⎛⎭⎫3222=log 789+log 798=log 7⎝⎛⎭⎫89×98=log 71=0. (2)原式=lg 2×58lg 5040=lg 54lg 54=1. 巩固提升A 基础达标 1.【答案】C【解析】原式=log 612-log 62=log 6122=log 6 3.2.【答案】A【解析】lg ⎝⎛⎭⎫x 23-lg ⎝⎛⎭⎫y 23=3lg x 2-3lg y 2=3lg x y=3(lg x -lg y )=3t . 3.【答案】B【解析】由题意得lg 4lg 3·lg 8lg 4·lg m lg 8=log 416=log 442=2,所以lg m lg 3=2, 即lg m =2lg 3=lg 9.所以m =9,选B.4.【答案】A【解析】因为lg x =lg a +3lg b -5lg c =lg a +lg b 3-lg c 5=lg ab 3c 5,所以x =ab 3c 5. 5.【答案】A【解析】因为2x =3,所以x =log 23.又log 483=y , 所以x +2y =log 23+2log 483=log 23+2(log 48-log 43)=log 23+2⎝⎛⎭⎫32log 22-12log 23 =log 23+3-log 23=3.故选A.6.【答案】2【解析】log 48=log 2223=32, log 193=-12, 所以原式=32-⎝⎛⎭⎫-12=2. 7.【答案】0【解析】lg(10m )+lg 1m =lg 10+lg m +lg 1m=1, 所以10x =1=100,所以x =0.8.【答案】4【解析】因为lg x +lg y =2lg(x -2y ),所以⎩⎪⎨⎪⎧x >0,y >0,x -2y >0,xy =(x -2y )2.由xy =(x -2y )2,知x 2-5xy +4y 2=0,所以x =y 或x =4y .又x >0,y >0且x -2y >0,所以舍去x =y ,故x =4y ,则x y=4. 9.解:(1)lg(xyz )=lg x +lg y +lg z .(2)lg xy 2z=lg(xy 2)-lg z =lg x +2lg y -lg z . (3)lg xy 3z=lg(xy 3)-lg z =lg x +3lg y -12lg z . 10.解:(1)原式=log 381+log 33=log 334+log 3312=4+12=92. (2)原式=2lg (100lg a )2+lg (lg a )=2[lg 100+lg (lg a )]2+lg (lg a )=2[2+lg (lg a )]2+lg (lg a )=2. (3)法一:原式=-log 6(22×3)-2log 63+13log 633 =-(log 622+log 63)-2log 63+log 63=-(2log 62+log 63)-2log 63+log 63=-2(log 62+log 63)=-2log 6(2×3)=-2.法二:原式=log 6112-log 632+log 62713 =log 6312×9=log 6136=log 66-2=-2. B 能力提升11.【答案】D【解析】因为lg 3361=361×lg 3≈361×0.48≈173,所以M ≈10173,则M N ≈101731080=1093,故选D. 12.【答案】10【解析】因为a =log 2m ,b =log 5m ,所以1a =1log 2m =log m 2,1b =1log 5m =log m 5,因为1a +1b=1,所以log m 2+log m 5=log m 10=1,所以m =10.13.解:(1)原式=log 535+log 550-log 514+2log 12212=log 535×5014+log 122=log 553-1=2. (2)原式=[(log 66-log 63)2+log 62·log 6(2×32)]÷log 64=⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫log 6632+log 62·(log 62+log 632)÷log 622=[(log 62)2+(log 62)2+2log 62·log 63]÷2log 62=log 62+log 63=log 6(2×3)=1.14.解:原方程可化为2(lg x )2-4lg x +1=0,设t =lg x ,则原方程可化为2t 2-4t +1=0.所以t 1+t 2=2,t 1t 2=12.由已知a ,b 是原方程的两个根, 则t 1=lg a ,t 2=lg b ,即lg a +lg b =2,lg a ·lg b =12, 所以lg(ab )·(log a b +log b a )=(lg a +lg b )⎝⎛⎭⎫lg b lg a +lg a lg b=(lg a +lg b )[(lg b )2+(lg a )2]lg a lg b=(lg a +lg b )·(lg b +lg a )2-2lg a lg b lg a lg b=2×22-2×1212=12. 即lg(ab )·(log a b +log b a )=12.C 拓展探究15.解:由2y ·log y 4-2y -1=0得2y ⎝⎛⎭⎫log y 4-12=0,所以log y 4=12,即y =16. 由log x 5x ·log 5x =-1得log x 5x =-1log 5x ,则log x 5x =-log x 5>0. 12(log x 5+1)=(-log x 5)2,整理得2(log x 5)2-log x 5-1=0,解得log x 5=-12(log x 5=1舍去), 所以1x=25. 所以P =1x -y =25-16=3, 即存在一个正数P =3,使得P =1x -y 成立.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.3 对数与对数运算(3)
【学习目标】
1.能熟练运用对数运算性质解决对数运算问题;
2.会运用对数运算性质解决实际应用问题.
【学习重点】运用对数运算和对数运算性质解决实际应用问题.
【难点提示】对数运算性质的正确理解与运用;
【学法提示】1.请同学们课前将学案与教材6469P -结合进行自主学习(对教材中的文字、图象、表格、符号、观察、思考、说明与注释、例题及解答、阅读与思考、小结等都要仔细阅读)、小组讨论,积极思考提出更多、更好、更深刻的问题,为课堂学习做好充分的准备;
2.在学习过程中用好“十二字学习法”即:“读”、“挖”、“举”、“联”、“用”、“悟”、“听”、“问”、“通”、“总”、“研”、“会”,请在课堂上敢于提问、敢于质疑、敢于讲解与表达.
【学习过程】 一、学习准备
1. 上节课我们学习了对数运算及对数运算性质,请完成下列填空:
如果a >0且a ≠1,M >0,N >0,b>0那么:
(1)log a MN = ;(2)log a M N
= ;(3)log n a M = . (4)对数的换底公式:log a b = ;(5)拓展公式知道吗?(链接1)
2.预备练习 (1)计算:827log 9log 32∙.
(2)已知12log 27=a ,求6log 16的值(用a 表示).
3.对数运算及运算性质在实际生活中有哪些运用呢?
在16、17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之际,苏格兰数学家纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数.可见它对解决实际问题的作用非常巨大(请同学们认真阅读教材第68-69页),今天就来探究对数的实际应用.
二、典例解析
例1 (教材P66例5,请同学们先做,在看书上的解答)
20世纪30年代,查尔斯.里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大. 这就是我们常说的里氏震级M ,其计算公式为:0lg lg M A A =-,其中A 是被测地震的最大振幅,0A 是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中距离造成的偏差).
(1) 假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,
此时标准地震的振幅是0.001, 计算这次地震的震级(精确到0.1);
(2) 5级地震给人的振感已比较明显,计算7.6级地震最大振幅是5级地震最大振幅的多少倍?(精确到1)
思路启迪:读懂题中的有用信息是解决数学应用问题的关键,本题中的有用信息有哪些,你能通过读题后能读出来吗?然后根据你的理解试一试.
解:
●解后反思 这是一道什么题型、求解它的一般步骤是什么?应注意哪些问题?
例2(教材P66例6,请同学们先做,在看书上的解答)
当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据些规律,人们获得了生物体碳14含量P 与生物死亡年数t 之间的关系.回答下列问题:
(1)求生物死亡t 年后它机体内的碳14的含量P ,并用函数的观点来解释P 和t 之间的关系,指出是我们所学过的何种函数?
(2)已知一生物体内碳14的残留量为P ,试求该生物死亡的年数t ,并用函数的观点来解释P 和t 之间的关系,指出是我们所学过的何种函数?
(3)长沙马王墓女尸出土时碳14的余含量约占原始量的76.7%,试推算古墓的年代? 解:
例3.log 1log log a a ab x b x
=+(1)证明:
. 24892(2)(log 3log 9log 27log 3)log .n n ++++ 化简:
解后反思 证明恒等式有哪些方法?该题的证明用的什么方法?在(2)中化简的方向是什么?两个小题的入手点各在在哪里?
变式练习 12121212).n n
a a a n a a a n
b b λλ= 已知log b =log b ==log b =,求证:log (b
三、学习反思
1.本节课我们学习了哪些数学知识、数学思想方法,实现了我们的学习目标吗?
如:解决实际应用问题的基本步骤有哪几步? 利用换底公式解决有关对数问题应注意什么?(学习链接2)
2.通过本节课的学习对本节课你还有独特的见解吗?本节课的数学知识与生活有怎样的联系?感受到本节课数学知识与方法的美在哪里?
四、学习评价
2
5()a -(a ≠0)化简得结果是( ).
A .-a ;
B .a 2;
C .|a |;
D .a .
2.若 log 7[log 3(log 2x )]=0,则1
2x =( ).
A . 3 ;
B . ;
C . ;
D . .
3.已知35a b m ==,且112a b
+=,则m 之值为( ).
A .15;
B ;
C .;
D .225.
4.若32a
=,则log 38-2log 36用a 表示为 .
5.化简:(1)222lg5lg8lg5lg20(lg2)3
+++; (2)()()24525log 5+log 0.2log 2+log 0.5.
6.若()()lg lg 2lg2lg lg x y x y x y -++=++,求
x y
的值.
7.已知14log 2a =,用a 表示
7.
8.教材P74习题2.2A 组第6、9题、P75第12题.
【学习链接】
链接1:1log (0,1,0,1)log a b b a a b b a =>≠>≠;log log (0,1,0)n m a a m b b a a b n
=>≠> 链接2. 解答应用问题的步骤是:审题、建模、化简、计算、下结论;其中审题、建模是关键;
在解答有关对数应用题的过程中应注意:(1)针对具体问题,选择好底数;(2)注意换底公式与对数运算法则结合使用;(3)换底公式的正用与逆用.。