对数及其运算导学案

合集下载

对数函数导学案.doc

对数函数导学案.doc

2.2.1对数与对数运算(一)一【学习目标】 (一) 教学知识点1.对数的概念;2.对数式与指数式的互化. (二) 能力训练要求1.理解对数的概念;2.能够进行对数式与指数式的互化;3.培养学生数学应用意识. 二、教学重点:对数的定义. 三、教学难点:对数概念的理解. 四【新课讲授】(导学)假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍?列出表达式: (自学)知识点1 : 对数的概念1.对数定义:一般地,如果 ,)1,0(≠>a a 且则数 b 叫做以a 为底 N 的对数, 记作 ,其中a 称为对数的底,N 称为真数. (b N N a a b =⇔=log )(1)底数的取值范围 ;真数的取值范围(2)对数式和指数式关系式 子名称 a b N指数式 对数式思考1.将下列指数式写成对数式: (1)62554= (2)64126=- (3)273=a(4)73.531=m )(知识点2 两种重要对数1.常用对数:以10为底的对数叫做常用对数N 10log 简记作 . 思考2:5log 10简记作; 5.3log 10简记作2.自然对数:用以无理数e=2.71828……为底的对数叫自然对数, N e log 简记作思考3:3log e 简记作 10log e 简记作 思考4. 将下列对数式写成指数式:(1)416log 21-=; (2)7128log 2=; (3)201.0lg -=; (4)303.210ln =.知识点三 : 重要公式:⑴负数与零没有对数; ⑵01log =a , 1log =a a ⑶对数恒等式N aNa =log五【典例欣赏】(互学) 1对数概念应用例1.求下列各式中x 的取值范围:(1)log 2(x -10);(2)log (x -1)(x +2);(3)log (x +1)(x -1)2.2对数基本运算例2求下列各式中的x 的值:(1)32log 64-=x ;(2)68log =x ;(3)x =100lg ;(4)x e =-2ln 。

2.2 对数与对数函数导学案

2.2  对数与对数函数导学案

必修一 2.2.1 对数与对数运算导学案(课时一)一.合作探究:假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍? ()?2%81=⇒=+⋅x a a x也就是已知底数和幂的值,求指数.你能看得出来吗?怎样求呢? 新知:1. 对数的概念.一般地,如果N a x=)1,0(≠>a a ,那么数 x 叫做以a 为底 N 的对数. 记作 ,其中a 叫做对数的底数,N 叫做真数. 2. 对数与指数的关系.一般地,如果(a >0, a ≠1)的b 次幂等于N ,就是N a b =,那么数b 叫做以a 为底N 的对数,记作b N a =log ,3. 常用对数.我们通常将以10为底的对数叫做常用对数,并把常用对数10log N 简记为lg N例如:5log 10简记作lg5; 5.3log 10简记作 .4. 自然对数.在科学技术中常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,并把自然对数N e log 简记作N ln例如:3log e 简记作3ln ; 10log e 简记作 . 反思:1.是不是所有的实数都有对数?b N a =log 中的N 可以取哪些值?负数与零是否有对数?为什么? 2.=1log a , =a a log .3.底数的取值范围是 ,真数的取值范围 .4.=na a log ,=na alog .【典型例题】例1.将下列指数式写成对数式,对数式写成指数式.(1)62554=;(2)73.531=m )( ;(3)416log 21-= ;(4)303.210ln =.⇔=N a b例2.求下列各式中的x 的值.(1)32log 64-=x ; (2)68log =x ; (3)x =100lg ; (4)x e =-2ln .例3.计算.(1)27log 9; (2)81log 3; (3)125log 5; (4)()()32log 32-+.课堂检测 1. 若2log 3x =,则x =_____2.若1)12(log -=+x ,则x =_____3. 将下列指数式写成对数式,对数式写成指数式.(1)823= (2)3131=- (3)29log 3= (4)241log 2-=4. 求下列各式的值:(1)1log 4.0 (2)32log 2 (3) 1000lg (4)343log 7(选做)(3))23(log )23(+-; (4)625log35.2.2.1 对数与对数运算(课时二)【预习指导】 复习回顾:1.对数定义:如果N a x =(0,1)a a >≠,那么数 x 叫做 ,记作 .2.指数式与对数式的互化:N a x =⇔ .3.幂的运算性质.(1)n m a a = ;(2)n m a )(= ;(3)n ab )(= . 合作探究:问题:由q p q p a a a +=,如何探讨)(log MN a 和M a log 、N a log 之间的关系?设p M a =log , q N a =log ,由对数的定义可得:p a M =,q a N =∴q p q p a a a MN +==,∴q p MN a +=)(log ,即得N M MN a a a log log )(log +=.新知:对数运算性质.如果1,0≠>a a ,M > 0, N > 0 有:(1)N M MN a a a log log )(log +=;(2) ; (3))(log log R n M n M a n a ∈=.反思:1.性质的证明思路.2.对数的运算性质可否逆用? 【知识链接】【典型例题】例1.用x a log ,y a log ,z a log 表示下列各式.32log )2(;(1)log zyx zxyaa .例2.计算.(1)25log 5; (2))24(log 572⨯; (3)5100lg ;例3.计算. (1) 18lg 7lg 37lg 214lg -+-; (2) 2lg 5lg 2lg )5(lg 2+⋅+.(选讲)例4.已知3010.02lg =,4771.03lg =, 求108lg .课堂检测1. 下列等式成立的是( ).A .222log (35)log 3log 5÷=-B .222log (10)2log (10)-=-C .5log 3log )53(log 222⋅=+D .3322log (5)log 5-=-2. 如果c b a xlg 5lg 3lg lg -+=,那么( ).A .x =a +3b -cB .35ab x c= C . 35ab x c = D .x =a +b 3-c 33. 计算(1))927(log 23⨯ (2)3log 6log 22-(3)15lg lg 23+=; (4) =+27log 3log 99.4. 计算(1)2lg 2lg2lg5lg5+⋅+; (选做)(2) lg8lg1.2-.2.2.1 对数与对数运算(课时三)【预习指导】 复习回顾:对数的运算法则如果 a >0,a ≠ 1,M >0, N >0 有:=)(log MN a ,=NM a log ,=n a M log .新知:1.对数的换底公式:aNN b b a log log log =;证明:设 a log N = x , 则 x a = N .两边取以b 为底的对数:N a x N a b b b x b log log log log =⇒=从而得:a N x b b log log = ∴ aNN b b a log log log =.2.对数的倒数公式:ab b a log 1log =;(选讲)3.对数恒等式:N N a n a n log log =;N N a nn a m log log =;1log log =⋅a b b a .【典型例题】例1.20世纪30年代,查尔斯.里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大. 这就是我们常说的里氏震级M ,其计算公式为:0lg lg M A A =-,其中A 是被测地震的最大振幅,0A 是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中距离造成的偏差).(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001, 计算这次地震的震级(精确到0.1); (2)5级地震给人的振感已比较明显,计算7.6级地震最大振幅是5级地震最大振幅的多少倍?(精确到1)例2.计算. (1);25log 20lg 100+ (3)4log 16log 327.课堂检测1.计算(1)8log 4log 3log 432∙∙⋅ (2) ()2log 2)(log 3log 3log 9384++2.已知 2log 3 = a , 3log 7 = b ,用b a ,表示42log 56.(选做)3.计算: 3log 12.05+;2.2.2对数函数及其性质导学案(1)复习1 :画出 x y 2= x y )21(=的图象,并以这两个函数为例,说说指数函数的性质复习2 :生物机体内碳 的“半衰期”为 5730年,湖南长沙马王堆汉墓女尸出土时,碳14 的残余量为P ,试推算马王堆古墓的年代(列式)二、新课导学※探究任务一:对数函数的概念讨论: 复习2中t 与 P 的关系?(对每一个碳14 的含量 P 的取值,通过对应关系P t 573021log=,生物死亡年数 t 都有唯一的值与之对应,从而 t 是 P 的函数)新知:一般当a>0且 ≠1 时,形如 叫做对数函数,,函数的定义域是 判断: x y 2log 2= ,)5(log 5x y =为对数函数吗?试一试:同一坐标系中画出下列对数函数的图象(1)x y 2log = (2)x y 21log =例1 求下列函数的定义域 (1))32(log 2-+=x x y a (2)xy 311log 7-=练1求下列函数的定义域(1))6(log 5--=x y (2) 1log 2-=x y例2比较下列各题中两个数值的大小(1)5.3log 3log 22和 (2) 7.2log 8.2log 3.03.0和 (3) 9.5log 1.5log a a 和练2:比较下列各题中两个数值的大小 (1)5.8ln 4.3ln 和 (3) 8.1log 61.1log 7.07.0和(2) 4log 7.0log 3.02.0和 (4)2log 3log 32和当堂检测1. 函数)3(log )1(x y x -=-的定义域是 2. 比大小(1)6log 7log 76和 (2)5.1log 8.0log 32和 3. 函数)1(log 22≥+=x x y 的值域为4. 不等式21log 4>x 解集是2.2.2 对数函数及其性质导学案(2)复习1:对数函数log (0,1)y x a a =>≠且图象和性质.一.学习探究探究任务1:阅读教材 P 73探究,答:关系式是_________________________探究任务2:理解指数函数2x y =与对数函数2log y x =互为反函数反函数,课本P 73(不必抄写,理解既可)探究任务3:在同一平面直角坐标系中,画出指数函数2x y =及其反函数2log y x =图象,发现什么性质?(这个问题是课本P76“探究与发现”的问题)由上述过程可以得到结论:互为反函数的两个函数的图象关于 对称. 典型例题例1求函数3x y =的反函数练1. 求下列函数的反函数.(1) y =x (x ∈R ); (2)y =log a 2x (a >0,且a ≠1,x >0)小结:求反函数的步骤(解x →习惯表示→定义域) .五、当堂检测1.函数0.5log y x =的反函数是( ).A. 0.5log y x =-B. 2log y x =C. 2xy = D.1()2xy = 2. 函数2(0)y x x =<的反函数是( ).A. (0)y x =>B. (0)y x =>C. (0)y x =>D.。

高中数学 2.2.1 对数与对数运算导学案(2) 新人教A版必修1

高中数学 2.2.1 对数与对数运算导学案(2) 新人教A版必修1

高中数学 2.2.1 对数与对数运算导学案(2)新人教A版必修1§§2.2.1 对数与对数运算(2)学习目标1. 掌握对数的运算性质,并能理解推导这些法则的依据和过程;2. 能较熟练地运用对数运算法则解决问题..学习过程一、课前准备(预习教材P64~ P66,找出疑惑之处)复习1:(1)对数定义:如果x a N=(0,1)a a>≠,那么数x叫做,记作 .(2)指数式与对数式的互化:复习2:幂的运算性质.(1)m na a=;(2)()m n a=;(3)()n ab= .复习3:根据对数的定义及对数与指数的关系解答:(1)设log2am=,log3a n=,求m n a+;(2)设loga M m=,log a N n=,试利用m、n表示log(a M·)N.二、新课导学※学习探究探究任务:对数运算性质及推导问题:由p q p qa a a+=,如何探讨log a MN和log a M、log a N之间的关系?问题:设loga M p=, log a N q=,由对数的定义可得:M=p a,N=q a ∴MN=p a q a=p q a+,(1)loglog mn a anb b m=;(2)1log log abb a =.练3. 计算:(1)7lg142lg lg7lg183-+-;(2)lg 243lg9. 三、总结提升 ※ 学习小结①对数运算性质及推导;②运用对数运算性质;③换底公式.※ 知识拓展① 对数的换底公式log log log babNN a=; ② 对数的倒数公式1log log abb a =.③ 对数恒等式:log log nn aa N N =, 学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列等式成立的是( ) A .222log (35)log 3log 5÷=- B .222log (10)2log (10)-=- C .222log (35)log 3log 5+= D .3322log (5)log 5-=-2. 如果lgx =lga +3lgb -5lgc ,那么( ). A .x =a +3b -c B .35ab x c= C .35ab x c= D .x =a +b 3-c 33. 若()2lg 2lg lg y x x y -=+,那么( ). A .y x = B .2y x =C .3y x =D .4y x = 4. 计算:(1)99log 3log 27+= ;(2)2121log log 22+= . 5. 计算:315lglg 523+= .课后作业 1. 计算:(1lg 27lg83lg 10+-; (2)2lg 2lg2lg5lg5+⋅+.2. 设a 、b 、c 为正数,且346ab c==,求证:。

4.3.2对数的运算导学案

4.3.2对数的运算导学案

4.3.2 对数的运算导学案编辑人:孙言兆学习目标1、通过具体实例引入,推导对数的运算性质;2、熟练掌握对数的运算性质,学会化简,计算.教学重难点重点:对数的运算性质,换底公式,对数恒等式及其应用; 难点:正确使用对数的运算性质和换底公式.学习过程预习导入1.对数的运算性质若a >0,且a ≠1,M >0,N >0,那么:(1)log a (M ·N )=___________________,(2)log a M N =___________________,(3)log a M n =___________________(n ∈R).[点睛] 对数的这三条运算性质,都要注意只有当式子中所有的对数都有意义时, 等式才成立.例如,log 2[(-3)·(-5)]=log 2(-3)+log 2(-5)是错误的.2.换底公式若c >0且c ≠1,则log a b =log c b log c a(a >0,且a ≠1,b >0). 小试牛刀1.判断(正确的打“√”,错误的打“×”)(1)积、商的对数可以化为对数的和、差. ( )(2)log a (xy =log a x ·log a y . ( )(3)log 2(-5)2=2log 2(-5). ( )(4)由换底公式得log a b =log (-2)b log (-2)a. ( ) 2.计算log 84+log 82等于( )A .log 86B .8C .6D ..1 3.计算log 510-log 52等于( )A .log 58B .lg 5C .1D ..2 4.log 48=________.自主探究题型一 对数运算性质的应用例1 计算下列各式的值:(1)log 2√796+log 224-12log 284;(2)lg 52+23lg 8+lg 5·lg 20+(lg 2)2.跟踪训练一1.计算下列各式的值(1)log 3√27+lg 25+lg 4+7log 712+(-9.8)0.(2)2log 32-log 3329+log 38-52log 53.题型二 换底公式的应用例2 计算下列各式的值:(1)827log 9log 32;(2)48(log 3log 3)lg2lg3.跟踪训练二1.化简:(1)log 23·log 36·log 68;(2)(log 23+log 43)(log 32+log 274).题型三 对数的综合应用例3 (1)若3x =4y =36,求2x +1y 的值;(2)已知3x =4y =6z ,求证:1x +12y =1z .跟踪训练三1.已知3a =7b =M ,且2a +1b =2,求M 的值?当堂检测1.log 29log 23=( ) A.12 B .2 C.32 D.922.2log 510+log 50.25=( )A .0B .1C .2D ..43.设a =log 32,则log 38-2log 36用a 表示的形式是( )A .a -2B .3a -(1+a )2C .5a -2D .-a 2+3a -14.计算log 225·log 322·log 59的结果为( )A .3B .4C .5D ..65.已知a 2=1681(a >0),则log 23a =________. 6.lg 5+lg 20的值是________.7.若log a b ·log 3a =4,则b 的值为________.8.求下列各式的值:(1)2log 525+3log 264; (2)lg(3+5+3-5);(3)(lg 5)2+2lg 2-(lg 2)2.。

高中数学必修一导学案对数与对数运算一

高中数学必修一导学案对数与对数运算一

学生班级姓名小组号评价必修一 2.2.1对数与对数运算(一)【学习目标】1.深刻理解对数的定义,熟练进行对数的计算及指数式与对数式的互化,掌握对数的性质,培养积极合作探究的能力;2. 自主学习,积极讨论,踊跃展示,探究对数应用的规律和方法;【重点和难点】教学重点:对数的概念;教学难点:对数式与指数式的互化.【使用说明及学法指导】1. 先预习课本P 62~63,然后开始做导学案;2.对比学习过的指数函数及指数式,结合课本学习对数的概念;预习案一.知识梳理1.对数定义:如果x a N (0,1)a a ,那么数x 叫做,记作.式子名称a x N a x =Nlog a N=x2.常用对数:3.自然对数:4.log 1a ,log a a ,没有对数。

二.问题导学1.如何实现对数式与指数式的互化?2.常用对数和自然对数是如何定义的?3.真数为1的对数值是什么?当真数与底数相同时呢?三.预习自测1. 将下列指数式化成对数式,对数式化成指数式. (1)53243;(2)51232;(3)430a (4)1() 1.032m ;(5)12log 164;(6)2log 1287;2. 求下列各式的值.(1)5log 25= ;(2)21log 16;(3)lg 10000 ;3. 探究log ?n a a l o g ?a N a四.我的疑问:探究案一.合作探究探究1.下列指数式化为对数式,对数式化为指数式. (1)2100.01;(2)712128;(3)327a ;(4)12log 325;(5)lg0.001=3;(6)ln100=4.606. 变式:12log 32?lg0.001=?探究2.例2求下列各式中x 的值:(1)642log 3x ;(2)log 86x ;(3)lg 4x ;(4)3ln e x . 二.课堂训练与检测1.若2log 3x ,则x ()A. 4B. 6C. 8D. 92. (1)log (1)n n n n = ().A. 1B. -1C. 2D. -23. 对数式2log (5)a a b 中,实数a 的取值范围是().A .(,5)B .(2,5)C .(2,)D .(2,3)(3,5)4. 计算:21log (322).5. 若log (21)1x ,则x=________,若2log 8y ,则y=___________.三.课堂小结。

对数函数导学案(全章)

对数函数导学案(全章)

对数函数导学案(全章)导学目标本章主要介绍对数函数及其性质,通过研究,你将了解以下内容:- 对数函数的定义与表示方法;- 对数函数的性质及其与指数函数之间的关系;- 对数函数在实际问题中的应用。

1. 对数函数的定义与表示方法1.1 对数函数的定义对数函数是一种能够描述指数运算逆运算的数学函数。

设正数a > 0 且a ≠ 1,b > 0,则以 a 为底 b 的对数,记作logₐb,定义为满足a^logₐb = b 的实数。

1.2 对数函数的表示方法对数函数可以用不同的表示方法来表示,常见的有以下两种:- 指数形式:logₐb = x,表示以 a 为底 b 的对数为 x;- 运算形式:logₐb = logc b / logc a,表示以 a 为底 b 的对数,等于以任意正数 c 为底 b 的对数与以 c 为底 a 的对数的商。

2. 对数函数的性质与关系2.1 对数函数的性质对数函数具有以下性质:- logₐa = 1;- logₐa^x = x,其中 a > 0,a ≠ 1;- logₐ1 = 0,其中 a > 0,a ≠ 1;- log₁₀10 = 1,log₂2 = 1。

2.2 对数函数与指数函数的关系对数函数与指数函数之间存在着紧密的联系:- 若 a^x = b,则logₐb = x;- 若logₐb = x,则 a^x = b。

3. 对数函数的应用对数函数在实际问题中有广泛的应用,例如:- 在经济学中,对数函数可以用来描述利率、复利和指数增长等问题;- 在物理学中,对数函数可以用来描述声音的音量、地震的震级等问题;- 在计算机科学中,对数函数可以用来描述算法的时间复杂度等问题。

总结本章主要介绍了对数函数的定义与表示方法,对数函数的性质与指数函数的关系,以及对数函数在实际问题中的应用。

通过研究,你可以更好地理解并运用对数函数解决相关的数学问题。

参考资料:- 张宇老师. (2021). 《高中数学》. 北京师范大学出版社.。

2.2.1对数与对数运算导学案

2.2.1对数与对数运算导学案

2.2.1 对数与对数运算导学案【学习目标】理解对数的含义及对数的运算.【教学重点】:(1)对数的定义;(2)指数式与对数式的互化【教学难点】:推导对数性质一、问题引入:(1)32= (2) 83=a ,则a = (3)2002年我国GDP 为a 亿元,如果每年平均增长8%,那么经过多少年GDP 是2002年的2倍?二、辅导自学阅读课本62页内容,完成下列内容:1、对数的概念:一般地,如果那么数x 叫做以 的对数,记作 ,其中a 叫做对数的 ,N 叫做 。

注意:底数的限制: ;真数的限制:2、两个重要对数(1)常用对数:以 为底的对数,简记为 ;(2)自然对数:以 为底的对数,简记为 ;3、对数与指数的互化:三、例题分析例1:将下列对数式写成指数式。

(1)532log 2= (2)4811log 3-= (3)31000lg = (4)381log 2-=()10≠>=a a N a x 且N 10log N e log例2:将下列指数式写成对数数式。

(1)62554= (2)64126-= (3)73.531=m )(例3:求下列各式x 的值:(1)32log 64-=x (2)68log =x (3)x =100lg四、探究活动(对数的性质))探究1:求下列各式的值:(1) (2) (3)探究2:求下列各式的值:(1) (2) (3)探究3:1、求下列各式的值:(1) (2)1log 33log 36.0log 772、求下列各式的值:(1); (2); (3)思考:你发现了什么?归纳:1、“1”的对数等于 ,即=1log a,类比 2、底数的对数等于“1”,即=a a log 3、对数恒等式:4、对数恒等式:5、 和 没有对数。

【巩固训练】1.把下列各题的指数式写成对数式:(1)42=16; (2)30=1; (3)4x =2 (4)2x =0.5;(5)54=625 (6)3-2= (7)()-2=16. 2.把下列各题的对数式写成指数式:(1)x =log 527 (2)x =log 87 (3)x =log 43(4)x =log 7; (5)log 216=4; (6)log27=-3;433log 410lg 10=a 9141313.求下列各式中x的值:(1)log8x=(2)logx27=3(3)log2(log5x)=1 (4)log3(lgx)=0 32。

高中数学 2.2.1 对数与对数运算导学案(3) 新人教A版必修1

高中数学 2.2.1 对数与对数运算导学案(3) 新人教A版必修1

高中数学 2.2.1 对数与对数运算导学案(3)新人教A版必修1§2.2.1 对数与对数运算(3)学习目标1. 能较熟练地运用对数运算性质解决实践问题;2. 加强数学应用意识的训练,提高解决应用问题的能力.学习过程 一、课前准备(预习教材P 66~ P 69,找出疑惑之处) 复习1:对数的运算性质及换底公式.如果 a > 0,a ≠ 1,M > 0, N > 0 ,则 (1)log ()aMN = ; (2)log aM N= ; (3) log n aM = . 换底公式log ab = .复习2:已知 2log 3 = a , 3log 7 = b ,用 a ,b 表示42log 56.复习3:2019年我国人口总数是12亿,如果人口的年自然增长率控制在1.25℅,问哪一年我国人口总数将超过14亿? (用式子表示)二、新课导学 ※ 典型例题 例1 20世纪30年代,查尔斯.里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大. 这就是我们常说的里氏震级M ,其计算公式为:0lg lg M A A =-,其中A 是被测地震的最大振幅,0A 是“标准地震”的振幅(使用① P 和t 之间的对应关系是一一对应;② P 关于t 的指数函数57301()2xP =,则t 关于P 的函数为 .※ 动手试试 练1. 计算:(1)0.21log 35-; (2)44912log 3log 2log32⋅-.练2. 我国的GDP 年平均增长率保持为7.3%,约多少年后我国的GDP 在2019年的基础上翻两番?三、总结提升 ※ 学习小结1. 应用建模思想(审题→设未知数→建立x 与y 之间的关系→求解→验证);2. 用数学结果解释现象. ※ 知识拓展在给定区间内,若函数()f x 的图象向上凸出,则函数()f x 在该区间上为凸函数,结合图象易得到1212()()()22x x f x f x f ++≥; 在给定区间内,若函数()f x 的图象向下凹进,则函数()f x 在该区间上为凹函数,结合图象易得到1212()()()x x f x f x f ++≤. 学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 25log ()5a -(a ≠0)化简得结果是( ).A .-aB .a 2C .|a |D .a 2. 若 log 7[log 3(log 2x )]=0,则12x =( ). A. 3 B. 23 C. 22 D. 323. 已知35a bm ==,且112a b+=,则m 之值为( ). A .15 B .15 C .±15 D .2254. 若3a=2,则log 38-2log 36用a 表示为 .5. 已知lg 20.3010=,lg1.07180.0301=,则课后作业 1. 化简: (1)222lg5lg8lg5lg20(lg2)3+++; (2)()()24525log 5+log 0.2log 2+log 0.5.2. 若()()lg lg 2lg2lg lg x y x y x y -++=++,求x y 的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东北中山中学高一数学导学案 编号:15 使用时间: 班级: 小组: 姓名: 组内评价: 教师评价:
对数及其运算导学案
编者:高一数学组
【使用说明与学法指导】
1、请同学认真阅读课本95-101页,划出重要知识,规范完成预习案内容并记熟基础知识,用红笔做好疑难标记。

2、在课堂上联系课本知识和学过的知识,小组合作、讨论完成探究案内容;组长负责,拿出讨论结果,准备展示、点评。

3、及时整理展示、点评结果,规范完成训练案内容,改正完善并落实好学案所有内容。

4、把学案中自己的疑难问题和易忘、易出错的知识点以及解题方法规律,及时整理在典型题本上,多复习记忆。

【学习目标】
1、知识与技能:理解对数的概念及其运算性质,知道换底公式能将一般对数转化成自然对数或常用对
数。

2、过程与方法:通过探究推导对数概念及其运算性质,培养学生的推理能力。

3、情感态度与价值观:渗透应用意识,让学生明确学习知识的必要性,学会应用知识解决实际问题。

【重点难点】
对数的概念及对数的运算性质;换底公式及对数式变形 【预习案】
阅读课本,完成下列问题 :
1、一般地,对指数式 ,我们把“以a 为底N 的对数b ”记作 ,即 ,其中,数a 叫做对数的底数,N 叫做真数,读作“ ”。

2、对数恒等式:
3、根据对数的定义,对数N a log )10(≠>a a 且具有下列性质: 1) 没有对数,即 ; 2)1的对数为 ,即 ; 3) 的对数为1,即 。

4、常用对数: ,记作 。

5、对数的运算
(1)=⋅)(log N M a ;推广 ; (2)=N
M
a
log ; (3)=αM a log (R ∈α).
6、换底公式:=N b log
7、自然对数: ,记作 。

【探究案】
例1 用z y x a a a log ,log ,log 表示下列各式
z xy
a log )1( 32log )2(z
y x a
例2 求下列各式的值
(1)5100lg (2))24(lg 572⨯ (3)18lg 7lg 3
7
lg
214lg -+- (4)()()50lg 2lg 5lg 2+ (5)81log 64log 89⋅ (6))16log 4)(log 27log 3(log 27342++
例3求证(1)z z y x y x log log log = (2)b n
m
b a m
a n log log =
【训练案】
1、(1)若1)921(log 3=-x ,则x= ;(2)若y x a a ==2
1log ,31log ,则=-y a 2
1
2、设3log 2=x ,求x
x x
x ----2
22233的值 3、计算下列各式的值: (1)
8lg 3
136.0lg 2113lg 2lg 2+++ (2))5353lg(-++ (3)91
log 81log 251log 532
⋅⋅
4、已知518,9log 18==b a ,求45log 36
【回顾总结·感悟提升】。

相关文档
最新文档