对数与对数函数学案

合集下载

对数与对数运算教案

对数与对数运算教案

对数与对数运算教案一、教学目标1.了解对数的概念和性质。

2.掌握对数的换底公式。

3.能够运用对数运算解决实际问题。

二、教学重点1.对数的换底公式的掌握。

2.对数运算的实际应用。

三、教学难点1.对数的换底公式的理解与应用。

2.对数运算在实际问题中的灵活运用。

四、教学过程1.导入(5分钟)通过提问的方式引入对数的概念,例如:什么是指数?怎样求指数运算的结果?对数与指数有何关系等。

2.知识讲解与演示(25分钟)(1)对数的概念与性质:先简要介绍对数的概念,即以一些数为底,使结果等于一些数的指数运算。

然后讲解对数的性质,包括对数的唯一性、对数的基本法则等。

3.练习与巩固(25分钟)(1)讲解练习题:组织学生进行对数运算的练习,包括计算对数的值、利用对数解决方程等。

逐步提高题目的难度,以巩固学生的基本技能。

(2)拓展练习:根据实际问题设置应用题,引导学生运用对数解决实际问题,如物种数量的估算、露营地数量的计算等。

培养学生的问题解决能力和分析能力。

4.深化与延伸(20分钟)(1)对数运算的实际意义:通过一些具体的实际例子,讲解对数运算在生活中的应用,如音量的计算、地震强度的测量等。

让学生感受到对数运算在实际问题中的重要性。

(2)拓展延伸:引导学生深入思考对数的概念和性质,并做一些拓展性的练习,如求对数的近似值、应用对数解决复杂方程等。

拓宽学生的数学思维。

五、课堂小结与展望(5分钟)对本节课的内容进行小结,回顾所学的知识点和技能。

展望下节课的内容,为下一步学习打下基础。

六、作业布置布置适量的练习题作业,巩固对数与对数运算的知识与技能的掌握。

七、教学反思通过本节课的教学,学生对对数和对数运算有了初步的了解。

对数的换底公式的掌握是此节课的难点和重点,需要进行反复的练习和巩固。

通过设置实际问题的应用题,培养学生的问题解决能力和应用能力。

同时,教师需要耐心引导学生思考和讨论,帮助学生更好地理解和掌握数学知识。

对数及对数函数教案8篇

对数及对数函数教案8篇

写教案能帮助教师更好地安排课堂教学时间,教案要结合实际的教学进度和学生的学习能力,才能更好地帮助学生提高学习效果,下面是范文社小编为您分享的对数及对数函数教案8篇,感谢您的参阅。

对数及对数函数教案篇1【学习目标】一、过程目标1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。

2通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。

3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。

二、识技能目标1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。

2掌握对数函数的性质,并能初步应用对数的性质解决简单问题。

三、情感目标1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的.学习兴趣。

2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。

教学重点难点:1对数函数的定义、图象和性质。

2对数函数性质的初步应用。

教学工具:多媒体学前准备】对照指数函数试研究对数函数的定义、图象和性质。

对数及对数函数教案篇2对数函数及其性质教学设计1.教学方法建构主义学习观,强调以学生为中心,学生在教师指导下对知识的主动建构。

它既强调学习者的认知主体作用,又不忽视教师的指导作用。

高中一年级的学生正值身心发展的过渡时期,思维活跃,具有一定的独立性,喜欢新鲜事物,敢于大胆发表自己的见解,不过思维还不是很成熟.在目标分析的基础上,根据建构主义学习观,及学生的认知特点,我拟采用“探究式”教学方法。

将一节课的核心内容通过四个活动的形式引导学生对知识进行主动建构。

其理论依据为建构主义学习理论。

它很好地体现了“学生为主体,教师为主导,问题为主线,思维为主攻”的“四为主”的教学思想。

2.学法指导新课程强调“以学生发展为核心”,强调培养学生的自主探索能力与合作学习能力。

高三数学(理)复习学案: 对数与对数函数(含答案)

高三数学(理)复习学案: 对数与对数函数(含答案)

例2
解题导引 比较对数式的大小或证明等式问题是对数中常见题 型,解决此类问题的方法很多,①当底数相同时,可直接利用对数函数
的单调性比较;②若底数不同,真数相同,可转化为同底(利用换底公 式)或利用对数函数图象,数形结合解得;③若不同底,不同真数,则 可利用中间量进行比较. 解 (1)①∵log3<log31=0, 而log5>log51=0,∴log3<log5. ②方法一 ∵0<0.7<1,1.1<1.2, ∴0>log0.71.1>log0.71.2. ∴<, 由换底公式可得log1.10.7<log1.20.7.
(满分:75分) 一、选择题(每小题5分,共25分) 1.(2010·北京市丰台区高三一调)设M={y|y=()x,x∈[0,+ ∞)},N={y|y=log2x,x∈(0,1]},则集合M∪N等于 ( ) A.(-∞,0)∪[1,+∞) B.[0,+∞)

探究点一 对数式的化简与求值
例1
计算:(1); (2)lg-lg+lg;
(3)已知2lg=lg x+lg y,求.
变式迁移1 计算: (1)log2+log212-log242-1; (2)(lg 2)2+lg 2·lg 50+lg 25.
探究点二 含对数式的大小比较
例2
(1)比较下列各组数的大小. ①log3与log5; ②log1.10.7与log1.20.7. (2)已知logb<loga<logc,比较2b,2a,2c的大小关系.
③logaMn=__________(n∈R); ④=logaM. 3.对数函数的图象与性质 a>1
0<a<1
图 象
(1)定义域:______ (2)值域:______ (3)过点______,即x=____时,y=____ 性 质 (4)当x>1时,______ 当0<x<1时,______ (6)是(0,+∞)上的______函数 (5)当x>1时, ______当0<x<1 时,______ (7)是(0,+∞) 上的______函数

数学(文)一轮教学案:第二章第6讲 对数与对数函数 Word版含解析

数学(文)一轮教学案:第二章第6讲 对数与对数函数 Word版含解析

第6讲 对数与对数函数 考纲展示 命题探究1 对数的概念如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.2 对数的性质与运算法则 (1)对数的性质几个恒等式(M ,N ,a ,b 都是正数,且a ,b ≠1)①a log a N =N ;②log a a N=N ;③log b N =log a N log ab ;④log am b n=n m log a b ;⑤log a b =1log ba ,推广log ab ·log bc ·log cd =log a d .(2)对数的运算法则(a >0,且a ≠1,M >0,N >0)①log a (M ·N )=log a M +log a N ;②log a MN =log a M -log a N ;③log a M n=n log a M (n ∈R );④log anM =1n log a M .3 对数函数的图象及性质a >10<a <1图 象续表a >10<a <1性 质定义域:(0,+∞)值域:R过点(1,0),即x =1时,y =0当x >1时,y >0 当0<x <1时,y <0 当x >1时,y <0 当0<x <1时,y >0 在(0,+∞)上是增函数在(0,+∞)上是减函数注意点 对数的运算性质及公式成立的条件对数的运算性质以及有关公式都是在式子中所有的对数符号有意义的前提下才成立的,不能出现log 212=log 2[(-3)×(-4)]=log 2(-3)+log 2(-4)等错误.1.思维辨析(1)若log 2(log 3x )=log 3(log 2y )=0,则x +y =5.( ) (2)2log 510+log 5(3)已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=2.( ) (4)当x >1时,log a x >0.( ) (5)函数y =ln 1+x1-x与y =ln (1+x )-ln (1-x )的定义域相同.( )(6)若log a m <log a n ,则m <n .( )答案 (1)√ (2)× (3)√ (4)× (5)√ (6)× 2.函数y =ln (x +1)-x 2-3x +4 的定义域为( ) A .(-4,-1) B .(-4,1) C .(-1,1) D .(-1,1]答案 C解析 要使函数有意义,须使⎩⎪⎨⎪⎧x +1>0,-x 2-3x +4>0,解得-1<x <1,所以函数的定义域为(-1,1).3.(1)若2a =5b =10,则1a +1b =________. (2)已知a 23 =49(a >0),则log 23 a =________.答案 (1)1 (2)3解析 (1)∵2a=5b=10,∴a =log 210,b =log 510,∴1a =lg 2,1b =lg 5,∴1a +1b =lg 2+lg 5=1.(2)因为a 23 =49(a >0),所以a =⎝ ⎛⎭⎪⎫49 32 =⎝ ⎛⎭⎪⎫233,故log 23 a =log 23⎝ ⎛⎭⎪⎫233=3.[考法综述] 考查对数运算,换底公式及对数函数的图象和性质,对数函数与幂指数函数相结合.综合考查利用单调性比较大小、解不等式等是高考热点.主要以选择题、填空题形式出现.典例 (1)函数f (x )=2ln x 的图象与函数g (x )=x 2-4x +5的图象的交点个数为( )A .3B .2C .1D .0(2)⎝ ⎛⎭⎪⎫1681 -34+log 354+log 345=________. (3)已知a >0,b >0,ab =8,则当a 的值为________时,log 2a ·log 2(2b )取得最大值.[解析] (1)在同一直角坐标系下画出函数f (x )=2ln x 与函数g (x )=x 2-4x +5=(x -2)2+1的图象,如图所示.∵f (2)=2ln 2>g (2)=1,∴f (x )与g (x )的图象的交点个数为2.(2)原式=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫234-34 +log 3⎝ ⎛⎭⎪⎫54×45=⎝ ⎛⎭⎪⎫23-3+log 31=278.(3)当log 2a 与log 2(2b )有一个为负数时,log 2a ·log 2(2b )<0显然不是最大值.当log 2a 与log 2(2b )都大于零时,log 2a ·log 2(2b )≤⎣⎢⎡⎦⎥⎤log 2a +log 2(2b )22=⎣⎢⎡⎦⎥⎤log 2(2ab )22=4,当且仅当a =2b ,即a =4,b =2时“=”成立.[答案] (1)B (2)278 (3)4【解题法】 对数运算及对数函数问题解题策略(1)将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.(2)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想求解.(3)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.1.设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .p =r <qC .q =r >pD .p =r >q答案 B解析 ∵0<a <b ,∴a +b2>ab ,又f (x )=ln x 在(0,+∞)上单调递增,故f (ab )<f ⎝⎛⎭⎪⎫a +b 2,即q >p ,∵r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =f ()ab =p ,∴p =r <q .故选B.2.函数f (x )=log 12 (x 2-4)的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2) 答案 D解析 由x 2-4>0得x >2或x <-2,因此函数定义域为(-∞,-2)∪(2,+∞).令t =x 2-4,当x ∈(-∞,-2)时,t 随x 的增大而减小,y =log 12 t 随t 的增大而减小,所以y =log 12 (x 2-4)随x 的增大而增大,即f (x )在(-∞,-2)上单调递增.故选D.3.设a =log 37,b =2,c ,则( )A .b <a <cB .c <a <bC .c <b <aD .a <c <b答案 B解析 由3<7<9得log 33<log 37<log 39,∴1<a <2,由2>21=2得b 0=1得c <1,因此c <a <b ,故选B.4.已知关于x 的方程⎝ ⎛⎭⎪⎫12x =1+lg a1-lg a有正根,则实数a 的取值范围是( )A .(0,1)D .(10,+∞)答案 C解析 当x >0时,0<⎝ ⎛⎭⎪⎫12x <1,∵关于x 的方程⎝ ⎛⎭⎪⎫12x =1+lg a1-lg a有正根,∴0<1+lg a1-lg a <1,∴⎩⎪⎨⎪⎧1+lg a1-lg a<1,1+lg a1-lg a >0,解得-1<lg a <0,∴a <1.故选C.5.函数y =2log 4(1-x )的图象大致是( )答案 C解析 函数y =2log 4(1-x )的定义域为(-∞,1),排除A 、B ;又函数y =2log 4(1-x )在定义域内单调递减,排除D.选C.6.若a =log 43,则2a +2-a =________. 答案433解析 ∵a =log 43=log 23,∴2a +2-a=2log 23 +2-log 23 =3+13=433.函数y =log 12(x 2-2x )的单调递减区间是________.[错解][错因分析] 易出现两种错误:一是不考虑定义域,二是应用复合函数的单调性法则时出错.[正解] 由x 2-2x >0,得函数y =log 12(x 2-2x )的定义域为(-∞,0)∪(2,+∞).令u =x 2-2x ,则u 在(-∞,0)上是减函数,在(2,+∞)上是增函数,又y =log 12u 在(0,+∞)上是减函数,所以函数y =log 12(x 2-2x )在(-∞,0)上是增函数,在(2,+∞)上是减函数.故函数y =log 12(x 2-2x )的单调递减区间是(2,+∞).故填(2,+∞).[心得体会]………………………………………………………………………………………………时间:60分钟基础组1.[2016·衡水中学模拟]已知log 7[log 3(log 2x )]=0,那么x - 12等于( )A.13B.36C.33D.24答案 D解析 由log 7[log 3(log 2x )]=0,得log 3(log 2x )=1,即log 2x =3,解得x =8,所以x - 12 =8- 12 =18=122=24.故选D.2.[2016·武邑中学仿真]lg 51000-8 23 =( ) A.235 B .-175 C .-185 D .4答案 B解析 lg 51000-8 23 =lg 5103-8 23 =lg 1035 -(23) 23 =35-4=-175.3.[2016·冀州中学猜题]已知x =log 23,y =log 4π,z ,则( ) A .x <y <z B .z <y <x C .y <z <x D .y <x <z答案 A解析 y =log 4π=log 2πlog 24=log 2π>log 23,即y >x ,z >1,所以x <y <z .故选A.4.[2016·枣强中学期中]已知函数f (x )=log 2x ,若在[1,8]上任取一个实数x 0,则不等式1≤f (x 0)≤2成立的概率是( )A.14B.13C.27D.12答案 C解析 1≤f (x 0)≤2⇒1≤log 2x 0≤2⇒2≤x 0≤4,∴所求概率为4-28-1=27.5. [2016·衡水二中仿真]已知函数g (x )是偶函数,f (x )=g (x -2),且当x ≠2时其导函数f ′(x )满足(x -2)f ′(x )>0,若1<a <3,则( )A .f (4a )<f (3)<f (log 3a )B .f (3)<f (log 3a )<f (4a )C .f (log 3a )<f (3)<f (4a )D .f (log 3a )<f (4a )<f (3) 答案 B解析 ∵(x -2)f ′(x )>0,∴x >2时,f ′(x )>0;x <2时,f ′(x )<0.∴f (x )在(2,+∞)上递增,在(-∞,2)上递减.∵g (x )是偶函数,∴g (x -2)关于x =2对称,即f (x )关于x =2对称,∵1<a <3,∴f (3)<f (log 3a )<f (4a ).故选B.6.[2016·枣强中学期末]已知函数f (x )=|log 12 x |,若m <n ,有f (m )=f (n ),则m +3n 的取值范围是( )A .[23,+∞)B .(23,+∞)C .[4,+∞)D .(4,+∞)答案 D解析 ∵f (x )=⎪⎪⎪⎪⎪⎪log 12 x ,若m <n ,有f (m )=f (n ),∴log 12 m =-log 12n .∴mn =1.∴0<m <1,n >1.∴m +3n =m +3m 在m ∈(0,1)上单调递减.当m =1时,m +3n =4,∴m +3n >4.7.[2016·衡水二中模拟]已知函数f (x )=log(x 2-ax +3a )在[2,+∞)上单调递减,则a 的取值范围是( )A .(-∞,4]B .[4,+∞)C .[-4,4]D .(-4,4]答案 D解析 令t =g (x )=x 2-ax +3a ,∵f (x )=log t 在定义域上为减函数,要使f (x )=log(x 2-ax +3a )在[2,+∞)上单调递减,则t =g (x )=x 2-ax +3a 在[2,+∞)上单调递增,且t =g (x )=x 2-ax +3a >0,即⎩⎨⎧--a 2≤2,g (2)>0,∴⎩⎪⎨⎪⎧a ≤4,a >-4,即-4<a ≤4,选D. 8.[2016·武邑中学预测]函数y =lg 1|x +1|的大致图象为( )答案 D解析 y =lg 1|x |是偶函数,关于y 轴对称,且在(0,+∞)上单调递减,而y =lg1|x +1|的图象是由y =lg 1|x |的图象向左平移一个单位长度得到的.故选D.9.[2016·冀州中学仿真]函数y =ax 2+bx 与y =log x (ab ≠0,|a |≠|b |)在同一直角坐标系中的图象可能是( )答案 D解析 从对数的底数入手进行讨论,结合各个选项的图象从抛物线对称轴的取值范围进行判断,D 选项0<⎪⎪⎪⎪⎪⎪b a <1,0<⎪⎪⎪⎪⎪⎪b 2a <12,0<-b 2a <12或-12<-b2a <0,故选D.10. [2016·武邑中学猜题]若直角坐标平面内的两个不同点M ,N 满足条件:①M ,N 都在函数y =f (x )的图象上; ②M ,N 关于原点对称.则称点对[M ,N ]为函数y =f (x )的一对“友好点对”.(注:点对[M ,N ]与[N ,M ]为同一“友好点对”)已知函数f (x )=⎩⎪⎨⎪⎧log 3x (x >0),-x 2-4x (x ≤0),此函数的“友好点对”有( )A .0对B .1对C .2对D .3对答案 C解析 由题意,当x >0时,将f (x )=log 3x 的图象关于原点对称后可知,g (x )=-log 3(-x )(x <0)的图象与x ≤0时f (x )=-x 2-4x 的图象存在两个交点,如图所示,故“友好点对”的个数为2,故选C.11.[2016·衡水二中期末]已知a >0且a ≠1,若函数f (x )=alg (x2-2x+3)有最大值,则不等式log a (x 2-5x +7)>0的解集为________. 答案 (2,3)解析 因为x 2-2x +3=(x -1)2+2≥2有最小值2,所以lg (x 2-2x +3)≥lg 2,所以要使函数f (x )有最大值,则函数f (x )必须单调递减,所以0<a <1.由log a (x 2-5x +7)>0得0<x 2-5x +7<1,即⎩⎪⎨⎪⎧0<x 2-5x +7,x 2-5x +7<1,解得2<x <3,即原不等式的解集为(2,3). 12.[2016·冀州中学预测]已知函数f (x )=log 12 (x 2-2ax +3).(1)若函数f (x )的定义域为(-∞,1)∪(3,+∞),求实数a 的值; (2)若函数f (x )的定义域为R ,值域为(-∞,-1],求实数a 的值; (3)若函数f (x )在(-∞,1]上为增函数,求实数a 的取值范围. 解 (1)由题意可知,x 2-2ax +3=0的两根为x 1=1, x 2=3,∴x 1+x 2=2a ,∴a =2.(2)因为函数f (x )的值域为(-∞,-1],则f (x )max =-1, 所以y =x 2-2ax +3的最小值为y min =2, 由y =x 2-2ax +3=(x -a )2+3-a 2,得3-a 2=2, 所以a 2=1,所以a =±1.(3)f (x )在(-∞,1]上为增函数,则y =x 2-2ax +3在(-∞,1]上为减函数,有y >0,所以⎩⎪⎨⎪⎧ a ≥1,1-2a +3>0,即⎩⎪⎨⎪⎧a ≥1,a <2,故1≤a <2.所以实数a 的取值范围是[1,2).能力组13.[2016·枣强中学模拟]设a =log 32,b =ln 2,c =5- 12 ,则( )A .a <b <cB .b <c <aC .c <a <bD .c <b <a 答案 C解析 ∵12<log 32=ln 2ln 3<ln 2,而c =5- 12 =15<12,∴c <a <b . 14. [2016·衡水二中期中]已知函数f (x )=⎩⎪⎨⎪⎧|2x +1|,x <1log 2(x -m ),x >1,若f (x 1)=f (x 2)=f (x 3)(x 1,x 2,x 3互不相等),且x 1+x 2+x 3的取值范围为(1,8),则实数m 的值为________.答案 1解析 作出f (x )的图象,如图所示,可令x 1<x 2<x 3,则由图知点(x 1,0),(x 2,0)关于直线x =-12对称,所以x 1+x 2=-1.又1<x 1+x 2+x 3<8,所以2<x 3<9.由f (x 1)=f (x 2)=f (x 3)(x 1,x 2,x 3互不相等),结合图象可知点A 的坐标为(9,3),代入函数解析式,得3=log 2(9-m ),解得m =1.15.[2016·衡水中学热身]已知函数f (x )=log a (8-ax )(a >0,a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫1,83 解析 当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数, 由f (x )>1恒成立,则f (x )min =log a (8-2a )>1,解之得1<a <83,若0<a <1时,f (x )在x ∈[1,2]上是增函数, 由f (x )>1恒成立,则f (x )min =log a (8-a )>1, 且8-2a >0,所以a >4,且a <4,故不存在.综上可知,实数a 的取值范围是⎝⎛⎭⎪⎫1,83. 16.[2016·武邑中学月考]已知f (x )=log a x (a >0且a ≠1),如果对于任意的x ∈⎣⎢⎡⎦⎥⎤13,2都有|f (x )|≤1成立,试求a 的取值范围. 解 ∵f (x )=log a x ,则y =|f (x )|的图象如右图.由图知,要使x ∈⎣⎢⎡⎦⎥⎤13,2时恒有|f (x )|≤1,只需|f (13)|≤1, 即-1≤log a 13≤1,即log a a -1≤log a 13≤log a a .当a >1时,得a -1≤13≤a ,即a ≥3; 当0<a <1时得a -1≥13≥a ,得0<a ≤13.综上所述,a 的取值范围是⎝ ⎛⎦⎥⎤0,13∪[3,+∞).。

高三数学一轮复习学案:对数与对数函数

高三数学一轮复习学案:对数与对数函数

高三数学一轮复习学案:对数与对数函数一、考试要求: 1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数。

(2)理解对数函数的概念,了解对数函数的单调性。

(3)知道指数函数x a y =与对数函数)1,0(log ≠>=a a x y a 互为反函数二、知识梳理:1.对数的概念:如果)1,0(≠>=a a N a b ,那么幂指数b 叫做以a 为底数的对数,记作 _____________,其中a 叫做底数,N 叫做____________.2.积、商、幂、方根的对数 (N M ,都是正数,,0>a 且)0,1≠≠n a(1)=⨯)(log N M a __________(2)=MN alog ___________(3)=n a M log ________ 3.对数的换底公式及对数的恒等式(供选用) (1)=N a a log _____(对数恒等式)(2)=n a a log ______ 3)a N N b b a log log log =(换底公式) (4)a b b a log 1log =(5)n a a N N n log log =1、设c b a ,,均为正数,且a a 21log 2=,b b 21log 21=⎪⎭⎫ ⎝⎛,c c2log 21=⎪⎭⎫ ⎝⎛.则( ) A.c b a << B. a b c << C. b a c << D. c a b <<2、设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为12,则a = A .2 C ..43、已知函数2sin1()log (65)f x x x =-+在(,)a +∞上是减函数,则实数a 的取值范围( )A. (5,+∞)B. (3,+∞)C. (-∞,3)D. [5,)+∞4、已知函数)1(),2lg()(≥-=x b x f x 的值域是[),0+∞则( )A.1≤bB.1<bC.1≥bD.1=b5、55ln ,33ln ,22ln ===c b a 则( ) A. c b a << B.a b c << C.b a c << D.c a b <<6、(08重庆)已知1249a =(a>0) ,则23log a = . 7、已知函数)3(x f y =的定义域是][2,1,则函数)(log 2x f y =的定义域是8、函数)43(log )(231--=x x x f 的单调增区间是_________9、已知函数]1)1()1lg[()(22+++-=x a x a x f (1)若)(x f 得定义域为),(+∞-∞,求实数a 的取值范围; (2)若)(x f 的值域为),(+∞-∞,求实数a 的取值范围。

高考数学大一轮复习 2.6对数与对数函数学案 理 苏教版

高考数学大一轮复习 2.6对数与对数函数学案 理 苏教版

学案9 幂函数导学目标: 1.了解幂函数的概念.2.结合函数y =x ,y =x 2,y =x 3,y =1x ,y =x 12的图象,了解它们的单调性和奇偶性.自主梳理1.幂函数的概念形如________的函数叫做幂函数,其中____是自变量,____是常数. 2.幂函数的性质(1)五种常见幂函数的性质,列表如下: 定义域 值域 奇偶性 单调性 过定点 y =x R R 奇(1,1) y =x 2 R [0,+∞)偶 [0,+∞)(-∞,0]y =x 3R R奇Y =x 12[0,+∞) [0,+∞) 非奇 非偶 [0,+∞)Y =x -1(-∞,0) ∪(0,+∞)(-∞,0) ∪(0,+∞)奇(-∞,0) (0,+∞)(2)所有幂函数在________上都有定义,并且图象都过点(1,1),且在第____象限无图象. (3)α>0时,幂函数的图象通过点____________,并且在区间(0,+∞)上是________,α<0时,幂函数在(0,+∞)上是减函数,图象______原点.自我检测1.如图中曲线是幂函数y =x n在第一象限的图象.已知n 取±2,±12四个值,则相应于曲线C 1,C 2,C 3,C 4的n 值依次为________________.2.已知函数:①y =2x ;②y =log 2x ;③y =x -1;④y =x 12.则下列函数图象(在第一象限部分)从左到右依次与函数序号的正确对应顺序是_____________________________________.3.设α∈{-1,1,12,3},则使函数y =x α的定义域为R 且为奇函数的所有α值为________.4.与函数y =xx +1的图象形状一样的是________(填序号).①y =2x;②y =log 2x ;③y =1x;④y =x +1.5.已知点(33,33)在幂函数f (x )的图象上,则f (x )的表达式是____________.探究点一 幂函数的定义与图象例1 已知幂函数f (x )的图象过点(2,2),幂函数g (x )的图象过点(2,14).(1)求f (x ),g (x )的解析式;(2)求当x 为何值时:①f (x )>g (x );②f (x )=g (x );③f (x )<g (x ).变式迁移1 若点(2,2)在幂函数f (x )的图象上,点(-2,14)在幂函数g (x )的图象上,定义h (x )=⎩⎪⎨⎪⎧fx ,f x g x ,gx ,f x g x ,试求函数h (x )的最大值以及单调区间.探究点二 幂函数的单调性例2 比较下列各题中值的大小.(1)30.8,30.7;(2)0.213,0.233; (3)122,131.8;(4)254.1,233.8-和35( 1.9)-.变式迁移2 (1)比较下列各组值的大小:①138--________131()9-;②0.20.5________0.40.3.(2)已知(0.71.3)m <(1.30.7)m,则m 的取值范围为_____________________________. 探究点三 幂函数的综合应用例3 (2010·葫芦岛模拟)已知函数f (x )=xm 2-2m -3(m ∈N *)的图象关于y 轴对称,且在(0,+∞)上是减函数,求满足(a +1)-m 3<(3-2a )-m3的a 的范围.变式迁移3 已知幂函数f (x )=21()m m x -+(m ∈N *).(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若该函数还经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.1.幂函数y =x α(α∈R ),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数,这是判断一个函数是否是幂函数的重要依据和唯一标准.2.在(0,1)上,幂函数中指数越大,函数图象越靠近x 轴(简记为“指大图低”),在(1,+∞)上,幂函数中指数越大,函数图象越远离x 轴.幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限内,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数的图象与坐标轴相交,则交点一定是原点.(满分:90分)一、填空题(每小题6分,共48分)1.若函数f (x )是幂函数,且满足f f=3,则f (12)的值为________.2.已知n ∈{-1,0,1,2,3},若(-12)n >(-15)n,则n =________.3.下列函数图象中,正确的序号有________.4.(2010·安徽改编)设a =253()5,b =352()5,c =252()5,则a ,b ,c 的大小关系为____________.5.下列命题中正确的是________(填序号). ①幂函数的图象都经过点(1,1)和点(0,0); ②幂函数的图象不可能在第四象限;③当n =0时,函数y =x n的图象是一条直线;④幂函数y =x n当n >0时是增函数;⑤幂函数y =x n当n <0时在第一象限内函数值随x 值的增大而减小. 6.(2011·徐州模拟)若幂函数y =222(33)m m m m x ---+的图象不经过原点,则实数m的值为________.7.已知a =x α,b =2x α,c =1x α,x ∈(0,1),α∈(0,1),则a ,b ,c 的大小顺序是______________.8.已知函数f (x )=x α(0<α<1),对于下列命题:①若x >1,则f (x )>1;②若0<x <1,则0<f (x )<1;③当x >0时,若f (x 1)>f (x 2),则x 1>x 2;④若0<x 1<x 2,则f x 1x 1<f x 2x 2. 其中正确的命题序号是______________.二、解答题(共42分) 9.(14分)设f (x )是定义在R 上以2为最小正周期的周期函数.当-1≤x <1时,y =f (x )的表达式是幂函数,且经过点(12,18).求函数在[2k -1,2k +1)(k ∈Z )上的表达式.10.(14分)已知f (x )=2123nn x -++(n =2k ,k ∈Z )的图象在[0,+∞)上单调递增,解不等式f (x 2-x )>f (x +3).11.(14分)(2011·苏州模拟)已知函数f (x )=22k k x -++(k ∈Z )满足f (2)<f (3). (1)求k 的值并求出相应的f (x )的解析式;(2)对于(1)中得到的函数f (x ),试判断是否存在q >0,使函数g (x )=1-qf (x )+(2q -1)x 在区间[-1,2]上的值域为[-4,178]?若存在,求出q ;若不存在,请说明理由.答案 自主梳理1.y =x αx α 2.(2)(0,+∞) 四 (3)(0,0),(1,1) 增函数 不过 自我检测1.2,12,-12,-2解析 方法一 由幂函数的图象与性质,n <0时不过原点,故C 3,C 4对应的n 值均为负,C 1,C 2对应的n 值均为正;由增(减)快慢知n (c 1)>n (c 2)>n (c 3)>n (c 4).故C 1,C 2,C 3,C 4的n 值依次为2,12,-12,-2.方法二 作直线x =2分别交C 1,C 2,C 3,C 4于点A 1,A 2,A 3,A 4,则其对应点的纵坐标显然为22,11222,2-,2-2,故n 值分别为2,12,-12,-2.2.④③①②解析 第一个图象过点(0,0),与④对应;第二个图象为反比例函数图象,表达式为y =k x,③y =x -1恰好符合,∴第二个图象对应③;第三个图象为指数函数图象,表达式为y =a x,且a >1,①y =2x恰好符合,∴第三个图象对应①;第四个图象为对数函数图象,表达式为y =log a x ,且a >1,②y =log 2x 恰好符合,∴第四个图象对应②.∴四个函数图象与函数序号的对应顺序为④③①②. 3.1,3 4.③5.f (x )=x -3课堂活动区例1 解 (1)设f (x )=x α,∵图象过点(2,2),故2=(2)α,解得α=2,∴f (x )=x 2.设g (x )=x β,∵图象过点(2,14),∴14=2β,解得β=-2. ∴g (x )=x -2.(2)在同一坐标系下作出f (x )=x 2与g (x )=x -2的图象,如图所示.由图象可知,f (x ),g (x )的图象均过点(-1,1)和(1,1). ∴①当x >1,或x <-1时, f (x )>g (x );②当x =1,或x =-1时,f (x )=g (x ); ③当-1<x <1且x ≠0时,f (x )<g (x ).变式迁移1 解 求f (x ),g (x )解析式及作出f (x ),g (x )的图象同例1, 如例1图所示,则有:h (x )=⎩⎪⎨⎪⎧x -2,x <-1或x >1,x 2,-1≤x ≤1.根据图象可知函数h (x )的最大值为1,单调增区间为(-∞,-1)和(0,1);单调减区间为(-1,0)和(1,+∞).例2 解题导引 比较两个幂的大小关键是搞清楚是底数相同,还是指数相同,若底数相同,利用指数函数的性质;若指数相同,利用幂函数的性质;若底数、指数皆不相同,考虑用中间值法,常用0和1“搭桥”进行分组.解 (1)函数y =3x 是增函数,∴30.8>30.7.(2)函数y =x 3是增函数,∴0.213<0.233.(3)∵1113222 1.8 1.8>>,∴11322 1.8>.(4)22554.11>=1;0<22333.81--<=1;35( 1.9)-<0,∴35( 1.9)- <22353.84.1-<.变式迁移2 (1)①< ②< (2)m >0解析 根据幂函数y =x 1.3的图象,当0<x <1时,0<y <1,∴0<0.71.3<1.又根据幂函数y =x 0.7的图象,当x >1时,y >1,∴1.30.7>1.于是有0.71.3<1.30.7.对于幂函数y =x m ,由(0.71.3)m <(1.30.7)m知,当x >0时,随着x 的增大,函数值也增大,∴m >0.例3 解 ∵函数f (x )在(0,+∞)上递减, ∴m 2-2m -3<0,解得-1<m <3.∵m ∈N *,∴m =1,2.又函数的图象关于y 轴对称, ∴m 2-2m -3是偶数,而22-2×2-3=-3为奇数, 12-2×1-3=-4为偶数, ∴m =1.而y =13x-在(-∞,0),(0,+∞)上均为减函数,∴1133(1)(32)a a --+<-等价于a +1>3-2a >0, 或0>a +1>3-2a ,或a +1<0<3-2a ,解得a <-1或23<a <32.故a 的范围为{a |a <-1或23<a <32}.变式迁移3 解 (1)m 2+m =m (m +1),m ∈N *, 而m 与m +1中必有一个为偶数, ∴m (m +1)为偶数.∴函数f (x )=x (m 2+m )-1(m ∈N *)的定义域为[0,+∞),并且在定义域上为增函数. (2)∵函数f (x )经过点(2,2),∴2=2(m 2+m )-1,即212=2(m 2+m )-1.∴m 2+m =2.解得m =1或m =-2.又∵m ∈N *,∴m =1. 由f (2-a )>f (a -1)得⎩⎪⎨⎪⎧2-a ≥0,a -1≥0,2-a >a -1.解得1≤a <32.∴a 的取值范围为[1,32).课后练习区 1.13解析 依题意设f (x )=x α(α∈R ),则有4α2α=3,即2α=3,得α=log 23,则f (x )=2log 3x,于是f (12)=2log 31()2=221log log 3322-==13.2.-1或2解析 可以逐一进行检验,也可利用幂函数的单调性求解. 3.③解析 对①、②,由y =x +a 知a >1,可知①、②图象不正确;③④中由y =x +a 知0<a <1,∴y =a x和y =log a x 应为减函数,④错,③对. 4.a >c >b解析 ∵y =25x 在x ∈(0,+∞)上单调递增,∴225532()()55>,即a >c ,∵y =(25)x在x ∈(-∞,+∞)上单调递减,∴235522()()55>,即c >b ,∴a >c >b .5.②⑤ 6.1或2解析 由⎩⎪⎨⎪⎧m 2-3m +3=1m 2-m -2≤0解得m =1或2.经检验m =1或2都适合.7.c <a <b解析 ∵α∈(0,1),∴1α>α>α2.又∵x ∈(0,1),∴x 1α<x α<x α2,即c <a <b .8.①②③解析 作出y =x α(0<α<1)在第一象限内的图象,如图所示,可判定①②③正确,又f xx表示图象上的点与原点连线的斜率, 当0<x 1<x 2时应有f x 1x 1>f x 2x 2,故④错.9.解 设在[-1,1)中,f (x )=x n,由点(12,18)在函数图象上,求得n =3.…………………………………………………(5分)令x ∈[2k -1,2k +1),则x -2k ∈[-1,1),∴f (x -2k )=(x -2k )3.……………………………………………………………………(10分)又f (x )周期为2,∴f (x )=f (x -2k )=(x -2k )3.即f (x )=(x -2k )3(k ∈Z ).………………………………………………………………(14分)10.解 由条件知1-n 2+2n +3>0,-n 2+2n +3>0,解得-1<n <3.…………………………………………………………(4分) 又n =2k ,k ∈Z ,∴n =0,2.当n =0,2时,f (x )=x 13,∴f (x )在R 上单调递增.…………………………………………………………………(10分)∴f (x 2-x )>f (x +3)转化为x 2-x >x +3. 解得x <-1或x >3.∴原不等式的解集为(-∞,-1)∪(3,+∞).………………………………………(14分)11.解 (1)∵f (2)<f (3), ∴f (x )在第一象限是增函数.故-k 2+k +2>0,解得-1<k <2. 又∵k ∈Z ,∴k =0或k =1.当k =0或k =1时,-k 2+k +2=2,∴f (x )=x 2.…………………………………………………………………………………(6分)(2)假设存在q >0满足题设,由(1)知g (x )=-qx 2+(2q -1)x +1,x ∈[-1,2].∵g (2)=-1,∴两个最值点只能在端点(-1,g (-1))和顶点(2q -12q ,4q 2+14q)处取得.……………………………………………………………………………………………(8分)而4q 2+14q -g (-1)=4q 2+14q -(2-3q )=q -24q≥0,∴g (x )max =4q 2+14q =178,………………………………………………………………(12分)g (x )min =g (-1)=2-3q =-4.解得q =2.∴存在q =2满足题意.……………………………………………………(14分)。

对数函数导学案(全章)

对数函数导学案(全章)

对数函数导学案(全章)导学目标本章主要介绍对数函数及其性质,通过研究,你将了解以下内容:- 对数函数的定义与表示方法;- 对数函数的性质及其与指数函数之间的关系;- 对数函数在实际问题中的应用。

1. 对数函数的定义与表示方法1.1 对数函数的定义对数函数是一种能够描述指数运算逆运算的数学函数。

设正数a > 0 且a ≠ 1,b > 0,则以 a 为底 b 的对数,记作logₐb,定义为满足a^logₐb = b 的实数。

1.2 对数函数的表示方法对数函数可以用不同的表示方法来表示,常见的有以下两种:- 指数形式:logₐb = x,表示以 a 为底 b 的对数为 x;- 运算形式:logₐb = logc b / logc a,表示以 a 为底 b 的对数,等于以任意正数 c 为底 b 的对数与以 c 为底 a 的对数的商。

2. 对数函数的性质与关系2.1 对数函数的性质对数函数具有以下性质:- logₐa = 1;- logₐa^x = x,其中 a > 0,a ≠ 1;- logₐ1 = 0,其中 a > 0,a ≠ 1;- log₁₀10 = 1,log₂2 = 1。

2.2 对数函数与指数函数的关系对数函数与指数函数之间存在着紧密的联系:- 若 a^x = b,则logₐb = x;- 若logₐb = x,则 a^x = b。

3. 对数函数的应用对数函数在实际问题中有广泛的应用,例如:- 在经济学中,对数函数可以用来描述利率、复利和指数增长等问题;- 在物理学中,对数函数可以用来描述声音的音量、地震的震级等问题;- 在计算机科学中,对数函数可以用来描述算法的时间复杂度等问题。

总结本章主要介绍了对数函数的定义与表示方法,对数函数的性质与指数函数的关系,以及对数函数在实际问题中的应用。

通过研究,你可以更好地理解并运用对数函数解决相关的数学问题。

参考资料:- 张宇老师. (2021). 《高中数学》. 北京师范大学出版社.。

第04讲 对数与对数函数(含对数型糖水不等式的应用)(学生版) 备战2025年高考数学一轮复习学案

第04讲 对数与对数函数(含对数型糖水不等式的应用)(学生版) 备战2025年高考数学一轮复习学案

第04讲 对数与对数函数(含对数型糖水不等式的应用)(8类核心考点精讲精练)1. 5年真题考点分布2. 命题规律及备考策略【命题规律】本节内容是新高考卷的命题常考内容,设题多为函数性质或函数模型,难度中等,分值为5-6分【备考策略】1.理解对数的概念和运算性质,熟练指对互化,能用换底公式能将一般对数转化成自然对数或常用对数2.了解对数函数的概念,能画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点3.熟练掌握对数函数x y a log =0(>a 且)1≠a 与指数函数x a y =0(>a 且)1≠a 的图象关系【命题预测】本节内容通常会考查指对幂的大小比较、对数的运算性质、对数的函数模型等,需要重点备考复习1.对数的运算(1)对数的定义如果,那么把叫做以为底,的对数,记作N x a log =,其中叫做对数的底数,叫做真数(2)对数的分类一般对数:底数为,,记为N a log 常用对数:底数为10,记为,即:xx lg log 10=自然对数:底数为e (e ≈2.71828…),记为,即:x x e ln log =(3)对数的性质与运算法则①两个基本对数:①01log =a ,②1log =a a ②对数恒等式:①N a N a =log ,②N a Na =log 。

③换底公式:aba b a b b c c a ln ln lg lg log log log ===;推广1:对数的倒数式ab b a log 1log =1log log =⋅⇒a b b a 推广2:d d c b a c b a c b a c b a log log log log 1log log log =⇒=。

④积的对数:()N M MN a a a log log log +=;(01)xa N a a =>≠且x a N a N a 0,1a a >≠且lg N ln N⑤商的对数:N M NMa a alog log log -=;⑥幂的对数:❶b m b a ma log log =,❷b nb a a n log 1log =,❸b n mb a ma n log log =,❹mna ab b nm log log =2.对数函数(1)对数函数的定义及一般形式形如:()0,10log >≠>=x a a x y a 且的函数叫做对数函数(2)对数函数的图象和性质图象定义域:()∞+,0值域:R当1=x 时,0=y 即过定点()0,1当时,;当时,当时,;当时,性质在()∞+,0上为增函数(5)在()∞+,0上为减函数3.对数型糖水不等式(1) 设 n N +Î, 且 1n >, 则有 12log log (1)n n n n ++<+ (2) 设 1,0a b m >>>, 则有 log log ()a a m b b m +<+(3) 上式的倒数形式:设 1,0a b m >>>, 则有 log log ()b b ma a m +>+1.(2024·重庆·三模)已知2log 5,85ba ==,则ab =.1a >01a <<01x <<(,0)y Î-∞1x >(0,)y Î+∞1x >(,0)y Î-∞01x <<(0,)y Î+∞2.(2024·青海·模拟预测)若3log 5a =,56b =,则3log 2ab -=( )A .1B .-1C .2D .-23.(2024·四川·模拟预测)若实数m ,n ,t 满足57m n t ==且112m n+=,则t =( )A.B .12CD1.(2024·河南郑州·三模)已知log 4log 4a b b a +=,则22a b 的值为.2.(2024·全国·高考真题)已知1a >且8115log log 42a a -=-,则=a .3.(2024·辽宁丹东·一模)若23a=,35b =,54c =,则4log abc =( )A .2-B .12CD .11.(2024·河南·三模)函数()f x = )A .(,0]-∞B .(,1)-∞C .[0,1)D .[0,)+∞1.(2023·广东珠海·模拟预测)函数()lg(21)f x x =-的定义域是( )A .1,2æö-∞ç÷èøB .1,2æö+∞ç÷èøC .1,2æù-∞çúèûD .1,2éö+∞÷êëø2.(2024·青海海南·二模)函数()2lg 10()x f x x-=的定义域为( )A.(B.(,)-∞+∞U C.[D.(È1.(2024高三·全国·专题练习)已知函数① y =log ax ;② y =log bx ;③ y =log cx ;④ y =log dx 的大致图象如图所示,则下列不等关系正确的是( )A .a +c <b +aB .a +d <b +cC .b +c <a +dD .b +d <a +c2.(2024·广东深圳·二模)已知0a >,且1a ≠,则函数1log a y x a æö=+ç÷èø的图象一定经过( )A .一、二象限B .一、三象限C .二、四象限D .三、四象限3.(2024·陕西渭南·二模)已知直线240mx ny +-=(0m >,0n >)过函数()log 12a y x =-+(0a >,且1a ≠)的定点T ,则26m n+的最小值为 .1.(2024高三·全国·专题练习)在同一平面直角坐标系中,函数y =1x a,y =log a (x +12)(a >0,且a ≠1)的图象可能是( )A .B .C .D .2.(2024·全国·模拟预测)若函数()log 21(0a y x a =-+>,且1)a ≠的图象所过定点恰好在椭圆221(0,0)x y m n m n+=>>上,则m n +的最小值为 .1.(辽宁·高考真题)函数212log (56)y x x =-+的单调减区间为( )A .52,æö+∞ç÷èøB .(3)+∞,C .52æö-∞ç÷èø,D .()2-∞,2.(2024·江苏南通·模拟预测)已知函数()ln(2)f x ax =+在区间(1,2)上单调递减,则实数a 的取值范围是( )A .a<0B .10a -£<C .10a -<<D .1a ³-3.(2024·全国·高考真题)已知函数22,0()e ln(1),0x x ax a x f x x x ì---<=í++³î在R 上单调递增,则a 的取值范围是( )A .(,0]-∞B .[1,0]-C .[1,1]-D .[0,)+∞4.(2024·北京·高考真题)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则( )A .12122log 22y y x x ++<B .12122log 22y y x x ++>C .12212log 2y y x x +<+D .12212log 2y y x x +>+1.(23-24高三下·青海西宁·开学考试)已知函数()()2lg 1f x x ax =++在区间(),2-∞-上单调递减,则a 的取值范围为 .2.(2022高三·全国·专题练习)函数()()215log 232f x x x =-++的单调递减区间为 .3.(23-24高三上·甘肃白银·阶段练习)已知()()312,1log ,1a a x a x f x x x ì-+£=í>î是R 上的单调递减函数,则实数a 的取值范围为.1.(山东·高考真题)函数2()log 31()xf x =+的值域为( )A .(0,)+∞B .[0,)+∞C .(1,)+∞D .[1,)+∞2.(22-23高三上·河北·阶段练习)已知函数()()2lg 65f x ax x =-+的值域为R ,那么a 的取值范围是 .3.(23-24高一下·上海闵行·阶段练习)函数()[]212log 2,2,6y x x x =+-Î的最大值为 .1.(2024高三·全国·专题练习)函数()[]ln ,1,e f x x x x =+Î的值域为.2.(2023高一·全国·课后作业)函数()212log 617y x x =-+的值域是 .3.(2024高三·全国·专题练习)已知函数()()2log 14f x x x =££,则函数()()()221g x f x f x éù=++ëû的值域为 .1.(2024高三·全国·专题练习)已知函数)2()log f x x =-是奇函数,则=a.2.(23-24高一上·安徽阜阳·期末)若函数()()(e e ln 1x x m n f x x -=-++(m ,n 为常数)在[]1,3上有最大值7,则函数()f x 在[]3,1--上( )A .有最小值5-B .有最大值5C .有最大值6D .有最小值7-3.(2024·江苏泰州·模拟预测)已知函数()21log 1f x a b x æö=-+ç÷+èø,若函数()f x 的图象关于点()1,0对称,则log a b =( )A .-3B .-2C .12-D .13-1.(22-23高二下·江西上饶·阶段练习)已知函数())3ln3f x x x =--+,[2023,2023]x Î-的最大值为M ,最小值为m ,则M m += .2.(2024·宁夏银川·二模)若()1ln 1f x a b x++-=是奇函数,则b = .1.(2024·天津·高考真题)若0.30.34.24.2 4.2log 0.2a b c -===,,,则a b c ,,的大小关系为( )A .a b c >>B .b a c >>C .c a b>>D .b c a>>2.(2022·天津·高考真题)已知0.72a =,0.713b æö=ç÷èø,21log 3c =,则( )A .a c b >>B .b c a >>C .a b c >>D .c a b>>3.(2022·全国·高考真题)设0.110.1e ,ln 0.99a b c ===-,则( )A .a b c <<B .c b a <<C .c<a<bD .a c b<<4.(2021·全国·高考真题)设2ln1.01a =,ln1.02b =,1c =.则( )A .a b c<<B .b<c<aC .b a c<<D .c<a<b1.(2021·天津·高考真题)设0.3212log 0.3,log 0.4,0.4a b c ===,则a ,b ,c 的大小关系为( )A .a b c <<B .c<a<bC .b<c<aD .a c b<<2.(2021·全国·高考真题)已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( )A .c b a<<B .b a c<<C .a c b <<D .a b c<<3.(2024·全国·模拟预测)若log 4a =,14log 7b =,12log 6c =,则( )A .a b c >>B .b c a >>C .c b a>>D .a c b>>4.(23-24高三上·河北保定·阶段练习)设3log 4a =,0.8log 0.7b =,511.02c =,则a ,b ,c 的大小关系为( )A .a c b <<B .a b c <<C .b a c<<D .c<a<b5.(2024·山西·二模)设202310121011a æö=ç÷èø,202510131012b æö=ç÷èø,则下列关系正确的是( )A .2e a b <<B .2e b a <<C .2e a b <<D .2e b a <<1.(2022·全国·统考高考真题)已知910,1011,89m m m a b ==-=-,则( )A .0a b>>B .0a b >>C .0b a >>D .0b a>>1. 比较大小: 7log 4 与 9log 6?2.(2024·重庆·模拟预测)设2024log 2023a =,2023log 2022b =,0.2024log 0.2023c =,则( )A .c<a<b B .b<c<a C .b a c<<D .a b c<<一、单选题1.(2024·河北衡水·三模)已知集合{}()11,2,3,4,51lg 12A B x x ìü==-£-£íýîþ,,则A B =I ( )A .11510x x ìü££íýîþB .{2,3,4}C .{2,3}D .11310x x ìü££íýîþ2.(2024·贵州贵阳·三模)已知()()40.34444,log ,log log a b a c a ===,则( )A .a b c>>B .a c b>>C .b c a>>D .c a b>>3.(2024·天津滨海新·三模)已知2log 0.42a =,0.4log 2b =,031log 0.4c =.,则( )A .a b c>>B .b a c>>C .c a b>>D .a c b>>4.(2024·江苏宿迁·三模)已知函数()f x 为R 上的奇函数,且当0x >时,22()log 13f x x =-,则(f =( )A .59B .59-C .49D .49-5.(2024·河北沧州·模拟预测)直线4x =与函数()()12log (1),log a f x x a g x x =>=分别交于,A B 两点,且3AB =,则函数()()()h x f x g x =+的解析式为( )A .()2log h x x =-B .()4log h x x =-C .()2log h x x=D .()4log h x x=6.(2024·江苏盐城·模拟预测)函数cos y x =与lg y x =的图象的交点个数是( )A .2B .3C .4D .67.(2024·四川成都·模拟预测)已知定义在R 上的奇函数()f x 满足(3)(1)f x f x +=-,且当(2,0)x Î-时,2()log (3)f x x =+,则(2021)(2024)f f -=( )A .1B .1-C .21log 3-D .21log 3--二、填空题8.(2024·湖北·模拟预测)若函数()()()2ln e R x f x a x x =--Î为偶函数,则=a.9.(2024·吉林·模拟预测)若函数()ln(1)f x ax =+在(1,2)上单调递减,则实数a 的取值范围为.10.(2024·四川成都·三模)函数()ln 2m x f x x -=+的图象过原点,且()()e e 2x x g x f x m l l --=++,若()6g a =,则()g a -=.一、单选题1.(2024·黑龙江·模拟预测)设函数()ln ||f x x a =-在区间(2,3)上单调递减,则a 的取值范围是( )A .(,3]-∞B .(,2]-∞C .[2,)+∞D .[3,)+∞2.(2024·山东菏泽·模拟预测)已知函数()()()2e 1ln 2013mx f x m x+=->-是定义在区间(),a b 上的奇函数,则实数b 的取值范围是( )A .(]0,9B .(]0,3C .20,3æùçúèûD .10,3æùçúèû3.(2024·河北·三模)已知(),,1,a b c Î+∞,8ln ln10a a =,7ln ln11b b =,6ln ln12cc =,则下列大小关系正确的是( )A .c b a>>B .a b c>>C .b c a>>D .c a b>>4.(2024·广西贵港·模拟预测)已知函数41()log (41)2xf x x =+-,若(1)(21)-£+f a f a 成立,则实数a 的取值范围为( )A .(,2]-∞-B .(,2][0,)-∞-È+∞C .4[2,]3-D .4(,2][,)3-∞-+∞U 5.(2024·湖北黄冈·模拟预测)已知7ln 5a =,2cos 5b =,25c =,则,,a b c 的大小关系为( )A .a b c >>B .b c a >>C .c b a >>D .c a b>>6.(2024·陕西安康·模拟预测)已知函数()13,4443log (4)1,4a x x f x x x ì-£ïï-=íï->ïî是R 上的单调函数,则实数a 的取值范围是( )A .()0,1B.(C.(D .()1,37.(2024·河北衡水·模拟预测)设0,1a a >≠,若函数())23log 1a x a f x a x a æö-=+ç÷-èø是偶函数,则=a ( )A .12B .32C .2D .38.(2024·湖北黄冈·二模)已知a b c d ,,,分别满足下列关系:1715161731615,log 16,log ,tan 162a b c d ====,则a b c d ,,,的大小关系为( )A .a b c d<<<B .c a b d <<<C .a c b d <<<D .a d b c<<<二、多选题9.(2024·山东菏泽·模拟预测)已知函数()0,01ln ,1x f x x x <<ì=í³î,若0a b >>,且1³ab ,则下列关系式一定成立的为( )A .()()b f a bf a =B .()()()f ab f a f b =+C .()()a f f a f b b æö³-ç÷èøD .()()()ln2f a b f a f b +<++三、填空题10.(2024·陕西西安·模拟预测)函数1log 2x a y x a -=++(0a >且1a ≠)的图象恒过定点(),k b ,若m n b k +=-且0m >,0n >,则91m n +的最小值为 .1.(2024·全国·高考真题)已知1a >且8115log log 42a a -=-,则=a .2.(2024·全国·高考真题)设函数()()ln()f x x a xb =++,若()0f x ³,则22a b +的最小值为( )A .18B .14C .12D .13.(2023·北京·高考真题)已知函数2()4log x f x x =+,则12f æö=ç÷èø.4.(2023·全国·高考真题)(多选)噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级020lgp p L p =´,其中常数()000p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级:声源与声源的距离/m 声压级/dB 燃油汽车1060~90混合动力汽车105060:电动汽车1040已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为123,,p p p ,则( ).A .12p p ³B .2310p p >C .30100p p =D .12100p p £5.(2022·天津·高考真题)化简()()48392log 3log 3log 2log 2++的值为( )A .1B .2C .4D .66.(2022·浙江·高考真题)已知825,log 3a b ==,则34a b -=( )A .25B .5C .259D .537.(2022·全国·高考真题)若()1ln 1f x a b x ++-=是奇函数,则=a ,b = .8.(2021·天津·高考真题)若2510a b ==,则11a b+=( )A .1-B .lg 7C .1D .7log 109.(2021·全国·高考真题)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录表的数据V 满足5lg LV =+.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为( ) 1.259»)A .1.5B .1.2C .0.8D .0.610.(2020·全国·高考真题)已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学过程一、知识讲解考点/易错点1 对数与对数运算(1)指数与对数互化式:log xa a N x N =⇔=;(2)对数恒等式:log a NaN =.(3)基本性质:01log =a ,1log =a a .(4)运算性质:当0,0,1,0>>≠>N M a a 时:①()N M MN a a a log log log +=;②N M N M a a a log log log -=⎪⎭⎫⎝⎛; ③M n M a na log log =;④log log n m a a mb b n=(5)换底公式:abb c c a log log log =()0,1,0,1,0>≠>≠>b c c a a .推论:ab b a log 1log =()1,0,1,0≠>≠>b b a a ;log log log a b a b c c ⋅=考点/易错点2 对数函数:()1,0log ≠>=a a x y a 的图像与性质注意:延箭头方向底数越大>1<<1图象性质定义域:(0,+∞)值域:R 恒过点(1,0)注意:(1)a y =与x y a log =的图象关系是关于y=x 对称;(2)比较两个指数或对数的大小的基本方法是构造相应的指数或对数函数,若底数不相同时转化为同底数的指数或对数,还要注意与1比较或与0比较。

考点/易错点3 与对数函数有关的复合函数问题 1、与对数函数有关的复合函数的定义域、值域的求法: ①函数log [()]a y f x =的定义域为()0f x >的x 的取值;②先确定()f x 的值域,再根据对数函数的单调性可确定log [()]a y f x =的值域; 2、与对数函数有关的复合函数的单调性的求解步骤:①求复合函数的定义域; ②按复合函数的单调区间求法求解(用“同增异减”原则)二、例题精析【例题1】【题干】(1)2(lg 2)lg 2lg 50lg 25+⋅+;(2)3948(log 2log 2)(log 3log 3)+⋅+;(3)1.0lg 21036.0lg 21600lg )2(lg 8000lg 5lg 23--+⋅【答案】见解析【解析】(1)原式22(lg 2)(1lg5)lg 2lg5(lg 2lg51)lg 22lg5=+++=+++ (11)lg 22lg52(lg 2lg5)2=++=+=;(2)原式lg 2lg 2lg3lg3lg 2lg 2lg3lg3()()()()lg3lg9lg 4lg8lg32lg32lg 23lg 2=+⋅+=+⋅+ 3lg 25lg 352lg 36lg 24=⋅=;(3)分子=3)2lg 5(lg 2lg 35lg 3)2(lg 3)2lg 33(5lg 2=++=++;分母=41006lg 26lg 101100036lg )26(lg =-+=⨯-+;∴原式=43. 【例题2】【题干】设0.3113211log 2,log ,32a b c ⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为【答案】a c b <<【解析】由11,(0,1)32∈,可知函数11321log ,log ,2xy x y x y ⎛⎫=== ⎪⎝⎭都是减函数,因此,0.3111133221111log 2log 10,log log 1,1,3222a b c ⎛⎫⎛⎫=<==>==<= ⎪⎪⎝⎭⎝⎭且0.3102c ⎛⎫=> ⎪⎝⎭. 综上可知,01a c b <<<<,【例题3】【题干】已知01,01a b <<<<且,则的取值范围是【答案】6【解析】由指数函数在上单调递减,可知,,又由函数在定义域内单调递减,并结合函数的定义域,可知,所以.【例题4】【题干】对于)32(log )(221+-=ax x x f ,(1)函数的“定义域为R ”和“值域为R ”是否是一回事;(2)结合“实数a 的取何值时)(x f 在),1[+∞-上有意义”与“实数a 的取何值时函数的定义域为),3()1,(+∞⋃-∞”说明求“有意义”问题与求“定义域”问题的区别;(3)结合(1)(2)两问,说明实数a 的取何值时)(x f 的值域为]1,(--∞ (4)实数a 的取何值时)(x f 在]1,(-∞内是增函数. 【答案】(1)不一样(2)见解析(3){-1,1}(4))2,1[.【解析】记223)()(a a x x g -+-==μ,则μ21log )(=x f ;(1)不一样;定义域为R ⇔0)(>x g 恒成立.得:0)3(42<-=∆a ,解得实数a 的取值范围为)3,3(-.值域为R :μ21log 值域为R μ⇔至少取遍所有的正实数,则0)3(42≥-=∆a ,解得实数a 的取值范围为),3[]3,(+∞⋃--∞.(2)实数a 的取何值时)(x f 在),1[+∞-上有意义:命题等价于0)(>=x g μ对于任意),1[+∞-∈x 恒成立,则⎩⎨⎧>--<0)1(1g a 或⎩⎨⎧>--≥0312a a ,解得实数a 得取值范围为)3,2(-. 实数a 的取何值时函数的定义域为),3()1,(+∞⋃-∞:由已知得不等式0322>+-ax x 的解集为),3()1,(+∞⋃-∞可得a 231=+,则a =2.故a 的取值范围为{2}. 区别:“有意义问题”正好转化成“恒成立问题”来处理,而“定义域问题”刚好转化成“取遍所有问题”来解决(这里转化成了解集问题,即取遍解集内所有的数值)(3)易知)(x g 得值域是),2[+∞,又)(x g 得值域是),3[2+∞-a ,得1232±=⇒=-a a ,故a 得取值范围为{-1,1}.(4)命题等价于)(x g 在]1,(-∞上为减函数,且0)(>x g 对任意的]1,(-∞∈x 恒成立,则⎩⎨⎧>≥0)1(1g a ,解得a 得取值范围为)2,1[. 【例题5】【题干】已知函数f (x )=log a (2-ax ),若函数f (x )在[0,1]上是关于x 的减函数,若存在,求a 的取值范围【答案】(1,2)【解析】∵a >0,且a ≠1,∴u =2-ax 在[0,1]上是关于x 的减函数. 又f (x )=log a (2-ax )在[0,1]上是关于x 的减函数,∴函数y =log a u 是关于u 的增函数,且对x ∈[0,1]时,u =2-ax 恒为正数.其充要条件是⎩⎪⎨⎪⎧a >12-a >0,即1<a <2. ∴a 的取值范围是(1,2).三、课堂运用【基础】1.计算:2lg5(lg8lg1000)++=2. 函数y =的定义域是3.函数212log (32)y x x =-+的递增区间是4.设21ln 2,(ln 2),ln 22a b c ===,则,,a b c 的大小关系为5.已知集合A ={x |log 2x ≤2},B =(-∞,),若A ⊆B ,则实数的取值范围是(c ,+∞),其中c =________.【巩固】1.不等式log 0.3(2x -1)<log 0.3(-x +5)的解集为________.2.(2012·北京卷)已知函数f (x )=lg x .若f (ab )=1,则f (a 2)+f (b 2)=________.3.(2013·湖南卷)设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( ) A .f ⎝⎛⎭⎫13<f (2)<f ⎝⎛⎭⎫12 B .f ⎝⎛⎭⎫12<f (2)<f ⎝⎛⎭⎫13 C .f ⎝⎛⎭⎫12<f ⎝⎛⎭⎫13<f (2) D .f (2)<f ⎝⎛⎭⎫12<f ⎝⎛⎭⎫134.已知函数()f x 满足:当4x ≥时,()f x =1()2x ;当x <4时,()f x =(1)f x +,则2(2log 3)f += 5.设c b a ,,均为正数,且a a 21log 2=,b b 21log 21=⎪⎭⎫ ⎝⎛,c c2log 21=⎪⎭⎫ ⎝⎛ 则,,a b c 的大小关系为6.(2013·天津卷)已知函数()f x 是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足212(log )(log )2(1)f a f a f +≤,则a 的取值范围是7.函数y =log a x (a >0,且a ≠1)在[2,4]上的最大值与最小值的差是1,则a 的值为________.8.已知函数221()log [(1)]4f x ax a x =+-+(1)若定义域为R ,求实数a 的取值范围;(2)若值域为R ,求实数a 的取值范围【拔高】 1.若不等式x 2-log a x <0在⎝⎛⎭⎫0,12内恒成立,则a 的取值范围是________.2.定义运算法则如下:a ⊗b =a 12+b 13-,a *b =lg a 2-lg b 12,M =94⊗8125,N =2*125. 若f (x )=⎩⎪⎨⎪⎧log 3x x >0,2x x ≤0,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫N -29M =________.3.已知函数f (x )=log a (x +1)(a >1),若函数y =g (x )图像上任意一点P 关于原点的对称点Q 的轨迹恰好是函数f (x )的图像.(1)写出函数g (x )的解析式;(2)当x ∈[0,1)时总有f (x )+g (x )≥m 成立,求m 的取值范围.课程小结(1)比较对数式的大小:①若底数为同一常数,则可由对数函数的单调性进行判断;若底数为同一字母,需对底数进行分类讨论. ②若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较.③若底数与真数都不同,则常借助1,0等中间量进行比较.(2)解对数不等式:形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.形如log a x >b 的不等式,需先将b 化为以a 为底的对数式的形式.课后作业【基础】1.(2013·安徽卷)(log 29)·(log 34)=2.设2a =5b =m ,且1a +1b=2,则m =________.3.(2013·新课标全国卷Ⅱ8)设a =log 32,b =log 52,c =log 23,则,,a b c 的大小关系为4. 方程22log (1)2log (1)x x -=-+的解为 .5.(2013·辽宁卷)函数y =log 2(x 2+1)-log 2x 的值域是【巩固】1.设2()lg2x f x x +=-,则22x f f x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭的定义域为2.已知函数f (x )=log a (2x +b -1)(a >0,a ≠1)的图象如图所示,则a ,b 满足的关系是( )A .0<a -1<b <1B .0<b <a -1<1 C .0<b -1<a <1D .0<a -1<b -1<13.已知:lg x +lg y =2lg(2x -3y ),则32log x y的值为 .4.若不等式(x -1)2<log a x 在x ∈(1,2)内恒成立,则实数a 的取值范围是5.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2f (a )=2(a ≠1).求f (log 2x )的最小值及对应的x 值;【拔高】1.(2013·新课标全国卷)当0<x ≤12时,4x <log a x ,则a 的取值范围是2. 设1x >,1y >,且2log 2log 30x y y x -+=,则224T x y =-的最小值为 .3.已知函数f(x)=log4(4x+1)+2kx(k∈R)是偶函数.(1)求k的值;(2)若方程f(x)=m有解,求m的取值范围.4.(2013·上海卷)已知函数f(x)=3-2log2x,g(x)=log2x.(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]·g(x)的值域;(2)如果对任意的x∈[1,4],不等式f(x2)·f>k·g(x)恒成立,求实数k的取值范围.。

相关文档
最新文档