对数函数教学导学案(供参考)
对数函数导学案.doc

2.2.1对数与对数运算(一)一【学习目标】 (一) 教学知识点1.对数的概念;2.对数式与指数式的互化. (二) 能力训练要求1.理解对数的概念;2.能够进行对数式与指数式的互化;3.培养学生数学应用意识. 二、教学重点:对数的定义. 三、教学难点:对数概念的理解. 四【新课讲授】(导学)假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍?列出表达式: (自学)知识点1 : 对数的概念1.对数定义:一般地,如果 ,)1,0(≠>a a 且则数 b 叫做以a 为底 N 的对数, 记作 ,其中a 称为对数的底,N 称为真数. (b N N a a b =⇔=log )(1)底数的取值范围 ;真数的取值范围(2)对数式和指数式关系式 子名称 a b N指数式 对数式思考1.将下列指数式写成对数式: (1)62554= (2)64126=- (3)273=a(4)73.531=m )(知识点2 两种重要对数1.常用对数:以10为底的对数叫做常用对数N 10log 简记作 . 思考2:5log 10简记作; 5.3log 10简记作2.自然对数:用以无理数e=2.71828……为底的对数叫自然对数, N e log 简记作思考3:3log e 简记作 10log e 简记作 思考4. 将下列对数式写成指数式:(1)416log 21-=; (2)7128log 2=; (3)201.0lg -=; (4)303.210ln =.知识点三 : 重要公式:⑴负数与零没有对数; ⑵01log =a , 1log =a a ⑶对数恒等式N aNa =log五【典例欣赏】(互学) 1对数概念应用例1.求下列各式中x 的取值范围:(1)log 2(x -10);(2)log (x -1)(x +2);(3)log (x +1)(x -1)2.2对数基本运算例2求下列各式中的x 的值:(1)32log 64-=x ;(2)68log =x ;(3)x =100lg ;(4)x e =-2ln 。
对数函数函数及其性质导学案(公开课)

对数函数及其性质(1)导学案学习目标:1通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;2 能画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;3 通过比较、对照的方法,结合图象类比指数函数,探索研究对数函数的性质,培养数形结合的思想方法,学会研究函数性质的方法。
学习过程:一、课前准备复习1 :对数的概念 N x N a a xlog =⇔=复习2 :由前面的学习我们知道:如果有一种细胞分裂时,由1个分裂成2个,2个分裂成4个,··· ,1个这样的细胞分裂x 次会得到多少个细胞? 由对数式与指数式的互化可知: 如果知道了细胞的个数y ,如何确定分裂的次数x 呢?对于每一个给定的y 值都有唯一的x 的值与之对应,把y 看作自变量,x 就是y 的函数,但习惯上仍用x 表示自变量,y 表示它的函数:即二、新课导学※探究任务一:对数函数的概念新知:一般地,我们把函数 (a>0且a ≠1) 叫做对数函数,其中x 是自变量。
判断:以下函数是对数函数的是 ( )1. )23(log 2-=x y2. x y x )1(log -=3.231log x y = 4. x y ln = 55log 32+=x y※探究任务二:对数函数的图象和性质问题:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗? 研究方法:画出函数图象,结合图象研究函数性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.试一试:同一坐标系中画出下列对数函数的图象x y 2log =和x y 21log =(1)x y 2log =2xy =(2)x y 21log =※典型例题例1 求下列函数的定义域 (1) 2log x y a = (2))3(log x y a -=变式:求函数式x y x -=3log 的定义域动手试试:练1求下列函数的定义域 (1))6(log --=x y a (2) 3221log log -=x y例2比较下列各题中两个数值的大小 (1)5.8log 4.3log 22和 (2) 7.2log 8.1log 3.03.0和 (3) 9.5log 1.5log a a 和动手试试:练2:比较下列各题中两个数值的大小(1)5.8ln 4.3ln 和 (2) 4log 7.0log 3.02.0和 (3) 8.1log 61.1log 7.07.0和 (4)2log 3log 32和三、拓展与提高四、总结提升※ 本节学习小结 :五、当堂检测1. 函数)3(log )1(x y x -=-的定义域是2. 比较大小(1)6log 7log 76和 (2)5.1log 8.0log 32和3.函数)1(log 22≥+=x x y 的值域为。
对数函数导学案

对数与对数函数导学案一、 学习目标:1、理解对数的概念,掌握对数的基本运算,并领会对数函数的图像与性质;2、会灵活使用对数函数的图像和性质解决与对数函数相关的问题;3、加深对图像法、比较法等一些常规方法的理解,进一步体会分类讨论,数形结合等数学思想。
二、重点:对数函数的图像与性质的应用。
难点:利用对数函数的性质来解决实际问题。
三、课前热身:1、指数式与对数式的关系:N a b =⇔ (10≠>a a 且)2、对数恒等式:=1log a , =a a log , =N a a log (10≠>a a 且)3、运算法则:⎪⎩⎪⎨⎧===na a a log N Mlog (MN)log M4、换底公式:5、换底公式的两个较为常用的推论:(1) =⋅a b b a log log ; (2) =n a b m log ( a , b > 0且均不为1)四、随堂演练1、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B 、123 C 、122 D 、1332、函数(21)log 32x y x -=-的定义域是( )A 、),1()1,32(+∞B 、),1()1,21(+∞C 、),32(+∞D 、),21(+∞3、若16log log 8log 4log 4843=⋅⋅m ,则m 的值为( ) A .2 B.9 C.18 D.174、已知x e f x =)(,则)5(f 等于( )A .5ln B.5ln - C.e 5log D.5e5、若0log log 2121<<n m ,则( )A 、1<<m nB 、1<<n mC 、n m <<1D 、m n <<1 6、若12log <a ,则a 的取值范围是( )A 、)2,1(B 、),2()1,0(+∞C 、)2,1()1,0(D 、)1,0(7、若b a lg ,lg 是方程01422=+-x x 的两个根,则2)(lg ba等于( )A 、2B 、21C 、4D 、418、 当10<<a 时,在同一坐标系中,函数y =a -x与y =log a x 的图象是( )9、为了得到函数103lg+=x y 的图象,能够把函数x y lg =的图象( ) A .向左平移3个单位长度,再向上平移1个单位长度 B .向右平移3个单位长度,再向上平移1个单位长度 C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度 10、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在)1,(--∞上是减少的11、已知集合{}2,log 2>==x x y y A ,⎭⎬⎫⎩⎨⎧≥==0,)21(x y y B x ,则A B = 。
《对数函数图像及其性质》导学案

《对数函数图像及其性质》导学案对数函数图像及其性质导学案1. 引言本导学案旨在介绍对数函数的图像及其性质。
对数函数是数学中一种重要的函数类型,具有广泛的应用领域。
通过研究对数函数的图像和性质,我们可以更好地理解和应用对数函数。
2. 对数函数的定义对数函数是指以某个正数为底的对数函数,一般表示为 $y = \log_{a}x$,其中 $a>0$ 且 $a \neq 1$。
对数函数的定义域为正实数集合 $x>0$,值域为实数集合。
3. 对数函数的图像对数函数的图像在直角坐标系中呈现一条曲线,具体的图像形状和走势与底数 $a$ 的大小有关。
下面以底数 $a=2$ 和底数$a=\frac{1}{2}$ 为例进行说明。
3.1 底数为2的对数函数图像当底数 $a=2$ 时,对数函数 $y = \log_{2}x$ 的图像如下所示:.png)3.2 底数为1/2的对数函数图像当底数 $a=\frac{1}{2}$ 时,对数函数 $y =\log_{\frac{1}{2}}x$ 的图像如下所示:.png)4. 对数函数的性质对数函数具有以下几个重要的性质:- 对于任意正实数 $x_1$ 和 $x_2$,以及任意实数 $k$,都有$\log_{a}(x_1 \cdot x_2) = \log_{a}x_1 + \log_{a}x_2$ 和$\log_{a}(x_1^k) = k \cdot \log_{a}x_1$。
- 对于任意正实数 $x$ 和 $a > 1$,有 $\lim_{x \to +\infty}\log_{a}x = +\infty$。
换言之,当自变量 $x$ 趋向正无穷时,对数函数的取值趋向正无穷。
- 对于任意正实数 $x$,有 $\lim_{x \to 0^{+}} \log_{a}x = -\infty$。
对数函数教学设计(精选10篇)

对数函数教学设计对数函数教学设计(精选10篇)作为一名教学工作者,时常需要用到教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。
我们该怎么去写教学设计呢?以下是小编为大家收集的对数函数教学设计,仅供参考,欢迎大家阅读。
对数函数教学设计篇1教学目标:使学生掌握对数形式复合函数的单调性的判断及证明方法,掌握对数形式复合函数的奇偶性的判断及证明方法,培养学生的数学应用意识;认识事物之间的内在联系及相互转化,用联系的观点分析问题、解决问题.教学重点:复合函数单调性、奇偶性的讨论方法.教学难点:复合函数单调性、奇偶性的讨论方法.教学过程:[例1]设loga23 <1,则实数a的取值范围是A.0<a<23B. 23 <a<1C.0<a<23 或a>1D.a>23解:由loga23 <1=logaa得(1)当0<a<1时,由y=logax是减函数,得:0<a<23(2)当a>1时,由y=logax是增函数,得:a>23 ,∴a>1综合(1)(2)得:0<a<23 或a>1 答案:C[例2]三个数60.7,0.76,log0.76的大小顺序是A.0.76<log0.76<60.7B.0.76<60.7<log0.76C.log0.76<60.7<0.76D.log0.76<0.76<60.7解:由于60.7>1,0<0.76<1,log0.76<0 答案:D[例3]设0<x<1,a>0且a≠1,试比较|loga(1-x)|与|loga(1+x)|的大小解法一:作差法|loga(1-x)|-|loga(1+x)|=| lg(1-x)lga |-| lg(1+x)lga | =1|lga| (|lg(1-x)|-|lg(1+x)|)∵0<x<1,∴0<1-x<1<1+x∴上式=-1|lga| [(lg(1-x)+lg(1+x)]=-1|lga| lg(1-x2)由0<x<1,得lg(1-x2)<0,∴-1|lga| lg(1-x2)>0,∴|loga(1-x)|>|loga(1+x)|解法二:作商法lg(1+x)lg(1-x) =|log(1-x)(1+x)|∵0<x<1 ∴0<1-x<1+x∴|log(1-x)(1+x)|=-log(1-x)(1+x)=log(1-x)11+x由0<x<1 ∴1+x>1,0<1-x2<1∴0<(1-x)(1+x)<1 ∴11+x >1-x>0∴0<log(1-x) 11+x <log(1-x)(1-x)=1∴|loga(1-x)|>|loga(1+x)|解法三:平方后比较大小∵loga2(1-x)-loga2(1+x)=[loga(1-x)+loga(1+x)][loga (1-x)-loga(1+x)]=loga(1-x2)loga1-x1+x =1|lg2a| lg(1-x2)lg1-x1+x∵0<x<1,∴0<1-x2<1,0<1-x1+x <1∴lg(1-x2)<0,lg1-x1+x <0∴loga2(1-x)>loga2(1+x)即|loga(1-x)|>|loga(1+x)|解法四:分类讨论去掉绝对值当a>1时,|loga(1-x)|-|loga(1+x)|=-loga(1-x)-loga(1+x)=-loga(1-x2)∵0<1-x<1<1+x,∴0<1-x2<1∴loga(1-x2)<0,∴-loga(1-x2)>0当0<a<1时,由0<x<1,则有loga(1-x)>0,loga(1+x)<0∴|loga(1-x)|-|loga(1+x)|=|loga(1-x)+loga(1+x)|=loga(1-x2)>0∴当a>0且a≠1时,总有|loga(1-x)|>|loga(1+x)|[例4]已知函数f(x)=lg[(a2-1)x2+(a+1)x+1],若f(x)的定义域为R,求实数a的取值范围解:依题意(a2-1)x2+(a+1)x+1>0对一切x∈R恒成立.当a2-1≠0时,其充要条件是:a2-1>0△=(a+1)2-4(a2-1)<0 解得a<-1或a>53 又a=-1,f(x)=0满足题意,a=1不合题意.所以a的取值范围是:(-∞,-1]∪(53 ,+∞)[例5]已知f(x)=1+logx3,g(x)=2logx2,比较f(x)与g(x)的大小解:易知f(x)、g(x)的定义域均是:(0,1)∪(1,+∞)f(x)-g(x)=1+logx3-2logx2=logx(34 x).①当x>1时,若34 x>1,则x>43 ,这时f(x)>g(x).若34 x<1,则1<x<43 ,这时f(x)<g(x)②当0<x<1时,0<34 x<1,logx34 x>0,这时f(x)>g(x)故由(1)、(2)可知:当x∈(0,1)∪(43 ,+∞)时,f(x)>g(x)当x∈(1,43 )时,f(x)<g(x)[例6]解方程:2 (9x-1-5)= [4(3x-1-2)]解:原方程可化为(9x-1-5)= [4(3x-1-2)]∴9x-1-5=4(3x-1-2) 即9x-1-43x-1+3=0∴(3x-1-1)(3x-1-3)=0 ∴3x-1=1或3x-1=3∴x=1或x=2 经检验x=1是增根∴x=2是原方程的根.[例7]解方程log2(2-x-1) (2-x+1-2)=-2解:原方程可化为:log2(2-x-1)(-1)log2[2(2-x-1)]=-2即:log2(2-x-1)[log2(2-x-1)+1]=2令t=log2(2-x-1),则t2+t-2=0解之得t=-2或t=1∴log2(2-x-1)=-2或log2(2-x-1)=1解之得:x=-log254 或x=-log23对数函数教学设计篇2一、说教材1、地位和作用本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习。
高一数学2.2.2对数函数及其性质公开课导学案设计

高 一 数学
《2.2.2对数函数及其性质》导学案(一)
[目标展示]
1、理解对数函数的概念。
2、掌握掌握对数函数的图像和性质。
[重点难点]
重点 、难点:对数函数的概念、图像和性质;
导:复习:
画出2x y =、1 ()2
x y =的图象,并以这两个函数为例,说说指数函数的性质. [课前预习]
学:新知:
阅读教材第70页前两自然段,完成下列问题 。
1、对数函数的定义:一般地,我们把函数 叫做对数函数, 其中 是自变量,函数的定义域是 。
议:2、想一想:为什么对底数a 和自变量x 做这样的规定?
练:3、画出函数x x f 2log )(=和x x g 2
1log )(=的图象,这两函数图像关于什么轴对称 ?
[合作探究]
问题 1:指出下列函数那些是对数函数.
(1)x y a
log =(a>0,且a 1≠) x y 2log )2(=+2 (3) )1(2log 8+=x y (4)6log x y =(x>0,且x )1≠ (5)x y 6log =
问题2:判断正误.
(1)若f(x)是对数函数,则f(1)=0( ).
(2)函数x
y 2log =在R 上是增函数.( )
(3)函数x a y log =(a>0,且a 1≠)的图像一定位于y 轴的右侧.( )
结: 一个函数是对数函数必须是形如=y x a log (a>0,且a ≠1)的函数,即必须满足 以下条件:
(1)系数为1;(2)底数为大于0且不等于1的常数;
(3)对数的真数仅有自变量x.。
高一数学对数函数的导学案苏教版必修一

宿迁中学高一数学(必修1) 课题:对数函数(一) 导学案班级_______学号________姓名________组内评价_____【三维目标】1. 知识与技能① 理解指数函数与对数函数之间的联系与区别。
② 理解对数函数的概念,能熟练的进行比较大小。
2. 过程与方法① 通过师生之间,学生与学生之间的合作交流,使学生学会与别人共同学习。
② 通过探究对数函数的概念,感受化归思想,培养学生数学的分析问题的意识。
3. 情感态度价值观① 通过对对数函数概念的学习,使学生认清基本概念的来龙去脉,加深对人类认识事物的一般规律的理解和认识,使学生体会知识之间的有机联系,感受数学的整体性,激发学生的学习兴趣。
② 通过学生的相互交流来加深理解对数函数概念,增强学生数学交流能力,培养学生倾听,接受别人建议的优良品质。
【教学重难点】1. 对数函数和指数函数之间的联系;2. 理解对数函数的概念,体会对数函数是一类重要的函数模型;3. 掌握对数函数的图像和性质,会求与对数函数有关的复合函数的定义域和值域【教具准备】多媒体课件,投影仪,打印好的作业。
【教学过程】一. 预习填空:1.一般地,把函数 叫做对数函数,其中 是自变量,函数的定义域是 ,值域 .(可从指数式和对数式的互化来理解)3.指数函数y=a x (a>0且a ≠1)和对数函数y = log a x (a>0且a ≠1)是关于 对称二、例题讲解例1.求下列函数的定义域(1).0.2log (4);y x =- (2).log 0,1)ay a a =>≠(3). 61log 13y x =- (4). 2lg(23)y x x =+-变式训练:①.求函数1log (164)x x y +=-的定义域②.已知函数2log ()a y a a =-,其中a>1,求它的定义域和值域例2.比较下列各组数中两个值的大小23.4log 3.82①.log 与 0.50.5②.log 1.8与log 2.1 65l o g 77③.log 与变式训练:比较大小36①.log 5与log 5 1.9 2.1②.(lgm)与(lgm)(m>1)三.巩固练习1.函数的定义域2.若log 2log 20a b <<,则a ,b 与0,1的大小关系3.若函数()y f x =的图像与函数ln y x =的图像关于直线y x =对称,则()f x =4.函数2log (6)y x =- (2)x ≥-的值域为5.设20.30.3,2,2a b c ===,则a ,b ,c 的大小关系6.对数函数图像过点P (8,3),则1()2f =7.函数1()log a f x x -=在其定义域上是减函数,则a 的取值范围8.3lg 40x +=四.总结:①本节课学习的知识点有:②本节课所用的思想方法有:五:课堂作业: 课本P70 习题2.3(2) 2 , 3 P69 练习4作业 对数函数(1)1. 已知函数()f x =M ,()ln(1)g x x =+的定义域为N ,则M N = 2. 若0<x<1,则0.2x 2log x (填>或<)3.函数2()lg(31)f x x =++的定义域是 4. 若函数(4)x y f =的定义域为[0,1],则函数2(log )y f x =的定义域为5. 若log (21)log (4)0a a a a +<<,则a 的取值范围是6.已知函数2()log (2)f x x =-的值域是[1,4],那么函数()f x 的定义域是7.(2009全国卷Ⅱ文)设2lg ,(lg ),a e b e c ===a ,b ,c 的大小关系:8.对于函数2()lg(21)f x ax x =++.①若()f x 的定义域为R ,则a 的取值范围②若()f x 的值域为R ,则a 的取值范围9. 解下列不等式33log (4)2log x x ->+①. .2log (4)log (2)a a x x ->-②10. 对于函数124()lg 3x x a f x ++=. ①若()f x 在(,1)-∞上有意义,求a 的取值范围; ②若()f x 的定义域为(,1)-∞,求a 的值探究●拓展 :已知函数222()log 3,[1,4],()()[()]f x x x g x f x f x =+∈=-,求:①函数()f x 的值域②()g x 的最大值以及相应的x 的值。
对数函数的图像与性质导学案(一)

姓名: 组别: 班别: 得分:第1页高 一 数学《2.2.2对数函数及其性质》导学案(一)编写:沈凤玉 审核:马庆高 唐晖 编号:005[目标展示]1、理解对数函数的概念。
2、掌握掌握对数函数的图像和性质。
[重点难点]重点:对数函数的概念、图像和性质;难点:对数函数的图像和性质与其底数的关系。
[课前预习]复习:画出2xy =、1()2x y =的图象,并以这两个函数为例,说说指数函数的性质.探究:有一种细胞分裂时,由1个分裂成2个,2个分裂成4个,〃〃〃 1个这样的细胞分裂x 次会得到y 个细胞,则y 与x 函数关系为: 那么如果知道了细胞的个数y 如何确定分裂的次数x ?由对数式与指数式的互化可知: 新知:阅读教材第70~73页,试回答下列问题1、对数函数的定义:函数 叫做对数函数,其中 是自变量, 函数的定义域是 ;想一想:为什么对底数a 和自变量x 做这样的规定? 2、已知x x f 2log )(=、x x g 21log )(=,完成下列填空:(1))41(f = 、)21(f = 、)1(f = 、)2(f = 、)4(f = ;(2))41(g = 、)21(g = 、)1(g = 、)2(g = 、)4(g = 。
3、画出函数x x f 2log )(=和x x g 21log )(=的图象4[我的疑问]请将预习过程中未能解决的问题写在下面,准备课堂上与老师和同学们进行讨论交流解决。
姓名: 组别: 班别: 得分:第2页[合作探究]问题1:对数函数有哪些特征?怎样判断一个函数是对数函数?链接:指出下列函数那些是对数函数.)1(log )1(2+=x y x y 21lo g 2)2(= 1log )3(4+=x y24log )4(x y = x y x log )5(= )121(log )6()12(≠>=-a a x y a 且 问题2:怎样求对数型函数定义域?链接:求下列函数的定义域:(1)2log x y a =; (2))4(log x y a -= (3)y=lg (x+1)[巩固训练]1、已知某对数函数的图像过点(4,2),则该函数的解析式为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对数函数
对于表达式y
a x log =
如果以y 为自变量x 为函数值,是否可以构成一个函数?
对数函数的概念:
一般地,形如)1,0(log ≠>=a a y x a 且的函数叫做对数函数,其中x 是自变量,函数的定义域为),0(+∞∈x 常用对数函数:x y lg =
自然对数函数:x y ln =
例1、指出下列函数那些是对数函数:
(1)x y 1log = (2)x y 21log 3= (3))1(19log +=x y (4)x y 32log =
练:函数x a a a y log )33(2+-=是对数函数,则有( )
A.21==a a 或
B.1=a
C.2=a
D.10≠>a a 且
例2、已知对数函数)1,0(log )(≠>=a a x f x a 且的图像经过点)2,4(,求)8(),1(f f 的值
例3、若对数函数f (x )的图像经过点(16,-2),那么f (x )的解析式为__________ 从画出的图象(2log x y =、3log x y =和5log x
y =)中,你能发现函数的图象与其底数之间有什么样的规律?
从画出的图象中你能发现函数2log x y =的图象和函数12
log x y =的图象有什么关系?可否利用2log x
y =的图象画出12log x
y =的图象?
函数)1,0(log ≠>=a a y x a 且的底数变化对图像位置有何影响?
例4、求下列函数的定义域
①24log x y = ②)3(log )1(x y x -=- ③)82ln(2--=x x y ④2log 2-=x y
例5、比较大小
①3.5log 4.3log 22与 ②)10(7log 12log ≠>a a a a 且与
③6log 6log 2
131与 ④11log 12log 1211与
例6、求下列函数的单调区间:
①y )23(
2
2log +-=x x y
例7、画出下列函数的图像,并说明它们是由函数2()log x f x =的图像经过怎样的变换得到的?
(1) (1)2()log x f x += (2) 2()log 1x f x =+ (3)2()log x
f x =
(4)2()log x f x = (5)2()log x f x =- (6)2x y -=-()2()log x f x -=
1. 若a >b >0,0<c <1,则( )
A. log a c <log b c
B. log c a <log c b
C. a c <b c
D. c a >c b 2. 下列函数中,其定义域和值域分别与函数y =10lgx 的定义域和值域相同的是( )
A. y =x
B. y =lgx
C. y =2x
D. y =√x 3. 函数f(x)=log 2(x 2+2x −3)的定义域是( )
A. [−3,1]
B. (−3,1)
C. (−∞,−3]∪[1,+∞)
D. (−∞,−3)∪(1,+∞)
4. 设函数f(x)=ln(1+|x|)−1
1+x 2,则使得f(x)>f(2x −1)成立的x 的取值范围是( ) A. (−∞,13)∪(1,+∞)B. (13,1)C. (−13,13)D. (−∞,−13,)∪(1
3,+∞)
5. 已知实数x ,y 满足a x <a y (0<a <1),则下面关系式恒成立的是 ( ) A. 1x 2+1>1
y 2+1B. ln(x 2+1)>ln(y 2+1)C. sinx >siny D. x 3>y 3
6. 设a =log 2π,b =log 1
2π,c =π−2,则( ) A. a >b >c B. b >a >c C. a >c >b D. c >b >a 7. 已知函数y =log a (x +c)(a,c 为常数,其中a >0,a ≠1)的图象如图所示,则下列结论
成立的是( )
A. a >1,c >1
B. a >1,0<c <1
C. 0<a <1,c >1
D. 0<a <1,0<c <1
8. 已知函数f(x)=ln(−x 2−2x +3),则f(x)的增区间为( )
A. (−∞,−1)
B. (−3,−1)
C. [−1,+∞)
D. [−1,1) 9. 设函数f(x)={1−log 2
x,x >121−x ,x≤1,则满足f(x)≤2的x 的取值范围是( ) A. [−1,2] B. [0,2] C. [1,+∞) D. [0,+∞)
10. 函数f(x)=1x +ln|x|的图象大致为( ) A. B. C. D. 11. 对∀x ∈(0,13),8x ≤log a x +1恒成立,则实数a 的取值范围是( ) A. (0,23) B. (0,12]
C. [13,1)
D. [12,1) 12. 设函数f (x )={−x +a,x <12log 2x,x ≥12
的最小值为−1,则实数a 的取值范围是( ) A. [12,+∞) B. (−12,+∞) C. (−∞,−12) D. [−1,+∞)
1、下列函数是对数函数的是( )
A .2log (3)y x = B.32log y x =C
D
2、已知函数2log y x =,当1x >时,则( )
A .0y <
B .0y >
C .0y =
D .y 的符号不确定
3、已知函数2()log (1)f x x =+,若()1f a =,则a =( )
A .0
B .1
C .2
D .3
4、设2log a π=,
( )
A .a b c >>
B .a c b >>
C .b a c >>
D .b c a >>
5、若5log 1x <-,则x 的取值范围是( )
A C .5x > 6、函数)1,0(log ≠>=a a y x a 且的图像过定点( )
A .(1,1)
B .(1,0)
C .(0,1)
D .(0,0)
7、 已知3()log f x x =,则( )
A .2
B .-8、函数()lg(1)f x x =-的定义域是( )
A .(2,)+∞
B .(1,)+∞
C .[)1,+∞
D .[)2,+∞
9、已知函数(1)()log x a f x +=是(0,)+∞上的增函数,那么a 的取值范围是( )
A .(0,1)
B .(1,)+∞
C .(1,0)-
D .(0,)+∞
10、已知1,0≠>a a 且,则函数x a y log =和2)1(x a y -=在同一坐标系中的图像可能是
( )
11、若对数函数()f x 的图像经过点(16,2),那么()f x 的解析式为__________
12________.
13、设321,0,()log 1,0,x x f x x x ⎧-≤=⎨+>⎩则__________ 14、画出下列函数的图像,并根据图像写出函数的定义域、值域以及单调区间: (1)(1)3log x y -= (2)。